Exemplo n.º 1
0
    def __getitem__(
            self, index: int
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, torch.Tensor]:
        kind, file, label = (
            self.kinds[index],
            self.files[index],
            self.labels[index],
        )

        dct_y, dct_cb, dct_cr = dct_from_jpeg_imageio(file)

        dct_y = dct_y.astype(np.float32)
        dct_cb = dct_cb.astype(np.float32)
        dct_cr = dct_cr.astype(np.float32)

        dct_y = np.rollaxis(dct_y, 2, 0)
        dct_cb = np.rollaxis(dct_cb, 2, 0)
        dct_cr = np.rollaxis(dct_cr, 2, 0)

        dct_y = dct_y / 1024
        dct_cb = dct_cb / 1024
        dct_cr = dct_cr / 1024

        target = one_hot(10, label)

        return dct_y, dct_cb, dct_cr, target
Exemplo n.º 2
0
    def __getitem__(
        self, index: int
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, torch.Tensor]:
        kind, image_name, label = (
            self.kinds[index],
            self.image_names[index],
            self.labels[index],
        )

        dct_y, dct_cb, dct_cr = dct_from_jpeg_imageio(
            f"data/{kind}/{image_name}"
        )

        dct_y = dct_y.astype(np.float32)
        dct_cb = dct_cb.astype(np.float32)
        dct_cr = dct_cr.astype(np.float32)

        dct_y = np.rollaxis(dct_y, 2, 0)
        dct_cb = np.rollaxis(dct_cb, 2, 0)
        dct_cr = np.rollaxis(dct_cr, 2, 0)

        dct_y = dct_y / 1024
        dct_cb = dct_cb / 1024
        dct_cr = dct_cr / 1024

        target = one_hot(self.n_classes, label)

        return dct_y, dct_cb, dct_cr, target
Exemplo n.º 3
0
    def __getitem__(self, index):
        kind, image_name, label = (
            self.kinds[index],
            self.image_names[index],
            self.labels[index],
        )
        dct_y, dct_cb, dct_cr = dct_from_jpeg_imageio(
            f"data/{kind}/{image_name}")

        dct_y = dct_y.astype(np.float32)
        dct_cb = dct_cb.astype(np.float32)
        dct_cr = dct_cr.astype(np.float32)

        # dct_y = np.rollaxis(dct_y, 2, 0)
        # dct_cb = np.rollaxis(dct_cb, 2, 0)
        # dct_cr = np.rollaxis(dct_cr, 2, 0)

        dct_y = dct_y / 1024
        dct_cb = dct_cb / 1024
        dct_cr = dct_cr / 1024

        # Flatten each array from shape (64, 64, 64) to (4096, 64)
        dct_y = dct_y.reshape((4096, 64))
        dct_cb = dct_cb.reshape((4096, 64))
        dct_cr = dct_cr.reshape((4096, 64))

        # Concatenate the arrays
        input_data = np.concatenate((dct_y, dct_cb, dct_cr), axis=0)

        target = one_hot(4, label)

        return input_data, target
Exemplo n.º 4
0
def pre_process_and_save_dct_data():
    for kind in tqdm(["Cover", "JMiPOD", "JUNIWARD", "UERD"], desc=""):
        for file in tqdm(glob.glob1(f"data/Cover/", "*.jpg"), desc=""):
            save_dir = f"data/dct/{kind}/"
            load_dir = f"data/{kind}/"
            save_file = f"{save_dir}/{file}".replace(".jpg", ".npz")
            load_file = f"{load_dir}/{file}"
            make_dir_if_not_exists(save_dir)

            # Load the DCT arrays
            dct_y, dct_cb, dct_cr = dct_from_jpeg_imageio(load_file)

            # Save the arrays without any normalisation
            np.savez_compressed(save_file, dct_y, dct_cb, dct_cr)
Exemplo n.º 5
0
def test_dct_methods() -> None:
    test_path = "data/UERD/00001.jpg"
    uber_dct_y, uber_dct_cb, uber_dct_cr = dct_from_jpeg(test_path)
    imageio_dct_y, imageio_dct_cb, imageio_dct_cr = dct_from_jpeg_imageio(
        test_path
    )

    assert uber_dct_y.shape == (64, 64, 64)
    assert uber_dct_cb.shape == (32, 32, 64)
    assert uber_dct_cr.shape == (32, 32, 64)

    assert imageio_dct_y.shape == (64, 64, 64)
    assert imageio_dct_cb.shape == (64, 64, 64)
    assert imageio_dct_cr.shape == (64, 64, 64)
Exemplo n.º 6
0
    def __getitem__(self, index):
        image_name = self.image_names[index]
        img_path = f"data/Test/{image_name}"

        dct_y, dct_cb, dct_cr = dct_from_jpeg_imageio(img_path)

        dct_y = dct_y.astype(np.float32)
        dct_cb = dct_cb.astype(np.float32)
        dct_cr = dct_cr.astype(np.float32)

        dct_y = np.rollaxis(dct_y, 2, 0)
        dct_cb = np.rollaxis(dct_cb, 2, 0)
        dct_cr = np.rollaxis(dct_cr, 2, 0)

        dct_y = dct_y / 1024
        dct_cb = dct_cb / 1024
        dct_cr = dct_cr / 1024

        return image_name, [dct_y, dct_cb, dct_cr]
Exemplo n.º 7
0
def load_dct_values_from_pre_processed_imagenet_image(image_path,
                                                      is_training=True):
    # Read the image with CV2 and convert to BGR
    img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
    img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

    if is_training:
        try:
            img = get_random_crop(img, image_size=IMAGE_SIZE)
        except ValueError:
            print("Invalid random crop, reverting to center crop.")
            img = get_center_crop(img, image_size=IMAGE_SIZE)
    else:
        img = get_center_crop(img, image_size=IMAGE_SIZE)

    with tempfile.TemporaryDirectory() as tmp_dir:
        tmp_file = f"{tmp_dir}/img.jpg"
        # Convert to PIL and save without subsampling
        img = Image.fromarray(np.array(img))
        img.save(tmp_file, subsampling=0, format="JPEG")

        return dct_from_jpeg_imageio(tmp_file)
Exemplo n.º 8
0
def compare_cover_vs_modified_dct() -> None:
    dct_y_0, dct_cb_0, dct_cr_0 = dct_from_jpeg_imageio("data/UERD/00001.jpg")
    dct_y_1, dct_cb_1, dct_cr_1 = dct_from_jpeg_imageio("data/UERD/00001.jpg")

    print(dct_y_0[0])
    print(dct_y_1[0])