Exemplo n.º 1
0
    print(r'Noise level: {0:.2e}'.format(noise_level))
    print(r'Minimum approximation error |a - Gb|_2: {0:.2e}'.format(min_error))

    # reconstruct Diracs' locations tk
    z = np.roots(c_opt)
    z = z / np.abs(z)
    tk_recon = np.real(tau * 1j / (2 * np.pi) * np.log(z))
    tk_recon = np.sort(tk_recon - np.floor(tk_recon / tau) * tau)

    # reconstruct amplitudes ak
    Phi_recon = periodicSinc(
        np.pi * B * (np.reshape(t_samp, (-1, 1), order='F') -
                     np.reshape(tk_recon, (1, -1), order='F')), B * tau)
    ak_recon = np.real(linalg.lstsq(Phi_recon, y_ell)[0])
    # location estimation error
    t_error = distance(tk_recon, tk)[0]
    # plot reconstruction
    plt.close()
    fig = plt.figure(num=1, figsize=(5.5, 2.5), dpi=90)
    # sub-figure 1
    ax1 = plt.axes([0.125, 0.59, 0.85, 0.31])
    markerline211_1, stemlines211_1, baseline211_1 = \
        ax1.stem(tk, ak, label='Original Diracs')
    plt.setp(stemlines211_1, linewidth=1.5, color=[0, 0.447, 0.741])
    plt.setp(markerline211_1,
             marker='^',
             linewidth=1.5,
             markersize=8,
             markerfacecolor=[0, 0.447, 0.741],
             mec=[0, 0.447, 0.741])
    plt.setp(baseline211_1, linewidth=0)
Exemplo n.º 2
0
                Ihat_omega_ell_noisy,
                K_est,
                tau1,
                tau2,
                sympy.Rational(15, 12),
                sympy.Rational(15, 12),
                omega_ell,
                M_N[0],
                M_N[1],
                noise_level,
                max_ini,
                stop_cri,
                num_rotation=12)

            # calculate reconstruction error
            r_est_error, index = distance(xk + 1j * yk,
                                          xk_recon + 1j * yk_recon)
            xk = xk[index[:, 0]]
            yk = yk[index[:, 0]]
            alpha_k = alpha_k[index[:, 0]]
            xk_recon = xk_recon[index[:, 1]]
            yk_recon = yk_recon[index[:, 1]]
            alpha_k_recon = np.real(alpha_k_recon[index[:, 1]])
            # order the results for the ease of comparison
            ind_order = np.argsort(xk)
            fri_recon_all[realisations, :] = np.hstack(
                (np.reshape(xk_recon[ind_order], (1, K), order='F'),
                 np.reshape(yk_recon[ind_order], (1, K), order='F'),
                 np.reshape(alpha_k_recon[ind_order], (1, K), order='F'),
                 np.reshape(r_est_error, (1, 1), order='F')))
            print('Position estimation error: {0:.2e}\n').format(r_est_error)
Exemplo n.º 3
0
    P = 5
    noise = np.random.randn(L) + 1j * np.random.randn(L)
    noise = noise / linalg.norm(noise) * linalg.norm(Xomega_ell) * 10**(-P /
                                                                        20.)
    Xomega_ell_noisy = Xomega_ell + noise

    # noise energy, in the noiseless case 1e-14 is considered as 0
    noise_level = np.max([1e-14, linalg.norm(noise)])
    max_ini = 50  # maximum number of random initialisations

    tk_ref, ak_recon, Xomega_Uniform_ref = \
        dirac_recon_irreg_fourier(Xomega_ell_noisy, K, tau, omega_ell, M,
                                  noise_level, max_ini, stop_cri,
                                  interp_kernel)
    # location estimation error
    t_error = distance(tk_ref, tk)[0]

    # plot reconstruction
    plt.close()
    fig = plt.figure(num=1, figsize=(5, 4), dpi=90)

    subplt_height = 0.2
    subplt_width = 0.87
    subplt_left_corner = 0.115
    # sub-figure 1
    ax1 = plt.axes([subplt_left_corner, 0.71, subplt_width, subplt_height])
    markerline311_1, stemlines311_1, baseline311_1 = ax1.stem(
        tk, ak, label='Original Diracs')
    plt.setp(stemlines311_1, linewidth=1.5, color=[0, 0.447, 0.741])
    plt.setp(markerline311_1,
             marker='^',
Exemplo n.º 4
0
    noise_level = np.max([1e-10, linalg.norm(noise)])
    taus = np.array([tau1, tau2])
    omega_ell = np.column_stack((omega_ell_x, omega_ell_y))

    tic = time.time()
    num_rotation = 12
    xk_recon, yk_recon, alpha_k_recon = \
        recon_2d_dirac(Ihat_omega_ell_noisy, K_est, tau1, tau2,
                       sympy.Rational(15, 12), sympy.Rational(15, 12),
                       omega_ell, M, N, noise_level,
                       max_ini, stop_cri, num_rotation)
    toc = time.time()
    print('Average time: {0:.2f}[sec]'.format((toc - tic) / num_rotation))

    # calculate reconstruction error
    r_est_error = distance(xk + 1j * yk, xk_recon + 1j * yk_recon)[0]
    print('Position estimation error: {0:.2e}\n'.format(r_est_error))

    # plot results
    file_name_loc = (r'./result/TSP_eg4_K_{0}_L_{1}_' +
                     r'noise_{2}dB_locations.' +
                     fig_format).format(repr(K), repr(L), repr(P))
    plot_2d_dirac_loc(xk_recon, yk_recon, alpha_k_recon, xk, yk, alpha_k, K, L, P, tau1, tau2,
                      save_figure=True, fig_format=fig_format, file_name=file_name_loc)
    file_name_spec = (r'./result/TSP_eg4_K_{0}_L_{1}_' +
                      r'noise_{2}dB_spectrum').format(repr(K), repr(L), repr(P))
    plot_2d_dirac_spec(xk_recon, yk_recon, alpha_k_recon, Ihat_omega_ell_noisy, Ihat_omega_ell,
                       omega_ell_x, omega_ell_y, M, N, P, L,
                       save_figure=True, fig_format=fig_format,
                       file_name=file_name_spec,
                       show_dirty_img=True, dirty_img=dirty_img)