Exemplo n.º 1
0
def createTruth(npoints, nrepeats=4000):
    """
    Generates a range of initial states for both vehicles, then simulates from
    each one a certain number of times.
    """
    ## generating a grid of features
    res = int(npoints**.25)
    npoints = res**4
    x_0 = np.linspace(-1., 1., res)
    X_0 = np.empty((npoints, 4))
    for feature in range(4):
        X_0[:, feature] = np.repeat(np.tile(x_0, res**feature),
                                    res**(3 - feature))
    ## randomly generating features
    #X_0 = np.random.uniform(-1,1,size=(npoints,4))

    y_0 = []
    for point in range(npoints):
        x = X_0[point, :]
        mean1 = x[:2] * mean_bounds + mean_means
        mean1 = motionModels.initialState_normal(mean1, noise * .1)
        mean2 = x[2:4] * mean_bounds + mean_means
        mean2 = motionModels.initialState_normal(mean2, noise * .1)
        out = alarms.alarm_MCS(mean1, mean2, truthMM1, truthMM2, times,
                               nrepeats)
        y_0 += [out[0]]
    y_0 = np.array(y_0)

    np.save(model_name + '_X.npy', X_0)
    np.save(model_name + '_Y.npy', y_0)
Exemplo n.º 2
0
v = np.random.normal(10., 5., nsims) - timeback * a
th = np.random.uniform(-np.pi, np.pi, nsims)
x = np.random.normal(0., 5., nsims) - timeback * v * np.cos(th)
y = np.random.normal(0., 5., nsims) - timeback * v * np.sin(th)
vehicle2 = np.array((x, y, th, v, a, w)).T

truth = []
results = defaultdict(list)
for sim in range(nsims):
    veh1 = vehicle1[sim, :]
    veh2 = vehicle2[sim, :]
    veh1 = motionModels.initialState_normal(veh1, initialnoise)
    veh2 = motionModels.initialState_normal(veh2, initialnoise)

    # find 'real' collision occurrences by using very high-res particle alarm
    pred, rt = alarms.alarm_MCS(veh1, veh2, MM1, MM2, times, 10000)
    truth += [pred]
    results['optimal'].append((pred, rt))

    # estimators
    starttime = timer()
    result = alarms_nb.alarm_MCSbike(vehicle1[sim], initialnoise,
                                     vehicle2[sim], initialnoise,
                                     times.shape[0], timeres, noise, 10)
    time = timer() - starttime
    results['MC 10'].append((result, time))

    starttime = timer()
    result = alarms_nb.alarm_MCSbike(vehicle1[sim], initialnoise,
                                     vehicle2[sim], initialnoise,
                                     times.shape[0], timeres, noise, 100)
Exemplo n.º 3
0
truth = []
results = defaultdict(list)
for sim in range(nsims):
    veh1 = vehicle1[sim, :]
    veh2 = vehicle2[sim, :]
    veh1 = motionModels.initialState_normal(veh1, initialcovariance)
    veh2 = motionModels.initialState_normal(veh2, initialcovariance)

    # find 'true' collision occurrences by using very high-res MCS alarm
    pred, rt = alarms.alarm_truth(veh1, veh2, MM1, MM2, np.array(times))
    truth += [pred]
    results['optimal'] += [(pred, rt)]

    for nSamples in mc_samplecounts:
        result = alarms.alarm_MCS(veh1, veh2, MM1, MM2, times, nSamples)
        label = str(nSamples) + " MCS"
        results[label] += [result]

    result = model.alarm(veh1, veh2, MM1, MM2, times)
    results['MLP'] += [result]

    result = alarms.alarm_expected(veh1, veh2, MM1, MM2, times)
    results['expected'] += [result]

    result = alarms.alarm_UT_1(veh1, veh2, MM1, MM2, times)
    results['UT 1'] += [result]

    result = alarms.alarm_UT_2(veh1, veh2, MM1, MM2, times)
    results['UT 2'] += [result]
Exemplo n.º 4
0
v2 = np.random.normal(10., 5., nsims)
x2 = np.random.normal(-5, 2., nsims) - timeback * v2
vehicle2 = np.array((x2, v2)).T

print "running"

truth = []
results = defaultdict(list)
for sim in range(nsims):
    veh1 = vehicle1[sim, :]
    veh2 = vehicle2[sim, :]
    veh1 = motionModels.initialState_normal(veh1, initialcovariance)
    veh2 = motionModels.initialState_normal(veh2, initialcovariance)

    # find 'true' collision occurrences by using very high-res MCS alarm
    pred, rt = alarms.alarm_MCS(veh1, veh2, MM1, MM2, np.array(times), 10000)
    truth += [pred]
    results['optimal'].append((pred, rt))

    # estimators
    starttime = timer()
    result = alarms_nb.alarm_MCSroad(vehicle1[sim], initialcovariance,
                                     vehicle2[sim], initialcovariance,
                                     times.shape[0], timeres, noise, 10)
    time = timer() - starttime
    results['MC 10'].append((result, time))

    starttime = timer()
    result = alarms_nb.alarm_MCSroad(vehicle1[sim], initialcovariance,
                                     vehicle2[sim], initialcovariance,
                                     times.shape[0], timeres, noise, 100)