Exemplo n.º 1
0
def _create_merlin_algorithm(
        encoder_fc_layers=(3, ),
        latent_dim=3,
        lstm_size=(4, ),
        memory_size=20,
        learning_rate=1e-3,
        debug_summaries=True):
    observation_spec = common.get_observation_spec()
    action_spec = common.get_action_spec()
    algorithm = MerlinAlgorithm(
        observation_spec=observation_spec,
        action_spec=action_spec,
        encoders=EncodingNetwork(
            input_tensor_spec=observation_spec,
            fc_layer_params=encoder_fc_layers,
            activation_fn=None,
            name="ObsEncoder"),
        decoders=DecodingAlgorithm(
            decoder=EncodingNetwork(
                input_tensor_spec=TensorSpec((latent_dim, ), dtype=tf.float32),
                fc_layer_params=encoder_fc_layers,
                activation_fn=None,
                name="ObsDecoder"),
            loss_weight=100.),
        latent_dim=latent_dim,
        lstm_size=lstm_size,
        memory_size=memory_size,
        optimizer=tf.optimizers.Adam(learning_rate=learning_rate),
        debug_summaries=debug_summaries)

    return algorithm
Exemplo n.º 2
0
def _create_ddpg_algorithm():
    observation_spec = common.get_observation_spec()
    action_spec = common.get_action_spec()
    actor_net = ActorNetwork(
        observation_spec, action_spec, fc_layer_params=(16, 16))
    critic_net = CriticNetwork((observation_spec, action_spec),
                               joint_fc_layer_params=(16, 16))
    return DdpgAlgorithm(
        observation_spec=observation_spec,
        action_spec=action_spec,
        actor_network=actor_net,
        critic_network=critic_net,
        actor_optimizer=tf.optimizers.Adam(learning_rate=5e-3),
        critic_optimizer=tf.optimizers.Adam(learning_rate=1e-1),
        debug_summaries=True)
Exemplo n.º 3
0
def _create_ac_algorithm():
    observation_spec = common.get_observation_spec()
    action_spec = common.get_action_spec()
    optimizer = tf.optimizers.Adam(learning_rate=5e-5)
    actor_net = ActorDistributionNetwork(observation_spec,
                                         action_spec,
                                         fc_layer_params=(8, ))
    value_net = ValueNetwork(observation_spec, fc_layer_params=(8, ))

    return ActorCriticAlgorithm(action_spec=action_spec,
                                actor_network=actor_net,
                                value_network=value_net,
                                loss_class=ActorCriticLoss,
                                optimizer=optimizer,
                                debug_summaries=True)
Exemplo n.º 4
0
def _create_ppo_algorithm():
    observation_spec = common.get_observation_spec()
    action_spec = common.get_action_spec()
    optimizer = tf.optimizers.Adam(learning_rate=1e-3)

    actor_net = ActorDistributionRnnNetwork(observation_spec,
                                            action_spec,
                                            input_fc_layer_params=(),
                                            output_fc_layer_params=None)
    value_net = ValueRnnNetwork(observation_spec,
                                input_fc_layer_params=(),
                                output_fc_layer_params=None)

    return PPOAlgorithm(action_spec=action_spec,
                        actor_network=actor_net,
                        value_network=value_net,
                        loss_class=PPOLoss,
                        optimizer=optimizer,
                        debug_summaries=True)
Exemplo n.º 5
0
def get_ac_networks(conv_layer_params=None,
                    num_embedding_dims=None,
                    fc_layer_params=None,
                    num_state_tiles=None,
                    num_sentence_tiles=None):
    """
    Generate the actor and value networks

    Args:
        conv_layer_params (list[int 3 tuple]): optional convolution layers
            parameters, where each item is a length-three tuple indicating
            (filters, kernel_size, stride).
        num_embedding_dims (int): optional number of dimensions of the
            vocabulary embedding space.
        fc_layer_params (list[int]): optional fully_connected parameters, where
            each item is the number of units in the layer.
        num_state_tiles (int): optional number of times to repeat the
            internal state tensor before concatenation with other inputs.
            The rationale is to match the number of dimentions of the image
            input, so that the final concatenation will have roughly equal
            representation from different sources of input.  Without this,
            typically image input, due to its large input size, will take over
            and trump all other small dimensional inputs.
        num_sentence_tiles (int): optional number of times to repeat the
            sentence embedding tensor before concatenation with other inputs,
            so that sentence input won't be trumped by other high dimensional
            inputs like image observation.
    """
    observation_spec = common.get_observation_spec()
    action_spec = common.get_action_spec()

    conv_layers = tf.keras.Sequential(
        tf_agents.networks.utils.mlp_layers(
            conv_layer_params=conv_layer_params))

    preprocessing_layers = {
        'image': conv_layers,
    }
    if common.get_states_shape():
        state_layers = get_identity_layer()
        # [image: (1, 12800), sentence: (1, 16 * 800), states: (1, 16 * 800)]
        # Here, we tile along the last dimension of the input.
        if num_state_tiles:
            state_layers = tf.keras.Sequential([
                tf.keras.layers.Lambda(
                    lambda x: tf.tile(x, multiples=[1, num_state_tiles]))
            ])
        preprocessing_layers['states'] = state_layers

    vocab_size = common.get_vocab_size()
    if vocab_size:
        sentence_layers = tf.keras.Sequential([
            tf.keras.layers.Embedding(vocab_size, num_embedding_dims),
            tf.keras.layers.GlobalAveragePooling1D()
        ])
        if num_sentence_tiles:
            sentence_layers.add(
                tf.keras.layers.Lambda(
                    lambda x: tf.tile(x, multiples=[1, num_sentence_tiles])))
        preprocessing_layers['sentence'] = sentence_layers

    preprocessing_combiner = tf.keras.layers.Concatenate()

    actor = ActorDistributionRnnNetwork(
        input_tensor_spec=observation_spec,
        output_tensor_spec=action_spec,
        preprocessing_layers=preprocessing_layers,
        preprocessing_combiner=preprocessing_combiner,
        input_fc_layer_params=fc_layer_params)

    value = ValueRnnNetwork(input_tensor_spec=observation_spec,
                            preprocessing_layers=preprocessing_layers,
                            preprocessing_combiner=preprocessing_combiner,
                            input_fc_layer_params=fc_layer_params)

    return actor, value