Exemplo n.º 1
0
def free_energy_calculation(dHdl, u_nk):
    logger("Fitting TI on dHdl ...")
    ti = TI().fit(dHdl)

    logger("Fitting BAR on u_nk ...")
    bar = BAR().fit(u_nk)

    logger("Fitting MBAR on u_nk ...\n")
    try:
        mbar_stop = False
        mbar = MBAR().fit(u_nk)
    except pymbar.utils.ParameterError:
        mbar_stop = True
        logger(
            "\sum_n W_nk is not equal to 1, probably due to insufficient overlap between states."
        )
        logger("Stop using MBAR ...")

    logger("------ Results based on the whole dataset ------")
    if hasattr(dHdl, 'statineff') is True:
        logger(f'Statistical inefficiency of dHdl: {dHdl.statineff}')
    if hasattr(u_nk, 'statineff') is True:
        logger(f'Statistical inefficiency of u_nk: {u_nk.statineff}\n')
    logger(f"TI: {ti.delta_f_.iloc[0, -1]} +/- {ti.d_delta_f_.iloc[0, -1]} kT")
    logger(f"BAR: {bar.delta_f_.iloc[0, -1]} +/- unknown kT")
    if mbar_stop is False:
        logger(
            f"MBAR: {mbar.delta_f_.iloc[0, -1]} +/- {mbar.d_delta_f_.iloc[0, -1]} kT"
        )
        logger("------------------------------------------------")
        return ti, bar, mbar
    else:
        logger("------------------------------------------------")
        return ti, bar
Exemplo n.º 2
0
def test_plot_dF_state():
    '''Just test if the plot runs'''
    bz = load_benzene().data
    u_nk_coul = pd.concat([extract_u_nk(xvg, T=300) for xvg in bz['Coulomb']])
    dHdl_coul = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['Coulomb']])
    u_nk_vdw = pd.concat([extract_u_nk(xvg, T=300) for xvg in bz['VDW']])
    dHdl_vdw = pd.concat([extract_dHdl(xvg, T=300) for xvg in bz['VDW']])

    ti_coul = TI().fit(dHdl_coul)
    ti_vdw = TI().fit(dHdl_vdw)
    bar_coul = BAR().fit(u_nk_coul)
    bar_vdw = BAR().fit(u_nk_vdw)
    mbar_coul = MBAR().fit(u_nk_coul)
    mbar_vdw = MBAR().fit(u_nk_vdw)

    dhdl_data = [
        (ti_coul, ti_vdw),
        (bar_coul, bar_vdw),
        (mbar_coul, mbar_vdw),
    ]
    fig = plot_dF_state(dhdl_data, orientation='portrait')
    assert isinstance(fig, matplotlib.figure.Figure)
    fig = plot_dF_state(dhdl_data, orientation='landscape')
    assert isinstance(fig, matplotlib.figure.Figure)
    fig = plot_dF_state(dhdl_data, labels=['MBAR', 'TI', 'BAR'])
    assert isinstance(fig, matplotlib.figure.Figure)
    with pytest.raises(ValueError):
        fig = plot_dF_state(dhdl_data, labels=[
            'MBAR',
            'TI',
        ])
    fig = plot_dF_state(dhdl_data, colors=['#C45AEC', '#33CC33', '#F87431'])
    assert isinstance(fig, matplotlib.figure.Figure)
    with pytest.raises(ValueError):
        fig = plot_dF_state(dhdl_data, colors=['#C45AEC', '#33CC33'])
    with pytest.raises(NameError):
        fig = plot_dF_state(dhdl_data, orientation='xxx')
    fig = plot_dF_state(ti_coul, orientation='landscape')
    assert isinstance(fig, matplotlib.figure.Figure)
    fig = plot_dF_state(ti_coul, orientation='portrait')
    assert isinstance(fig, matplotlib.figure.Figure)
    fig = plot_dF_state([ti_coul, bar_coul])
    assert isinstance(fig, matplotlib.figure.Figure)
    fig = plot_dF_state([(ti_coul, ti_vdw)])
    assert isinstance(fig, matplotlib.figure.Figure)
Exemplo n.º 3
0
def test_bar_namd():
    """Test BAR calculation on NAMD data.
    """
    from alchemlyb.estimators import BAR
    import numpy as np

    # load data
    dataset = load_tyr2ala()
    u_nk1 = extract_u_nk(dataset['data']['forward'][0])
    u_nk2 = extract_u_nk(dataset['data']['backward'][0])

    # combine dataframes of fwd and rev directions
    u_nk1.replace(0, np.nan, inplace=True)
    u_nk1[u_nk1.isnull()] = u_nk2
    u_nk1.replace(np.nan, 0, inplace=True)
    u_nk = u_nk1.sort_index(level=u_nk1.index.names[1:])

    # after loading BOTH fwd and rev data, do BAR calculation
    bar = BAR()
    bar.fit(u_nk)
    dg = (bar.delta_f_.iloc[0].iloc[-1])
    assert_almost_equal(dg, 6.03126982925, decimal=4)
Exemplo n.º 4
0
 def test_bar(self, u_nk):
     bar = BAR().fit(u_nk)
     assert bar.delta_f_.attrs['temperature'] == 300
     assert bar.delta_f_.attrs['energy_unit'] == 'kT'
     assert bar.d_delta_f_.attrs['temperature'] == 300
     assert bar.d_delta_f_.attrs['energy_unit'] == 'kT'
Exemplo n.º 5
0
        #for TI estimator
        #print("Working on TI method ...")
        dHdl = pd.concat([extract_dHdl(f, T=temprature) for f in files])
        ti = TI().fit(dHdl)
        sum_ti, sum_ds_ti = get_delta(ti)
        tis.append(sum_ti)


        #for MBAR estimator
        #print("Working on MBAR method ...")
        u_nk = pd.concat([extract_u_nk(f, T=temprature) for f in files])
        mbar = MBAR().fit(u_nk)
        sum_mbar, sum_ds_mbar = get_delta(mbar)
        mbars.append(sum_mbar)
        
        
        #for BAR estimator
        #print("Working on BAR method ...")
        bar = BAR().fit(u_nk)
        sum_bar, sum_ds_bar = get_delta2(bar)
        bars.append(sum_bar)
    
        print("Replica-%d, %4s,  %7.4f,  %7.4f,  %7.4f,  %7.4f,  %7.4f,  %7.4f" % (nr, com, sum_ti, sum_ds_ti, sum_mbar, sum_ds_mbar, sum_bar, sum_ds_bar))

        
    tis = np.array(tis)
    mbars = np.array(mbars)
    bars = np.array(bars)
    print("Average, %4s,  %7.4f,  %7.4f,  %7.4f,  %7.4f,  %7.4f,  %7.4f" % (com, np.average(tis), np.std(tis), np.average(mbars), np.std(mbars), np.average(bars), np.std(bars)))