Exemplo n.º 1
0
 def __getitem__(self, idx):
     first_idx = idx if idx % config.num_files_folder == 0 else idx - 1
     next_idx = idx
     file1, file2 = self.filenames[first_idx], self.filenames[next_idx]
     first = cv2.cvtColor(cv2.imread(str(file1)), cv2.COLOR_BGR2RGB)
     second = cv2.cvtColor(cv2.imread(str(file2)), cv2.COLOR_BGR2RGB)
     return str(file2), img_to_tensor(first), img_to_tensor(second)
Exemplo n.º 2
0
    def run(self):

        self.game.init_game()
        state = self.game.start_game()
        episode_reward = 0

        while True:
            logger.info("Next frame.")
            epsilon, learning = self.learner.epsilon

            # all learning iterations done
            if not learning:
                break

            # get best or random action with probability epsilon
            action = self.learner.act(state, epsilon)

            next_state, reward, done = self.game.move(action)
            self.learner.remember(img_to_tensor(state), action, reward,
                                  img_to_tensor(next_state), done)

            state = next_state
            episode_reward += reward

            if done:
                logger.warning("Game over ({} fps).".format(
                    len(self.game.frames) / (time.time() - self.game.started)))
                self.learner.update()
                self.learner.add_episode_reward(episode_reward)
                episode_reward = 0

                # reset
                self.game.reset()
                state = self.game.start_game()
Exemplo n.º 3
0
    def __getitem__(self, idx):
        filename = self.filenames[idx]
        image = load_image(filename)
        mask = load_mask(filename)
        data = {'image': image, 'mask': mask}

        augmented = self.transform(**data)
        image, mask = augmented["image"], augmented["mask"]

        # load optical flow
        optflow = load_optflow(filename)
        optflow = cv2.resize(optflow,
                             dsize=(image.shape[1], image.shape[0]),
                             interpolation=cv2.INTER_AREA).transpose(2, 0, 1)

        # in evaluation mode should return the filename
        if self.mode == 'eval':
            return str(filename), img_to_tensor(image), torch.from_numpy(
                optflow).float()

        # TODO: change the file format
        if params.problem_type == 'binary':
            # reshape the binary output to be 3D
            return img_to_tensor(image), torch.from_numpy(np.expand_dims(mask, 0)).float(), \
                        torch.from_numpy(optflow).float()
        else:
            return img_to_tensor(image), torch.from_numpy(mask).long(), \
                        torch.from_numpy(optflow).float()
Exemplo n.º 4
0
 def __getitem__(self, idx):
     input_filename = self.input_filenames[idx]
     label_filename = self.label_filenames[idx]
     input_image = load_image(input_filename)
     label_image = load_image(label_filename)
     augmented_input_image, augmented_label_image = self.transform(
         image=input_image, mask=label_image)
     return img_to_tensor(augmented_input_image), img_to_tensor(
         augmented_label_image)
Exemplo n.º 5
0
 def __getitem__(self, idx):
     first_idx = idx if idx == 0 else idx - 1
     next_idx = idx
     file1, file2 = self.filenames[first_idx], self.filenames[next_idx]
     first = cv2.cvtColor(cv2.imread(str(file1)), cv2.COLOR_BGR2RGB)
     second = cv2.cvtColor(cv2.imread(str(file2)), cv2.COLOR_BGR2RGB)
     # first = cv2.resize(first, dsize=(1280, 384))
     # second = cv2.resize(second, dsize=(1280, 384))
     return str(file2), img_to_tensor(first), img_to_tensor(second)
Exemplo n.º 6
0
    def __getitem__(self, idx):
        rec_left_path = self.rec_imgs_and_gts_names['Rectified_left_image_path'].values[idx]
        rec_right_path = self.rec_imgs_and_gts_names['Rectified_right_image_path'].values[idx]
        rec_left_gt_path = self.rec_imgs_and_gts_names['Rectified_left_gt_path'].values[idx]
        # rec_right_gt_path = self.rec_imgs_and_gts_names['Rectified_right_gt_path'].values[idx]
        # mask_left_path = self.rec_imgs_and_gts_names['Rectified_left_mask_path'].values[idx]
        # mask_right_path = self.rec_imgs_and_gts_names['Rectified_right_mask_path'].values[idx]

        reprojection_matrix_left = self.reprojecton_matrixs['arr_0'][idx]
        # reprojection_matrix_right = reprojection_matrix_left.copy()
        # reprojection_matrix_right[3][2] = - reprojection_matrix_right[3][2]
        # bb = self.baseline[idx]
        # ff = self.focal[idx]
        rec_left = cv2.imread(rec_left_path)
        rec_right = cv2.imread(rec_right_path)
        rec_left_gt = tifffile.imread(rec_left_gt_path)
        # rec_right_gt = tifffile.imread(rec_right_gt_path)


        ds_left = cv2.resize(rec_left, (0, 0), fx=1. / self.downsampling, fy=1. / self.downsampling)
        ds_right = cv2.resize(rec_right, (0, 0), fx=1. / self.downsampling, fy=1. / self.downsampling)
        del rec_left
        del rec_right
        # ds_left = ds_left.astype(np.float32)
        # ds_right = ds_right.astype(np.float32)
        rec_left_gt = rec_left_gt.astype(np.float32)
        # rec_right_gt = rec_right_gt.astype(np.float32)

        left_z = rec_left_gt[:, :, 2]
        # right_z = rec_right_gt[:, :, 2]
        med_left = np.median(left_z[left_z > 0])
        # med_right = np.median(right_z[right_z > 0])

        mask_left = (left_z > 5).astype(np.float32) * (left_z < 5 * med_left).astype(np.float32)
        # mask_right = (right_z > 5).astype(np.float32) * (right_z < 5 * med_right).astype(np.float32)
        mask_left = mask_left[..., np.newaxis]
        # mask_right = mask_right[..., np.newaxis]
        mask_left = np.repeat(mask_left, 3, axis=2)
        # mask_right = np.repeat(mask_right, 3, axis=2)
        # bb和ff转换成array,类型为float32
        reprojection_matrix_left = reprojection_matrix_left.astype(np.float32)
        # reprojection_matrix_right = reprojection_matrix_right.astype(np.float32)
        # bb = np.array(bb).astype(np.float32)
        # ff = np.array(ff).astype(np.float32)
        if self.phase == 'train':
            if self.transform is not None:
                ds_left = self.transform(image=ds_left)['image']
                ds_right = self.transform(image=ds_right)['image']
            ds_left = self.normalize(image=ds_left)['image']
            ds_right = self.normalize(image=ds_right)['image']
        else:
            ds_left = self.normalize(image=ds_left)['image']
            ds_right = self.normalize(image=ds_right)['image']

        return [img_to_tensor(ds_left), img_to_tensor(ds_right), img_to_tensor(rec_left_gt),\
               img_to_tensor(mask_left),  torch.from_numpy(reprojection_matrix_left)]
Exemplo n.º 7
0
 def __getitem__(self, idx):
     # an exception for each video:
     # for the first frame in each video, the optical flow should be 0
     # optflow[0] = flow<0, 0> = 0, optflow[k] = flow<k-1, k> (k > 0)
     first_idx = idx if idx % utils.num_frames_video == 0 else idx - 1
     next_idx = idx
     file1, file2 = self.filenames[first_idx], self.filenames[next_idx]
     # according to the UnFlow implementation, inputs are in normalized BGR space
     first = cv2.imread(str(file1))
     second = cv2.imread(str(file2))
     # img_to_tensor will reshape into (c, h, w) and scaled to [0., 1.]
     return str(file2), img_to_tensor(first), img_to_tensor(second)
Exemplo n.º 8
0
    def __getitem__(self, idx):
        # select the selected file
        if self.schedule == "shuffle":
            filename = self.shuffled_filenames[idx]
            idx = self.shuffled_idx[idx]
        elif self.schedule == "ordered":
            filename = self.ordered_filenames[idx]
            idx = self.ordered_idx[idx]
        else:
            filename = self.filenames[idx]

        self.is_labeled = self.labeled[idx]

        # load optical flow
        optflow = self.load_optflow(filename)

        # print(filename)
        image = self.load_image(filename)
        if self.is_labeled == False and self.mode == 'train':
            # give last frame prediction
            mask = self.load_mask(self.filenames[idx - 1])
            # mask = self.dilated_mask(mask, optflow)
        else:
            mask = self.load_mask(filename)

        data = {'image': image, 'mask': mask}

        augmented = self.transform(**data)
        image, mask = augmented["image"], augmented["mask"]

        # generate attention map
        if idx % config.num_files_folder:
            # this is not the first frame, calculate attention map using previous prediction
            attmap = self.cal_attmap(self.attmaps[idx - 1], optflow)
        else:
            # else use last epoch prediction
            attmap = self.attmaps[idx]

        # in evaluation mode should return the filename
        if self.mode == 'eval':
            return idx, str(filename), img_to_tensor(image), torch.from_numpy(np.expand_dims(attmap, 0)).float() \
            , torch.from_numpy(optflow.transpose(2,0,1)).float()

        # TODO: change the file format
        if self.problem_type == 'binary':
            # reshape the binary output to be 3D
            return idx, self.is_labeled, img_to_tensor(image), torch.from_numpy(np.expand_dims(mask, 0)).float(), \
                        torch.from_numpy(np.expand_dims(attmap, 0)).float(), torch.from_numpy(optflow.transpose(2,0,1)).float()
        else:
            return idx, self.is_labeled, img_to_tensor(image), torch.from_numpy(mask).long(), \
                        torch.from_numpy(np.expand_dims(attmap, 0)).float(), torch.from_numpy(optflow.transpose(2,0,1)).float()
Exemplo n.º 9
0
    def __getitem__(self, index):
        #image_path = self.image_paths[index]
        #image = cv2.imread(image_path, cv2.IMREAD_COLOR)
        #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = self.images[index]
        if self.transforms:
            image = self.transforms(image=image)['image']

        if self.use_masking:
            mask_num = random.randrange(1, args.max_mask_num+1)
            if self.args.masking_type == 'soft':
                mask_prob = 0.25
                rand_val = random.random()
                if rand_val < mask_prob:
                    image = time_mask(image, num_masks=mask_num)
                rand_val = random.random()
                if rand_val < mask_prob:
                    image = signal_mask(image, num_masks=mask_num)

            elif self.args.masking_type == 'hard':
                mask_prob = 0.3
                rand_val = random.random()
                if rand_val < mask_prob:
                    image = signal_mask(time_mask(image, num_masks=mask_num), num_masks=mask_num)
                else:
                    rand_val = random.random()
                    if rand_val < 0.3:
                        image = time_mask(image, num_masks=mask_num)
                    rand_val = random.random()
                    if rand_val < 0.3:
                        image = signal_mask(image, num_masks=mask_num)

        #image = img_to_tensor(image, {"mean": [0.485, 0.456, 0.406],
        #                            "std": [0.229, 0.224, 0.225]})
        #image = torch.from_numpy(image.transpose((2, 0, 1)))
        data = {}
        if self.use_meta:
            data['image'] = img_to_tensor(image)
            data['meta'] = torch.tensor(self.meta[index]).float()
        else:
            data['image'] = img_to_tensor(image)

        if self.is_test:
            #return image #torch.tensor(img, dtype=torch.float32)
            return data
        else:
            label = self.labels[index]
            #return image, label#torch.tensor(img, dtype=torch.float32),\
                 #torch.tensor(self.labels[index], dtype=torch.long)
            return data, label
Exemplo n.º 10
0
    def __getitem__(self, idx):
        prev_idx = idx
        next_idxs = []
        seconds = []
        for i in range(idx + 1, idx + self.batch_size):
            next_idx = i if i < len(
                self.filenames) else len(self.filenames) - 1
            file1, file2 = self.filenames[prev_idx], self.filenames[next_idx]
            first = cv2.cvtColor(cv2.imread(str(file1)), cv2.COLOR_BGR2RGB)
            second = cv2.cvtColor(cv2.imread(str(file2)), cv2.COLOR_BGR2RGB)

            next_idxs.append(next_idx)
            seconds.append(img_to_tensor(second))
        return str(file1), prev_idx, img_to_tensor(first), next_idxs, seconds
Exemplo n.º 11
0
    def __getitem__(self, idx):
        img_file_name = self.file_names[idx]
        image = load_image(img_file_name)
        mask = load_mask(img_file_name, self.problem_type)

        data = {"image": image, "mask": mask}

        if self.transform is not None:
            augmented = self.transform(**data)
            image, mask = augmented["image"], augmented["mask"]

        if self.problem_type == 'binary':
            return img_to_tensor(image), torch.from_numpy(mask).long()
        else:
            return img_to_tensor(image), torch.from_numpy(mask).long()
Exemplo n.º 12
0
    def predict(self, image_path):
        '''
        模型预测返回结果
        :param input: 评估传入样例 {"image_path": "./data/input/cloudy/00000.jpg"}
        :return: 模型预测成功中户 {"label": 0}
        '''
        print(image_path)
        # Normalize = {'mean': (0.485, 0.456, 0.406), 'std': (0.229, 0.224, 0.225)}
        result = []
        for size in SIZES:
            img = cv.imread(image_path)
            img = cv.resize(img, dsize=(size, size))
            tensor = img_to_tensor(img)
            tensor = Variable(torch.unsqueeze(tensor, dim=0).float(),
                              requires_grad=False)

            for subModel in self.models:
                output = tta.fliplr_image2label(subModel, tensor.to(device))
                result.append(output)

        new_output = torch.mean(torch.stack(result, 0), 0)
        pred = new_output.max(1, keepdim=True)[1]

        # output = tta.fliplr_image2label(self.model, tensor.to(device))
        # pred = output.max(1, keepdim=True)[1].item()

        return {"label": pred}
Exemplo n.º 13
0
    def __getitem__(self, idx):
        imageid = self.image_ids[idx]
        im = get_image(imageid, basepath=self.basepath, rgbdir='test_rgb')
        assert im is not None

        augmented = self.aug(image=im)
        return img_to_tensor(augmented['image']), imageid
Exemplo n.º 14
0
    def __getitem__(self, index):

        image_path = self.image_paths[index]
        image = cv2.imread(image_path, cv2.IMREAD_COLOR)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        if self.transforms:
            image = self.transforms(image=image)['image']

        # Masking Augmentation (Saewon)
        if self.masking == 'soft':
            mask_prob = 0.3
            rand_val = random.random()
            if rand_val < mask_prob:
                image = time_mask(image, num_masks=2)
            rand_val = random.random()
            if rand_val < mask_prob:
                image = signal_mask(image, num_masks=2)

        elif self.masking == 'hard':
            mask_prob = 0.5
            rand_val = random.random()
            if rand_val < mask_prob:
                image = signal_mask(time_mask(image, num_masks=2), num_masks=2)

        image = img_to_tensor(image, {
            "mean": [0.485, 0.456, 0.406],
            "std": [0.229, 0.224, 0.225]
        })

        if self.is_test:
            return image  #torch.tensor(img, dtype=torch.float32)
        else:
            label = self.labels[index]
            return image, label  #torch.tensor(img, dtype=torch.float32),\
Exemplo n.º 15
0
    def __getitem__(self, idx):
        '''
        pytorch dataloader get_item_from_index
        input:
        idx: corresponding with __len__

        output:
        input_dict: a dictionary stores all return value
        '''

        # input dict for return
        input_dict = {}
        filename, abs_idx = self.get_filename_from_idx(idx)
        image = self.load_image(filename)

        # extra input for TAPNet
        if 'TAPNet' in self.model:
            # load optical flow <prev_frame, cur_frame>
            optflow = self.load_optflow(filename)
            # generate attention map
            if abs_idx % utils.num_frames_video:
                if self.mf:
                    # calculate attention map using previous prediction and Motion Flow
                    attmap = cal_attmap_np(self.attmaps[abs_idx - 1], optflow)
                else:
                    # calculate attention map using previous prediction
                    attmap = self.attmaps[abs_idx - 1]
                '''
                EXPERIMENT: uncomment to use
                don't use optical flow, directly use previous frame prediction in last epoch
                '''
                # attmap = self.attmaps[abs_idx - 1]
            else:
                # first frame of every video, simply use prediction in last epoch without motion flow
                attmap = self.attmaps[abs_idx]

            # input absolute index and attention map for attention map update
            input_dict['abs_idx'] = abs_idx
            input_dict['attmap'] = torch.from_numpy(np.expand_dims(attmap,
                                                                   0)).float()

        # gts
        mask = self.load_mask(filename, self.mask_folder)

        # augment
        data = {'image': image, 'mask': mask}

        augmented = self.transform(**data)
        image, mask = augmented["image"], augmented["mask"]

        # input image
        input_dict['input'] = img_to_tensor(image)
        if self.mode == 'eval':
            # in evaluation mode should input the filename of input image
            input_dict['input_filename'] = str(filename)
        else:
            # input gt
            input_dict['target'] = torch.from_numpy(mask).long()

        return input_dict
Exemplo n.º 16
0
    def __getitem__(self, index):
        self.image_paths = Path(
            os.path.join(self.root, self.folder_name[index])).rglob('*.jpg')
        image_paths = list(self.image_paths)
        index_jump = len(image_paths) / 32
        image = []
        index_image = 0
        while (index_image < len(image_paths)):
            x = cv2.imread(str(image_paths[int(
                index_image)]))  #Image.open(image_paths[int(index_image)])
            x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)
            transformed = self.transform(image=x)
            transformed_image = transformed["image"]
            image.append(img_to_tensor(transformed_image))
            index_image += index_jump
        '''
        for index_image in range(0, len(image_paths), index_jump):
            x = Image.open(image_paths[index_image])
            image.append(self.transform(x))
        '''
        #x = Image.open(self.image_paths[index])
        #label = self.json_data[str(self.image_paths[index]).split('/')[-2]+'.mp4']['label']
        label = self.json_data[self.folder_name[index] + '.mp4']['label']
        if label == 'FAKE':
            self.label = torch.tensor(1.0).repeat(32)
        else:
            self.label = torch.tensor(0.0).repeat(32)

        return torch.cat(image).view(-1, 3, 256, 256), self.label
Exemplo n.º 17
0
    def __getitem__(self, idx):

        if self.mode == 'train' and self.equibatch:
            group_id = self.group_ids[idx % len(self.group_ids)]
            name = random.choice(self.group_names[group_id])
        else:
            group_id = "unknown"
            name = self.names[idx]
        pre_img_path = os.path.join(self.data_path, "images", name + "_pre_disaster.png")
        post_img_path = os.path.join(self.data_path, "images", name + "_post_disaster.png")
        image_pre = cv2.imread(pre_img_path, cv2.IMREAD_COLOR)[:, :, ::-1]
        image_post = cv2.imread(post_img_path, cv2.IMREAD_COLOR)[:, :, ::-1]
        mask_pre = cv2.imread(os.path.join(self.data_path, "masks", name + "_pre_disaster.png"), cv2.IMREAD_GRAYSCALE)
        mask_post = cv2.imread(os.path.join(self.data_path, "masks", name + "_post_disaster.png"), cv2.IMREAD_GRAYSCALE)

        rectangles = self.cache.get(self.names[idx], [])
        if not rectangles:
            self.add_boxes(label(mask_post == 2).astype(np.uint8), rectangles)
        if rectangles:
            self.cache[self.names[idx]] = rectangles

        mask = np.stack([mask_pre, mask_post, mask_post], axis=-1)
        sample = self.transforms(image=image_pre, image1=image_post, mask=mask, img_name=name, rectangles=rectangles)
        image = np.concatenate([sample['image'], sample['image1']], axis=-1)
        sample['img_name'] = name
        sample['group_id'] = group_id
        mask = np.zeros((5, *sample["mask"].shape[:2]))
        for i in range(1, 5):
            mask[i - 1, sample["mask"][:, :, 1] == i] = 1
        mask[4] = sample["mask"][:, :, 0] / 255
        del sample["image1"]
        sample['original_mask'] = torch.from_numpy(np.ascontiguousarray(sample["mask"][:, :, 1]))
        sample['mask'] = torch.from_numpy(np.ascontiguousarray(mask)).float()
        sample['image'] = img_to_tensor(np.ascontiguousarray(image), self.normalize)
        return sample
Exemplo n.º 18
0
 def act(self, state, epsilon):
     if random.random() > epsilon:
         with torch.no_grad():
             state_ = self.Variable(img_to_tensor(state).unsqueeze(0))
         q_value = self.forward(state_)
         return q_value.max(1)[1].data[0]
     else:
         return random.randrange(self.num_actions)
Exemplo n.º 19
0
    def __getitem__(self, idx):
        img_file_name = self.file_names[idx]
        image = load_image(img_file_name)

        if self.mode == 'train':
            mask_path = re.sub('.tif', 'segcls.tif', img_file_name)
            mask = load_mask(mask_path)
            data = {"image": image, "mask": mask}
            augmented = self.transform(**data)
            image, mask = augmented["image"], augmented["mask"]
            return img_to_tensor(image), torch.from_numpy(np.expand_dims(mask, 0)).float()
        else:
            data = {"image": image}
            augmented = self.transform(**data)
            image = augmented["image"]

            return img_to_tensor(image), str(img_file_name)
Exemplo n.º 20
0
    def __getitem__(self, idx):
        img_file_name = self.file_names[idx]
        image = load_image(img_file_name)
        mask = load_mask(img_file_name, self.problem_type)

        data = {"image": image, "mask": mask}
        augmented = self.transform(**data)
        image, mask = augmented["image"], augmented["mask"]

        if self.mode == 'train':
            if self.problem_type == 'binary':
                return img_to_tensor(image), torch.from_numpy(
                    np.expand_dims(mask, 0)).float()
            else:
                return img_to_tensor(image), torch.from_numpy(mask).long()
        else:
            return img_to_tensor(image), str(img_file_name)
Exemplo n.º 21
0
def image_loader(image):
    image = np.asarray(image)
    """load image, returns cuda tensor"""
    image = loader(image=image)['image']
    image = img_to_tensor(image)
    image = torch.autograd.Variable(image, requires_grad=True)

    return image.unsqueeze(0)
Exemplo n.º 22
0
def standardize(img_soft, img_withbone, threshold, mask=None, vthreshold=None):

    if mask is not None:
        # lung_org = img_blend(image_org, img_withbone, mask)
        lung_soft = img_soft * mask
        lung_withbone = img_withbone * mask
    else:
        lung_soft = img_soft
        lung_withbone = img_withbone

    if vthreshold is None:
        lung_soft_min = lung_soft[lung_soft > 0].min()
        lung_soft_max = lung_soft.max()

        lung_withbone_min = lung_withbone[lung_withbone > 0].min()
        lung_withbone_max = lung_withbone.max()

        #vthreshold = (lung_org_min, lung_org_max)
    else:
        lung_soft_min = vthreshold[0]
        lung_soft_max = vthreshold[1]
        lung_withbone_min = vthreshold[0]
        lung_withbone_max = vthreshold[1]
    # 对target进行归范化处理
    a_org = (threshold[1] - threshold[0]) / (lung_soft_max - lung_soft_min)
    b_org = (threshold[0] * lung_soft_max -
             lung_soft_min * threshold[1]) / (lung_soft_max - lung_soft_min)

    image_soft = img_soft * a_org + b_org
    image_soft[image_soft < threshold[0]] = threshold[0]
    image_soft[image_soft > threshold[1]] = threshold[1]

    # 对人造原片进行归范化处理
    withbone_a_org = (threshold[1] - threshold[0]) / (lung_withbone_max -
                                                      lung_withbone_min)
    withbone_b_org = (threshold[0] * lung_soft_max - lung_withbone_min *
                      threshold[1]) / (lung_withbone_max - lung_withbone_min)

    image_withbone = img_withbone * withbone_a_org + withbone_b_org
    image_withbone[image_soft < threshold[0]] = threshold[0]
    image_withbone[image_soft > threshold[1]] = threshold[1]

    return img_to_tensor(image_withbone), img_to_tensor(image_soft)
Exemplo n.º 23
0
def direct_val(imgs,size):
    #img 输入为RGB顺序
    imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in imgs]
    transforms = create_val_transforms(size)
    normalize = {"mean": [0.485, 0.456, 0.406],
                 "std": [0.229, 0.224, 0.225]}
    imgs = [img_to_tensor(transforms(image=each)['image'],normalize).unsqueeze(0) for each in imgs]
    imgs = torch.cat(imgs)

    return imgs
Exemplo n.º 24
0
def direct_val(imgs,size):
    #img 输入为RGB顺序
    imgs = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in imgs]
    stream = create_val_transforms(size)
    normalize = {"mean": [0.485, 0.456, 0.406],
                 "std": [0.229, 0.224, 0.225]}
    imgs = [img_to_tensor(stream(each,return_torch=False).data[0],normalize).unsqueeze(0) for each in imgs]
    imgs = torch.cat(imgs)

    return imgs
Exemplo n.º 25
0
    def __getitem__(self, idx):
        img_file_name = self.file_names[idx]
        image = load_image(img_file_name)

        if self.mode == 'train':
            name_root = img_file_name.split('_')[-1].split('.')[0]
            mask_path = os.path.join(
                self.mask_dir, 'mask_' + name_root + '.png')
            mask = load_mask(mask_path)

            data = {"image": image, "mask": mask}
            augmented = self.transform(**data)
            image, mask = augmented["image"], augmented["mask"]

            return img_to_tensor(image), torch.from_numpy(mask).to(torch.long)
        else:
            data = {"image": image}
            augmented = self.transform(**data)
            image = augmented["image"]
            return img_to_tensor(image), str(img_file_name)
Exemplo n.º 26
0
def test_file():
    model = Network().cuda().eval()
    fn1 = 'pytorch-unflow-master/images/first.png'
    fn2 = 'pytorch-unflow-master/images/second.png'
    first = img_to_tensor(cv2.cvtColor(cv2.imread(str(fn1)),
                                       cv2.COLOR_BGR2RGB))
    second = img_to_tensor(
        cv2.cvtColor(cv2.imread(str(fn2)), cv2.COLOR_BGR2RGB))
    output = estimate(model, first.unsqueeze(0), second.unsqueeze(0)).squeeze()
    objectOutput = open(str('out.flo'), 'wb')

    np.array([80, 73, 69, 72], np.uint8).tofile(objectOutput)
    np.array([output.size(2), output.size(1)], np.int32).tofile(objectOutput)
    np.array(output.numpy().transpose(1, 2, 0),
             np.float32).tofile(objectOutput)
    out = output.numpy().transpose(1, 2, 0)
    print(out.shape, out[0])

    objectOutput.close()
    return out
Exemplo n.º 27
0
    def __getitem__(self, index):

        if self.args.backend == "pil":
            if self.args.grayscale:
                image = Image.open(self.image_paths[index]).convert("L")
                image = np.array(image)
                image = np.expand_dims(image, -1)
            else:
                image = Image.open(self.image_paths[index])
                image = np.array(image)
        elif self.args.backend == "cv2":
            if self.args.grayscale:
                image = cv2.imread(self.image_paths[index],
                                   cv2.IMREAD_GRAYSCALE)
                image = np.expand_dims(image, -1)
            else:
                image = cv2.imread(self.image_paths[index])
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        else:
            raise Exception("Backend not implemented")

        # Applying Albumentation augments
        if self.transforms:
            image = self.transforms(image=image)['image']

        # Normalize and to Tensor
        if self.args.grayscale:
            image = img_to_tensor(image)
        else:
            image = img_to_tensor(image, {
                "mean": [0.485, 0.456, 0.406],
                "std": [0.229, 0.224, 0.225]
            })
        # image = torch.from_numpy(image.transpose((2, 0, 1)))
        # image = np.transpose(image, (2,0,1)).astype(np.float32)

        if self.is_test:
            return image
        else:
            label = self.labels[index]
            return image, label  #torch.tensor(img, dtype=torch.float32),\
    def __getitem__(self, index):
        image = self.images[index]
        if self.transforms:
            image = self.transforms(image=image)['image']

        if self.use_masking:
            mask_num = random.randrange(1, args.max_mask_num+1)
            if self.args.masking_type == 'soft':
                mask_prob = 0.25
                rand_val = random.random()
                if rand_val < mask_prob:
                    image = time_mask(image, num_masks=mask_num)
                rand_val = random.random()
                if rand_val < mask_prob:
                    image = signal_mask(image, num_masks=mask_num)

            elif self.args.masking_type == 'hard':
                mask_prob = 0.3
                rand_val = random.random()
                if rand_val < mask_prob:
                    image = signal_mask(time_mask(image, num_masks=mask_num), num_masks=mask_num)
                else:
                    rand_val = random.random()
                    if rand_val < 0.3:
                        image = time_mask(image, num_masks=mask_num)
                    rand_val = random.random()
                    if rand_val < 0.3:
                        image = signal_mask(image, num_masks=mask_num)

        data = {}
        if self.use_meta:
            data['image'] = img_to_tensor(image)
            data['meta'] = torch.tensor(self.meta[index]).float()
        else:
            data['image'] = img_to_tensor(image)

        if self.is_test:
            return data
        else:
            label = self.labels[index]
            return data, label
Exemplo n.º 29
0
    def __getitem__(self, idx):
        name = self.names[idx]
        pre_img_path = os.path.join(self.data_path, "images", "test_pre_" + name + ".png")
        post_img_path = os.path.join(self.data_path, "images", "test_post_" + name + ".png")

        image_pre = cv2.imread(pre_img_path, cv2.IMREAD_COLOR)[:, :, ::-1]
        image_post = cv2.imread(post_img_path, cv2.IMREAD_COLOR)[:, :, ::-1]
        image = np.concatenate([image_pre, image_post], axis=-1)
        sample = {}
        sample['img_name'] = name
        sample['image'] = img_to_tensor(np.ascontiguousarray(image), self.normalize)
        return sample
Exemplo n.º 30
0
    def load_sample(self, img_path):
        try:
            image = cv2.imread(img_path, cv2.IMREAD_COLOR)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            if self.transforms:
                data = self.transforms(image=image)
                image = data["image"]

            image = img_to_tensor(image, self.normalize)
            return image
        except:
            self.lost.append(img_path)
            #pdb.set_trace()
            return torch.randn((3, 380, 380))