Exemplo n.º 1
0
def eval_f_unconstrained_kb(
        theta,
        subs_counts, log_counts, v,
        h,
        gtr, syn, nonsyn, compo, asym_compo,
        ):
    # unpack theta
    log_mu = theta[0]
    log_g = algopy.zeros(6, dtype=theta)
    log_g[0] = theta[1]
    log_g[1] = theta[2]
    log_g[2] = theta[3]
    log_g[3] = theta[4]
    log_g[4] = theta[5]
    log_g[5] = 0
    log_omega = theta[6]
    d = theta[7]
    log_kb = theta[8]
    log_nt_weights = algopy.zeros(4, dtype=theta)
    log_nt_weights[0] = theta[9]
    log_nt_weights[1] = theta[10]
    log_nt_weights[2] = theta[11]
    log_nt_weights[3] = 0
    #
    # construct the transition matrix
    Q = get_Q_unconstrained_kb(
            gtr, syn, nonsyn, compo, asym_compo,
            h,
            log_counts,
            log_mu, log_g, log_omega, d, log_kb, log_nt_weights)
    P = algopy.expm(Q)
    #
    # return the neg log likelihood
    return -get_log_likelihood(P, v, subs_counts)
Exemplo n.º 2
0
def build_Q(A, betas):
    """ computes orthogonal matrix from output of qr_house_basic
    
    Parameters
    ----------
    A: array_likse
        shape(A) = (M,N)
        upper triangular part contains R
        lower triangular part contains v with v[0] = 1
    betas: array_like
        list of beta
        
    Returns
    -------
    Q: array_like
        shape(Q) = (M,M)

    """
    
    M,N = A.shape
    Q = algopy.zeros((M,M),dtype=A)
    Q += numpy.eye(M)
    H = algopy.zeros((M,M),dtype=A)
    for n in range(N):
        v = A[n:,n:n+1].copy()
        v[0] = 1
        H[...] = numpy.eye(M)
        H[n:,n:] -= betas[n] * algopy.dot(v,v.T)
        Q = algopy.dot(Q,H)
    return Q
Exemplo n.º 3
0
def build_Q(A, betas):
    """ computes orthogonal matrix from output of qr_house_basic
    
    Parameters
    ----------
    A: array_likse
        shape(A) = (M,N)
        upper triangular part contains R
        lower triangular part contains v with v[0] = 1
    betas: array_like
        list of beta
        
    Returns
    -------
    Q: array_like
        shape(Q) = (M,M)

    """
    
    M,N = A.shape
    Q = algopy.zeros((M,M),dtype=A)
    Q += numpy.eye(M)
    H = algopy.zeros((M,M),dtype=A)
    for n in range(N):
        v = A[n:,n:n+1].copy()
        v[0] = 1
        H[...] = numpy.eye(M)
        H[n:,n:] -= betas[n] * algopy.dot(v,v.T)
        Q = algopy.dot(Q,H)
    return Q
Exemplo n.º 4
0
def bar(E, A, L, phi):
    c = np.cos(phi)
    s = np.sin(phi)

    k0 = np.array([[c**2, c*s], [c*s, s**2]])

    K = algopy.zeros((4,4), dtype=A)
    for i in range(2):
        for j in range(2):
            coef = 1
            if (i == 0 and j == 1) or (i == 1 and j == 0):
                coef = -1
            K[2*i,2*j] = coef*c**2
            K[2*i,2*j+1] = coef*c*s
            K[2*i+1,2*j] = coef*c*s
            K[2*i+1,2*j+1] = coef*s**2
    K = E * A / L * K

    S = algopy.zeros(4, dtype=A)
    S[0] = -c
    S[1] = -s
    S[2] = c
    S[3] = s
    S = E / L * S

    return K, S
Exemplo n.º 5
0
    def get_neg_ll(cls,
            patterns, pattern_weights,
            ts, tv, syn, nonsyn, full_compo,
            theta,
            ):
        
        # pick the nt distn parameters from the end of the theta vector
        log_nt_distns = algopy.zeros((3, 4), dtype=theta)
        log_nt_distns_block = algopy.reshape(theta[-9:], (3, 3))
        log_nt_distns[:, :-1] = log_nt_distns_block
        reduced_theta = theta[:-9]
        unnormalized_nt_distns = algopy.exp(log_nt_distns)

        # normalize each of the three nucleotide distributions
        row_sums = algopy.sum(unnormalized_nt_distns, axis=1)
        nt_distns = (unnormalized_nt_distns.T / row_sums).T

        # get the implied codon distribution
        stationary_distn = codon1994.get_f3x4_codon_distn(
                full_compo,
                nt_distns,
                )

        return A.get_neg_ll(
                patterns, pattern_weights,
                stationary_distn,
                ts, tv, syn, nonsyn,
                reduced_theta,
                )
Exemplo n.º 6
0
def f(x):
    A = zeros((2,2),dtype=x)
    A[0,0] = numpy.log(x[0]*x[1])
    A[0,1] = numpy.log(x[1]) + exp(x[0])
    A[1,0] = sin(x[0])**2 + abs(cos(x[0]))**3.1
    A[1,1] = x[0]**cos(x[1])
    return log( dot(x.T,  dot( inv(A), x)))
Exemplo n.º 7
0
def f_fcn(x):
    A = algopy.zeros((2, 2), dtype=x)
    A[0, 0] = x[0]
    A[1, 0] = x[1] * x[0]
    A[0, 1] = x[1]
    Q, R = algopy.qr(A)
    return R[0, 0]
Exemplo n.º 8
0
def eval_g(x, y):
    """ some vector-valued function """
    retval = algopy.zeros(3, dtype=x)
    retval[0] = algopy.sin(x**2 + y)
    retval[1] = algopy.cos(x + y) - x
    retval[2] = algopy.sin(x)**2 + algopy.cos(x)**2
    return retval
Exemplo n.º 9
0
def f_eqcons(
        theta,
        subs_counts, log_counts, v,
        h,
        ts, tv, syn, nonsyn, compo, asym_compo,
        ):
    #FIXME: obsolete
    #FIXME: hardcoded for selection without recessivity parameters
    #
    # Init the array of values that should be zero when the equality
    # constraints are satisfied.
    equality_violations = algopy.zeros(2, dtype=theta)
    """
    #
    # Add the equality constraint for the expected rate.
    # This is easily computed through the rate matrix.
    Q = get_Q_slsqp(
            ts, tv, syn, nonsyn, compo, asym_compo,
            h,
            log_counts, v,
            theta)
    expected_rate = -algopy.dot(algopy.diag(Q), v)
    equality_violations[0] = theta[0] - expected_rate
    """
    #
    # Add the equality constraint for the mutational process
    # nucleotide equilibrium distribution.
    equality_violations[0] = algopy.sum(theta[-4:])
    #
    return equality_violations
Exemplo n.º 10
0
def inner_eval_f_gtr(
        theta,
        pre_Q_suffix,
        subs_counts, v,
        gtr, syn, nonsyn,
        ):
    """
    This function is meant to be optimized with the help of algopy and ncg.
    @param theta: vector of unconstrained free variables
    @param pre_Q_suffix: this has estimates from the outer ML loop
    @param subs_counts: empirical substitution counts
    @param v: empirical codon distribution
    @param ts: precomputed nucleotide transition mask
    @param tv: precomputed nucleotide transversion mask
    @param syn: precomputed synonymous codon change mask
    @param nonsyn: precomputed non-synonymous codon change mask
    @return: negative log likelihood
    """
    log_mu = theta[0]
    log_gtr_exch = algopy.zeros(6, dtype=theta)
    log_gtr_exch[0] = theta[1]
    log_gtr_exch[1] = theta[2]
    log_gtr_exch[2] = theta[3]
    log_gtr_exch[3] = theta[4]
    log_gtr_exch[4] = theta[5]
    log_gtr_exch[5] = 0
    log_omega = theta[6]
    pre_Q_prefix = get_Q_prefix_gtr(
            gtr, syn, nonsyn,
            log_mu, log_gtr_exch, log_omega)
    return -get_log_likelihood(pre_Q_prefix, pre_Q_suffix, v, subs_counts)
Exemplo n.º 11
0
 def g_fun(x):
     out = algopy.zeros((2, 2), dtype=x)
     out[0, 0] = x[0]
     out[0, 1] = x[1]
     out[1, 0] = x[0]
     out[1, 1] = x[1]
     return out
def f_fcn(x):
    A = algopy.zeros((2,2), dtype=x)
    A[0,0] = x[0]
    A[1,0] = x[1] * x[0]
    A[0,1] = x[1]
    Q,R = algopy.qr(A)
    return R[0,0]
Exemplo n.º 13
0
def eval_f(Y):
    """ some reformulations to make eval_f_orig
        compatible with algopy

        missing: support for scipy.linalg.expm

        i.e., this function can't be differentiated with algopy

    """

    a, b, v = transform_params(Y)

    Q = algopy.zeros((4,4), dtype=Y)
    Q[0,0] = 0;    Q[0,1] = a;    Q[0,2] = b;    Q[0,3] = b;
    Q[1,0] = a;    Q[1,1] = 0;    Q[1,2] = b;    Q[1,3] = b;
    Q[2,0] = b;    Q[2,1] = b;    Q[2,2] = 0;    Q[2,3] = a;
    Q[3,0] = b;    Q[3,1] = b;    Q[3,2] = a;    Q[3,3] = 0;

    Q = Q * v
    Q -= algopy.diag(algopy.sum(Q, axis=1))
    #P = linalg.expm(Q)
    # XXX can I get rid of the 4 on the following line?
    P = algopy_expm(Q, 4)
    S = algopy.log(algopy.dot(algopy.diag(v), P))
    return -algopy.sum(S * g_data)
Exemplo n.º 14
0
def eval_f(
        theta,
        subs_counts, log_counts, v,
        h,
        ts, tv, syn, nonsyn, compo, asym_compo,
        ):
    """
    @param theta: length six unconstrained vector of free variables
    """

    # unpack theta
    log_mu = theta[0]
    log_kappa = theta[1]
    log_omega = theta[2]
    log_nt_weights = algopy.zeros(4, dtype=theta)
    log_nt_weights[0] = theta[3]
    log_nt_weights[1] = theta[4]
    log_nt_weights[2] = theta[5]
    log_nt_weights[3] = 1.

    # construct the transition matrix
    Q = get_Q(
            ts, tv, syn, nonsyn, compo, asym_compo,
            h,
            log_counts,
            log_mu, log_kappa, log_omega, log_nt_weights)
    P = algopy.expm(Q)
    
    # return the neg log likelihood
    return -get_log_likelihood(P, v, subs_counts)
Exemplo n.º 15
0
def erivector(alpha, coef, xyz, l, nbasis, contr_list, dtype):
    '''This function returns the eris in form a vector, 
    to get an element of the eris tensor, use eri_index, 
    included in Tools'''
    ### NOTE: YOU CAN REPLACE A VALUE OF THE ARRAY!!!
    vec_size = nbasis * (nbasis**3 + 2 * nbasis**2 + 3 * nbasis +
                         2) / 8  ## Vector size
    Eri_vec = algopy.zeros((vec_size, ), dtype=dtype)
    len_vec = nbasis * (nbasis + 1) / 2
    for x in range(len_vec):
        i, j = vec_tomatrix(x, nbasis)
        contr_i_i = sum(contr_list[0:i])
        contr_i_f = sum(contr_list[0:i + 1])
        contr_j_i = sum(contr_list[0:j])
        contr_j_f = sum(contr_list[0:j + 1])
        for y in range(x, len_vec):
            k, m = vec_tomatrix(y, nbasis)
            contr_m_i = sum(contr_list[0:m])
            contr_m_f = sum(contr_list[0:m + 1])
            contr_k_i = sum(contr_list[0:k])
            contr_k_f = sum(contr_list[0:k + 1])
            index = matrix_tovector(x, y, len_vec)
            Eri_vec[index] = eri_contracted(
                alpha[contr_i_i:contr_i_f], coef[contr_i_i:contr_i_f], xyz[i],
                l[i], alpha[contr_j_i:contr_j_f], coef[contr_j_i:contr_j_f],
                xyz[j], l[j], alpha[contr_k_i:contr_k_f],
                coef[contr_k_i:contr_k_f], xyz[k], l[k],
                alpha[contr_m_i:contr_m_f], coef[contr_m_i:contr_m_f], xyz[m],
                l[m])
    return Eri_vec
Exemplo n.º 16
0
 def g_fun(x):
     out = algopy.zeros((2, 2), dtype=x)
     out[0, 0] = x[0]
     out[0, 1] = x[1]
     out[1, 0] = x[0]
     out[1, 1] = x[1]
     return out
Exemplo n.º 17
0
def IV_algopy(x, Vd):
    """
    IV curve implemented using algopy instead of numpy
    """
    nobs = x.shape[1]
    out = zeros((3, nobs), dtype=x)
    Ee, Tc, Rs, Rsh, Isat1_0, Isat2, Isc0, alpha_Isc, Eg = x
    Vt = Tc * KB / QE
    Isc = Ee * Isc0 * (1.0 + (Tc - T0) * alpha_Isc)
    Isat1 = (
        Isat1_0 * (Tc ** 3.0 / T0 ** 3.0) *
        exp(Eg * QE / KB * (1.0 / T0 - 1.0 / Tc))
    )
    Vd_sc = Isc * Rs  # at short circuit Vc = 0 
    Id1_sc = Isat1 * (exp(Vd_sc / Vt) - 1.0)
    Id2_sc = Isat2 * (exp(Vd_sc / 2.0 / Vt) - 1.0)
    Ish_sc = Vd_sc / Rsh
    Iph = Isc + Id1_sc + Id2_sc + Ish_sc
    Id1 = Isat1 * (exp(Vd / Vt) - 1.0)
    Id2 = Isat2 * (exp(Vd / 2.0 / Vt) - 1.0)
    Ish = Vd / Rsh
    Ic = Iph - Id1 - Id2 - Ish
    Vc = Vd - Ic * Rs
    out[0] = Ic
    out[1] = Vc
    out[2] = Ic * Vc
    return out
Exemplo n.º 18
0
def eval_f_unconstrained_kb(
        theta,
        subs_counts, log_counts, v,
        h,
        ts, tv, syn, nonsyn, compo, asym_compo,
        ):
    """
    No dominance/recessivity constraint.
    @param theta: length seven unconstrained vector of free variables
    """
    # unpack theta
    log_mu = theta[0]
    log_kappa = theta[1]
    log_omega = theta[2]
    d = theta[3]
    log_kb = theta[4]
    log_nt_weights = algopy.zeros(4, dtype=theta)
    log_nt_weights[0] = theta[5]
    log_nt_weights[1] = theta[6]
    log_nt_weights[2] = theta[7]
    log_nt_weights[3] = 0
    #
    # construct the transition matrix
    Q = get_Q_unconstrained_kb(
            ts, tv, syn, nonsyn, compo, asym_compo,
            h,
            log_counts,
            log_mu, log_kappa, log_omega, d, log_kb, log_nt_weights)
    P = algopy.expm(Q)
    #
    # return the neg log likelihood
    neg_log_likelihood = -get_log_likelihood(P, v, subs_counts)
    print neg_log_likelihood
    return neg_log_likelihood
Exemplo n.º 19
0
 def dalecv2(self, p):
     """DALECV2 carbon balance model 
     -------------------------------
     evolves carbon pools to the next time step, taking the 6 carbon pool values
     and 17 parameters at time t and evolving them to time t+1. 
     
     phi_on = phi_onset(d_onset, cronset)
     phi_off = phi_fall(d_fall, crfall, clspan)
     gpp = acm(cf, clma, ceff)
     temp = temp_term(Theta)
     
     clab2 = (1 - phi_on)*clab + (1-f_auto)*(1-f_fol)*f_lab*gpp
     cf2 = (1 - phi_off)*cf + phi_on*clab + (1-f_auto)*f_fol*gpp
     cr2 = (1 - theta_roo)*cr + (1-f_auto)*(1-f_fol)*(1-f_lab)*f_roo*gpp
     cw2 = (1 - theta_woo)*cw + (1-f_auto)*(1-f_fol)*(1-f_lab)*(1-f_roo)*gpp
     cl2 = (1-(theta_lit+theta_min)*temp)*cl + theta_roo*cr + phi_off*cf
     cs2 = (1 - theta_som*temp)*cs + theta_woo*cw + theta_min*temp*cl
     """        
     out = algopy.zeros(23, dtype=p)        
     
     phi_on = self.phi_onset(p[17], p[19])
     phi_off = self.phi_fall(p[20], p[21], p[10])
     gpp = self.acm(p[1], p[22], p[16])
     temp = self.temp_term(p[15])
     
     out[0] = (1 - phi_on)*p[0] + (1-p[7])*(1-p[8])*p[18]*gpp
     out[1] = (1 - phi_off)*p[1] + phi_on*p[0] + (1-p[7])*p[8]*gpp
     out[2] = (1 - p[12])*p[2] + (1-p[7])*(1-p[8])*(1-p[18])*p[9]*gpp
     out[3] = (1 - p[11])*p[3] + (1-p[7])*(1-p[8])*(1-p[18])*(1-p[9])*gpp
     out[4] = (1-(p[13]+p[6])*temp)*p[4] + p[12]*p[2] + phi_off*p[1]
     out[5] = (1 - p[14]*temp)*p[5] + p[11]*p[3] + p[6]*temp*p[4]
     out[6:23] = p[6:23]
     return out
Exemplo n.º 20
0
 def eval_g(self, x):
     out = algopy.zeros(3, dtype=x)
     out[0] = 2 * x[0]**2 + 3 * x[1]**4 + x[2] + 4 * x[3]**2 + 5 * x[4]
     out[1] = 7 * x[0] + 3 * x[1] + 10 * x[2]**2 + x[3] - x[4]
     out[2] = 23 * x[0] + x[1]**2 + 6 * x[5]**2 - 8 * x[6] - 4 * x[0]**2 - x[
         1]**2 + 3 * x[0] * x[1] - 2 * x[2]**2 - 5 * x[5] + 11 * x[6]
     return out
Exemplo n.º 21
0
def eval_f(
        theta,
        subs_counts, log_counts, v,
        h,
        ts, tv, syn, nonsyn, compo, asym_compo,
        ):
    """
    The function formerly known as minimize-me.
    @param theta: length six unconstrained vector of free variables
    """
    # unpack theta
    log_mu = theta[0]
    log_kappa = theta[1]
    log_omega = theta[2]
    log_nt_weights = algopy.zeros(4, dtype=theta)
    log_nt_weights[0] = theta[3]
    log_nt_weights[1] = theta[4]
    log_nt_weights[2] = theta[5]
    log_nt_weights[3] = 0
    #
    # construct the transition matrix
    Q = get_Q(
            ts, tv, syn, nonsyn, compo, asym_compo,
            h,
            log_counts,
            log_mu, log_kappa, log_omega, log_nt_weights)
    P = algopy.expm(Q)
    #
    # return the neg log likelihood
    return -get_log_likelihood(P, v, subs_counts)
Exemplo n.º 22
0
def eval_g(x, y):
    """ some vector-valued function """
    retval = algopy.zeros(3, dtype=x)
    retval[0] = algopy.sin(x**2 + y)
    retval[1] = algopy.cos(x+y) - x
    retval[2] = algopy.sin(x)**2 + algopy.cos(x)**2
    return retval
Exemplo n.º 23
0
    def dalecv2_diff(self, p):
        """DALECV2 carbon balance model
        -------------------------------
        evolves carbon pools to the next time step, taking the 6 carbon pool
        values and 17 parameters at time t and evolving them to time t+1.
        Outputs both the 6 evolved C pool values and the 17 constant parameter
        values.

        phi_on = phi_onset(d_onset, cronset)
        phi_off = phi_fall(d_fall, crfall, clspan)
        gpp = acm(cf, clma, ceff)
        temp = temp_term(Theta)

        clab2 = (1 - phi_on)*clab + (1-f_auto)*(1-f_fol)*f_lab*gpp
        cf2 = (1 - phi_off)*cf + phi_on*clab + (1-f_auto)*f_fol*gpp
        cr2 = (1 - theta_roo)*cr + (1-f_auto)*(1-f_fol)*(1-f_lab)*f_roo*gpp
        cw2 = (1 - theta_woo)*cw + (1-f_auto)*(1-f_fol)*(1-f_lab)*(1-f_roo)*gpp
        cl2 = (1-(theta_lit+theta_min)*temp)*cl + theta_roo*cr + phi_off*cf
        cs2 = (1 - theta_som*temp)*cs + theta_woo*cw + theta_min*temp*cl
        """
        out = algopy.zeros(6, dtype=p[-6])

        phi_on = self.phi_onset(p[11], p[13])
        phi_off = self.phi_fall(p[14], p[15], p[4])
        gpp = self.acm(p[18], p[16], p[10], self.dC.acm)
        temp = self.temp_term(p[9], self.dC.t_mean[self.x])

        out[0] = (1 - phi_on)*p[17] + (1-p[1])*(1-p[2])*p[12]*gpp
        out[1] = (1 - phi_off)*p[18] + phi_on*p[17] + (1-p[1])*p[2]*gpp
        out[2] = (1 - p[6])*p[19] + (1-p[1])*(1-p[2])*(1-p[12])*p[3]*gpp
        out[3] = (1 - p[5])*p[20] + (1-p[1])*(1-p[2])*(1-p[12])*(1-p[3])*gpp
        out[4] = (1-(p[7]+p[0])*temp)*p[21] + p[6]*p[19] + phi_off*p[18]
        out[5] = (1 - p[8]*temp)*p[22] + p[5]*p[20] + p[0]*temp*p[21]
        return out
Exemplo n.º 24
0
def f(x):
    A = zeros((2, 2), dtype=x)
    A[0, 0] = numpy.log(x[0] * x[1])
    A[0, 1] = numpy.log(x[1]) + exp(x[0])
    A[1, 0] = sin(x[0])**2 + abs(cos(x[0]))**3.1
    A[1, 1] = x[0]**cos(x[1])
    return log(dot(x.T, dot(inv(A), x)))
Exemplo n.º 25
0
def eval_f(Y):
    """ some reformulations to make eval_f_orig
        compatible with algopy

        missing: support for scipy.linalg.expm

        i.e., this function can't be differentiated with algopy

    """

    a, b, v = transform_params(Y)

    Q = algopy.zeros((4, 4), dtype=Y)
    Q[0, 0] = 0
    Q[0, 1] = a
    Q[0, 2] = b
    Q[0, 3] = b
    Q[1, 0] = a
    Q[1, 1] = 0
    Q[1, 2] = b
    Q[1, 3] = b
    Q[2, 0] = b
    Q[2, 1] = b
    Q[2, 2] = 0
    Q[2, 3] = a
    Q[3, 0] = b
    Q[3, 1] = b
    Q[3, 2] = a
    Q[3, 3] = 0

    Q = Q * v
    Q -= algopy.diag(algopy.sum(Q, axis=1))
    P = algopy.expm(Q)
    S = algopy.log(algopy.dot(algopy.diag(v), P))
    return -algopy.sum(S * g_data)
Exemplo n.º 26
0
def eval_f_eigh(Y):
    """ some reformulations to make eval_f_orig
        compatible with algopy

        replaced scipy.linalg.expm by a symmetric eigenvalue decomposition

        this function **can** be differentiated with algopy

    """
    a, b, v = transform_params(Y)

    Q = algopy.zeros((4,4), dtype=Y)
    Q[0,0] = 0;    Q[0,1] = a;    Q[0,2] = b;    Q[0,3] = b;
    Q[1,0] = a;    Q[1,1] = 0;    Q[1,2] = b;    Q[1,3] = b;
    Q[2,0] = b;    Q[2,1] = b;    Q[2,2] = 0;    Q[2,3] = a;
    Q[3,0] = b;    Q[3,1] = b;    Q[3,2] = a;    Q[3,3] = 0;

    Q = algopy.dot(Q, algopy.diag(v))
    Q -= algopy.diag(algopy.sum(Q, axis=1))
    va = algopy.diag(algopy.sqrt(v))
    vb = algopy.diag(1./algopy.sqrt(v))
    W, U = algopy.eigh(algopy.dot(algopy.dot(va, Q), vb))
    M = algopy.dot(U, algopy.dot(algopy.diag(algopy.exp(W)), U.T))
    P = algopy.dot(vb, algopy.dot(M, va))
    S = algopy.log(algopy.dot(algopy.diag(v), P))
    return -algopy.sum(S * g_data)
Exemplo n.º 27
0
def normalization(alpha, c, l, list_contr, dtype=np.float64(1.0)):
    contr = 0
    coef = algopy.zeros(len(alpha), dtype=dtype)

    for ib, ci in enumerate(list_contr):
        div = 1.0
        l_large = 0
        for m in l[ib]:
            if (m > 0):
                l_large += 1
                for k in range(1, 2 * m, 2):
                    div = div * k
        div = div / pow(2, l_large)
        div = div * pow(np.pi, 1.5)
        for i in range(ci):
            coef[contr + i] = normalization_primitive(alpha[contr + i], l[ib],
                                                      l_large) * c[contr + i]
        tmp = 0.0
        for i in range(ci):
            for j in range(ci):
                tmp = tmp + coef[contr + j] * coef[contr + i] / np.power(
                    alpha[contr + i] + alpha[contr + j], l_large + 1.5)
        tmp = algopy.sqrt(tmp * div)
        for i in range(contr, contr + ci):
            coef[i] = coef[i] / tmp
        contr = contr + ci
    return coef
Exemplo n.º 28
0
def eval_covariance_matrix_naive(J1, J2):
    M, N = J1.shape
    K, N = J2.shape
    tmp = zeros((N + K, N + K), dtype=J1)
    tmp[:N, :N] = dot(J1.T, J1)
    tmp[:N, N:] = J2.T
    tmp[N:, :N] = J2
    return inv(tmp)[:N, :N]
def f(x):
    nobs = x.shape[1:]
    f0 = x[0]**2 * sin(x[1])**2
    f1 = x[0]**2 * cos(x[1])**2
    out = zeros((2,) + nobs, dtype=x)
    out[0,:] = f0
    out[1,:] = f1
    return out
def eval_covariance_matrix_naive(J1, J2):
    M,N = J1.shape
    K,N = J2.shape
    tmp = zeros((N+K, N+K), dtype=J1)
    tmp[:N,:N] = dot(J1.T,J1)
    tmp[:N,N:] = J2.T
    tmp[N:,:N] = J2
    return inv(tmp)[:N,:N]
Exemplo n.º 31
0
def get_errors(M, v, approx_1a, approx_2a, X_side, X_diag):
    nstates = len(M)
    N = np.sum(M[0])
    observed_1a_1 = algopy.zeros(N+1, dtype=v)
    #observed_1a_2 = algopy.zeros(N+1, dtype=v)
    observed_2a = algopy.zeros(N+1, dtype=v)
    """
    for i in range(nstates):
        p = v[i]
        AB, Ab, aB, ab = M[i].tolist()
        observed_1a_1[AB + Ab] += p
        #observed_1a_2[AB + aB] += p
        #observed_2a[AB + ab] += p
        observed_2a[Ab + aB] += p
    """
    observed_1a_1 = algopy.dot(v, X_side)
    observed_2a = algopy.dot(v, X_diag)
    #
    errors_1a_1 = observed_1a_1 - approx_1a
    #errors_1a_2 = observed_1a_2 - approx_1a
    errors_2a = observed_2a - approx_2a
    #FIXME: Use algopy.hstack when it becomes available.
    #FIXME: using the workaround http://projects.scipy.org/scipy/ticket/1454
    #FIXME: but this padding of the errors with zeros should not be necessary
    #nonunif_penalty = 0.01
    #nonunif = v - np.ones(nstates) / float(nstates)
    #nonunif = np.zeros(nstates)
    errors = algopy.zeros(
            #len(nonunif) +
            errors_1a_1.shape[0] +
            #len(errors_1a_2) +
            errors_2a.shape[0],
            dtype=v,
            )
    index = 0
    errors[index:index+errors_1a_1.shape[0]] = errors_1a_1
    index += errors_1a_1.shape[0]
    #errors[index:index+len(errors_1a_2)] = errors_1a_2
    #index += len(errors_1a_2)
    errors[index:index+errors_2a.shape[0]] = errors_2a
    index += errors_2a.shape[0]
    #errors[index:index+len(nonunif)] = nonunif_penalty * nonunif
    #index += len(nonunif)
    return errors
Exemplo n.º 32
0
def unpack_distribution(nstates, d4_reduction, d4_nstates, X):
    log_v = algopy.zeros(nstates, dtype=X)
    for i_full, i_reduced in enumerate(d4_reduction):
        if i_reduced == d4_nstates - 1:
            log_v[i_full] = 0.0
        else:
            log_v[i_full] = X[i_reduced]
    v = algopy.exp(log_v)
    v = v / algopy.sum(v)
    return v
Exemplo n.º 33
0
 def jac_try(self, p):
     out = algopy.zeros((self.endrun-self.startrun, len(p)), dtype=p[-6])
     self.x = self.startrun
     pp = p
     for t in xrange(self.endrun-self.startrun):
         update = self.dalecv2(self.create_ordered_dic(pp))
         pp = update
         out[t, :] = update
         self.x += 1
     return out
Exemplo n.º 34
0
def transform_params(Y):
    X = algopy.exp(Y)
    tsrate, tvrate = X[0], X[1]
    v_unnormalized = algopy.zeros(4, dtype=X)
    v_unnormalized[0] = X[2]
    v_unnormalized[1] = X[3]
    v_unnormalized[2] = X[4]
    v_unnormalized[3] = 1.0
    v = v_unnormalized / algopy.sum(v_unnormalized)
    return tsrate, tvrate, v
Exemplo n.º 35
0
def fockmatrix(Hcore,Eri,D,nbasis,alpha,dtype):
    F = algopy.zeros((nbasis,nbasis),dtype=dtype)
    for i in range(nbasis):
       for j in range(i,nbasis):
           tmp = Hcore[i,j]
           for k in range(nbasis):
               for l in range(nbasis):
                 tmp = D[k,l]*(2.0*Eri[eri_index(i,j,k,l,nbasis)]-Eri[eri_index(i,k,j,l,nbasis)])+ tmp
           F[i,j] = F[j,i] = tmp
    return F
Exemplo n.º 36
0
def transform_params(Y):
    X = algopy.exp(Y)
    tsrate, tvrate = X[0], X[1]
    v_unnormalized = algopy.zeros(4, dtype=X)
    v_unnormalized[0] = X[2]
    v_unnormalized[1] = X[3]
    v_unnormalized[2] = X[4]
    v_unnormalized[3] = 1.0
    v = v_unnormalized / algopy.sum(v_unnormalized)
    return tsrate, tvrate, v
Exemplo n.º 37
0
def get_ll_root(summary, distn, blink_on, blink_off):
    """

    Parameters
    ----------
    summary : Summary object
        Summary of blinking process trajectories.
    distn : dense possibly exotic array
        Primary state distribution.
    blink_on : float, or exotic float-like with derivatives information
        blink rate on
    blink_off : float, or exotic float-like with derivatives information
        blink rate off

    Returns
    -------
    ll : float, or exotic float-like with derivatives information
        log likelihood contribution from root state

    """
    # construct the blink distribution with the right data type
    blink_distn = algopy.zeros(2, dtype=distn)
    blink_distn[0] = blink_off / (blink_on + blink_off)
    blink_distn[1] = blink_on / (blink_on + blink_off)

    # initialize expected log likelihood using the right data type
    ll = algopy.zeros(1, dtype=distn)[0]

    # root primary state contribution to expected log likelihood
    obs = algopy.zeros_like(distn)
    for state, count in summary.root_pri_to_count.items():
        if count:
            ll = ll + count * log(distn[state])

    # root blink state contribution to expected log likelihood
    if summary.root_off_count:
        ll = ll + summary.root_off_count * log(blink_distn[0])
    if summary.root_xon_count:
        ll = ll + summary.root_xon_count * log(blink_distn[1])

    # return expected log likelihood contribution of root
    return ll / summary.nsamples
Exemplo n.º 38
0
        def fun(x):

            f0 = x[0] ** 2 + x[1] ** 2
            f1 = x[0] ** 3 + x[1] ** 3

            s0 = f0.size
            s1 = f1.size
            out = algopy.zeros((2, (s0 + s1) / 2), dtype=x)
            out[0, :] = f0
            out[1, :] = f1
            return out
def eval_g(x):
    print x
    print type(x)
    out = zeros(3,dtype=x)
    o0 = 2*x[0]**2 + 3*x[1]**4 + x[2] + 4*x[3]**2 + 5*x[4]
    print o0
    print type(o0)
    out[0] = o0
    out[1] = 7*x[0] + 3*x[1] + 10*x[2]**2 + x[3] - x[4]
    out[2] = 23*x[0] + x[1]**2 + 6*x[5]**2 - 8*x[6]  -4*x[0]**2 - x[1]**2 + 3*x[0]*x[1] -2*x[2]**2 - 5*x[5]+11*x[6]
    return out
Exemplo n.º 40
0
        def fun(x):

            f0 = x[0] ** 2 + x[1] ** 2
            f1 = x[0] ** 3 + x[1] ** 3

            s0 = f0.size
            s1 = f1.size
            out = algopy.zeros((2, (s0 + s1) // 2), dtype=x)
            out[0, :] = f0
            out[1, :] = f1
            return out
Exemplo n.º 41
0
    def dalecv2_diff(self, p):
        """DALECV2 carbon balance model
        -------------------------------
        evolves carbon pools to the next time step, taking the 6 carbon pool
        values and 17 parameters at time t and evolving them to time t+1.
        Outputs both the 6 evolved C pool values and the 17 constant parameter
        values.

        phi_on = phi_onset(d_onset, cronset)
        phi_off = phi_fall(d_fall, crfall, clspan)
        gpp = acm(cf, clma, ceff)
        temp = temp_term(Theta)

        clab2 = (1 - phi_on)*clab + (1-f_auto)*(1-f_fol)*f_lab*gpp
        cf2 = (1 - phi_off)*cf + phi_on*clab + (1-f_auto)*f_fol*gpp
        cr2 = (1 - theta_roo)*cr + (1-f_auto)*(1-f_fol)*(1-f_lab)*f_roo*gpp
        cw2 = (1 - theta_woo)*cw + (1-f_auto)*(1-f_fol)*(1-f_lab)*(1-f_roo)*gpp
        cl2 = (1-(theta_lit+theta_min)*temp)*cl + theta_roo*cr + phi_off*cf
        cs2 = (1 - theta_som*temp)*cs + theta_woo*cw + theta_min*temp*cl
        """
        out = algopy.zeros(6, dtype=p[-6])
        # phenology
        self.phenology(p[11], p[12], p[18], p[16])
        # ACM
        gpp = self.acm(p[18], p[10], self.dC.acm)
        # temperature term
        temp = self.temp_term(p[9], self.dC.t_mean[self.x])
        # fluxes
        r_alabt = p[4] * (1 - p[13]) * p[15] * p[18] * self.mtf * temp
        r_alabf = p[14] * p[15] * p[17] * self.mtl * temp
        # r_a = p[1]*gpp + r_alabt + r_alabf
        npp1 = (1 - p[1]) * gpp
        a_tolab = p[4] * (1 - p[13]) * (1 - p[15]) * p[18] * self.mtf * temp
        a_fromlab = p[14] * (1 - p[15]) * p[17] * self.mtl * temp
        a_f = min(p[16] - p[18], p[2] * npp1) * self.mtl + a_fromlab
        npp2 = npp1 - min(p[16] - p[18], p[2] * npp1) * self.mtl
        a_r = p[3] * npp2
        a_w = (1 - p[4]) * npp2
        l_f = p[4] * p[18] * p[13] * self.mtf
        l_w = p[5] * p[20]
        l_r = p[6] * p[19]
        r_h1 = p[7] * p[21] * temp
        r_h2 = p[8] * p[22] * temp
        decomp = p[0] * p[21] * temp

        out[0] = p[17] + a_tolab - a_fromlab - r_alabf
        out[1] = p[18] + a_f - l_f - a_tolab - r_alabt
        out[2] = p[19] + a_r - l_r
        out[3] = p[20] + a_w - l_w
        out[4] = p[21] + l_f + l_r - r_h1 - decomp
        out[5] = p[22] + l_w + decomp - r_h2
        return out
Exemplo n.º 42
0
def qr_house(A):
    """ computes QR decomposition using Householder relections
    
    (Q,R) = qr_house(A)
    
    such that 
    0 = Q R - A
    0 = dot(Q.T,Q) - eye(M)
    R upper triangular
    
    Parameters
    ----------
    A: array_like
       shape(A) = (M, N), M >= N
       overwritten on exit
    
    Returns
    -------
    R: array_like
        strict lower triangular part contains the Householder vectors v
        upper triangular matrix R
    
    Q: array_like
        orthogonal matrix

    """
    
    M,N = A.shape
    Q = algopy.zeros((M,M),dtype=A)
    Q += numpy.eye(M)
    H = algopy.zeros((M,M),dtype=A)
    for n in range(N):
        v,beta = house(A[n:,n:n+1])
        A[n:,n:] -= beta * algopy.dot(v, algopy.dot(v.T,A[n:,n:]))
        H[...] = numpy.eye(M)
        H[n:,n:] -= beta * algopy.dot(v,v.T)
        Q = algopy.dot(Q,H)
        
    return Q, algopy.triu(A)
Exemplo n.º 43
0
def kineticmatrix(alpha, coef, xyz, l, nbasis, contr_list, dtype):
    T = algopy.zeros((nbasis, nbasis), dtype=dtype)
    cont_i = 0
    for i, ci in enumerate(contr_list):
        cont_j = cont_i
        for j, cj in enumerate(contr_list[i:]):
            T[i, j + i] = T[j + i, i] = kinetic_contracted(
                alpha[cont_i:cont_i + ci], coef[cont_i:cont_i + ci], xyz[i],
                l[i], alpha[cont_j:cont_j + cj], coef[cont_j:cont_j + cj],
                xyz[j + i], l[j + i])
            cont_j += cj
        cont_i += ci
    return T
Exemplo n.º 44
0
def qr_house(A):
    """ computes QR decomposition using Householder relections
    
    (Q,R) = qr_house(A)
    
    such that 
    0 = Q R - A
    0 = dot(Q.T,Q) - eye(M)
    R upper triangular
    
    Parameters
    ----------
    A: array_like
       shape(A) = (M, N), M >= N
       overwritten on exit
    
    Returns
    -------
    R: array_like
        strict lower triangular part contains the Householder vectors v
        upper triangular matrix R
    
    Q: array_like
        orthogonal matrix

    """
    
    M,N = A.shape
    Q = algopy.zeros((M,M),dtype=A)
    Q += numpy.eye(M)
    H = algopy.zeros((M,M),dtype=A)
    for n in range(N):
        v,beta = house(A[n:,n:n+1])
        A[n:,n:] -= beta * algopy.dot(v, algopy.dot(v.T,A[n:,n:]))
        H[...] = numpy.eye(M)
        H[n:,n:] -= beta * algopy.dot(v,v.T)
        Q = algopy.dot(Q,H)
        
    return Q, algopy.triu(A)
Exemplo n.º 45
0
def eval_f(
        theta,
        #subs_counts, 
        patterns, pattern_weights,
        log_counts, v,
        h,
        ts, tv, syn, nonsyn, compo, asym_compo,
        ):
    """
    @param theta: length six unconstrained vector of free variables
    """

    # unpack theta
    log_mu = theta[0]
    log_kappa = theta[1]
    log_omega = theta[2]
    log_nt_weights = algopy.zeros(4, dtype=theta)
    log_nt_weights[0] = theta[3]
    log_nt_weights[1] = theta[4]
    log_nt_weights[2] = theta[5]
    log_nt_weights[3] = 0

    # construct the transition matrix
    Q = get_Q(
            ts, tv, syn, nonsyn, compo, asym_compo,
            h,
            log_counts,
            log_mu, log_kappa, log_omega, log_nt_weights)
    P = algopy.expm(Q)
    
    # return the neg log likelihood
    """
    log_likelihood = get_log_likelihood(P, v, subs_counts)
    #A = subs_counts
    #B = algopy.log(P.T * v)
    #log_likelihoods = slow_part(A, B)
    #return algopy.sum(log_likelihoods)
    """
    npatterns = patterns.shape[0]
    nstates = patterns.shape[1]
    ov = (0, 1)
    v_to_children = {1 : [0]}
    de_to_P = {(1, 0) : P}
    root_prior = v
    log_likelihood = alignll.fast_fels(
            ov, v_to_children, de_to_P, root_prior,
            patterns, pattern_weights,
            )
    neg_ll = -log_likelihood
    print neg_ll
    return neg_ll
Exemplo n.º 46
0
def eval_f_unconstrained_kb(
    theta,
    subs_counts,
    log_counts,
    v,
    h,
    gtr,
    syn,
    nonsyn,
    compo,
    asym_compo,
):
    # unpack theta
    log_mu = theta[0]
    log_g = algopy.zeros(6, dtype=theta)
    log_g[0] = theta[1]
    log_g[1] = theta[2]
    log_g[2] = theta[3]
    log_g[3] = theta[4]
    log_g[4] = theta[5]
    log_g[5] = 0
    log_omega = theta[6]
    d = theta[7]
    log_kb = theta[8]
    log_nt_weights = algopy.zeros(4, dtype=theta)
    log_nt_weights[0] = theta[9]
    log_nt_weights[1] = theta[10]
    log_nt_weights[2] = theta[11]
    log_nt_weights[3] = 0
    #
    # construct the transition matrix
    Q = get_Q_unconstrained_kb(gtr, syn, nonsyn, compo, asym_compo, h,
                               log_counts, log_mu, log_g, log_omega, d, log_kb,
                               log_nt_weights)
    P = algopy.expm(Q)
    #
    # return the neg log likelihood
    return -get_log_likelihood(P, v, subs_counts)
Exemplo n.º 47
0
def nuclearmatrix(alpha, coef, xyz, l, nbasis, charge, atoms, numatoms,
                  contr_list, dtype):
    V = algopy.zeros((nbasis, nbasis), dtype=dtype)
    cont_i = 0
    for i, ci in enumerate(list(contr_list)):
        cont_j = cont_i
        for j, cj in enumerate(contr_list[i:]):
            V[i, j + i] = V[j + i, i] = nuclear_contracted(
                alpha[cont_i:cont_i + ci], coef[cont_i:cont_i + ci], xyz[i],
                l[i], alpha[cont_j:cont_j + cj], coef[cont_j:cont_j + cj],
                xyz[j + i], l[j + i], atoms, charge, numatoms)
            cont_j += cj
        cont_i += ci
    return V
Exemplo n.º 48
0
    def test_svd(self):
        D,P,M,N = 3,1,5,2
        A = UTPM(numpy.random.random((D,P,M,N)))

        U,s,V = svd(A)

        S = zeros((M,N),dtype=A)
        S[:N,:N] = diag(s)

        assert_array_almost_equal( (dot(dot(U, S), V.T) - A).data, 0.)
        assert_array_almost_equal( (dot(U.T, U) - numpy.eye(M)).data, 0.)
        assert_array_almost_equal( (dot(U, U.T) - numpy.eye(M)).data, 0.)
        assert_array_almost_equal( (dot(V.T, V) - numpy.eye(N)).data, 0.)
        assert_array_almost_equal( (dot(V, V.T) - numpy.eye(N)).data, 0.)
Exemplo n.º 49
0
def eval_f(
        theta,
        subs_counts, log_counts, v,
        h,
        gtr, syn, nonsyn, compo, asym_compo,
        ):
    """
    The function formerly known as minimize-me.
    @param theta: length six unconstrained vector of free variables
    """
    # unpack theta
    log_mu = theta[0]
    log_g = algopy.zeros(6, dtype=theta)
    log_g[0] = theta[1]
    log_g[1] = theta[2]
    log_g[2] = theta[3]
    log_g[3] = theta[4]
    log_g[4] = theta[5]
    log_g[5] = 0
    log_omega = theta[6]
    log_nt_weights = algopy.zeros(4, dtype=theta)
    log_nt_weights[0] = theta[7]
    log_nt_weights[1] = theta[8]
    log_nt_weights[2] = theta[9]
    log_nt_weights[3] = 0
    #
    # construct the transition matrix
    Q = get_Q(
            gtr, syn, nonsyn, compo, asym_compo,
            h,
            log_counts,
            log_mu, log_g, log_omega, log_nt_weights)
    P = algopy.expm(Q)
    #
    # return the neg log likelihood
    return -get_log_likelihood(P, v, subs_counts)
Exemplo n.º 50
0
    def test_gradient(self):
        x = numpy.array([3.,7.])

        cg = algopy.CGraph()
        Fx = algopy.Function(x)
        Fy = algopy.zeros(2, Fx)
        Fy[0] = Fx[0]
        Fy[1] = Fy[0]*Fx[1]
        Fz = 2*Fy[1]**2
        cg.trace_off()

        cg.independentFunctionList = [Fx]
        cg.dependentFunctionList = [Fz]

        x = numpy.array([11,13.])
        assert_array_almost_equal([4*x[1]**2 * x[0], 4*x[0]**2 * x[1]], cg.gradient([x])[0])
Exemplo n.º 51
0
def prod(x, axis=None, dtype=None, out=None):
    """
    generic prod function
    """

    if axis != None or dtype != None or out != None:
        raise NotImplementedError('')

    elif isinstance(x, numpy.ndarray):
        return numpy.prod(x)

    elif isinstance(x, Function) or  isinstance(x, UTPM):
        y = zeros(1,dtype=x)
        y[0] = x[0]
        for xi in x[1:]:
            y[0] = y[0] * xi
        return y[0]
Exemplo n.º 52
0
def get_pre_Q(genetic_code, kappa, omega, A, C, G, T):
    """
    Compute a Muse-Gaut 1994 pre-rate-matrix without any particular scale.

    The dtype of the returned object should be like that of its parameters,
    so that exotic array types like algopy arrays are supported.
    The diagonal should consist of zeros because it is a pre-rate-matrix.
    Subsequent function calls can deal with expected rate.

    """
    # define the states and initialize the pre-rate-matrix
    nstates = len(genetic_code)
    states = range(nstates)
    Q = algopy.zeros((nstates, nstates), dtype=kappa)

    # define state_to_part
    state_to_residue = dict((s, r) for s, r, c in genetic_code)
    alphabetic_residues = sorted(set(r for s, r, c in genetic_code))
    residue_to_part = dict((r, i) for i, r in enumerate(alphabetic_residues))
    state_to_part = dict((s, residue_to_part[r]) for s, r, c in genetic_code)

    nt_distn = {
            'A' : A,
            'C' : C,
            'G' : G,
            'T' : T,
            }

    # construct the mg94 rate matrix
    transitions = ('AG', 'GA', 'CT', 'TC')
    for a, (state_a, residue_a, codon_a) in enumerate(genetic_code):
        for b, (state_b, residue_b, codon_b) in enumerate(genetic_code):
            if hamming_distance(codon_a, codon_b) != 1:
                continue
            for nta, ntb in zip(codon_a, codon_b):
                if nta != ntb:
                    rate = nt_distn[ntb]
                    if nta + ntb in transitions:
                        rate *= kappa
            if residue_a != residue_b:
                rate *= omega
            Q[a, b] = rate

    # return the pre-rate-matrix
    return Q
Exemplo n.º 53
0
    def dalecv2(self, p):
        """DALECV2 carbon balance model
        -------------------------------
        evolves carbon pools to the next time step, taking the 6 carbon pool
        values and 17 parameters at time t and evolving them to time t+1.
        Outputs both the 6 evolved C pool values and the 17 constant parameter
        values.

        phi_on = phi_onset(d_onset, cronset)
        phi_off = phi_fall(d_fall, crfall, clspan)
        gpp = acm(cf, clma, ceff)
        temp = temp_term(Theta)

        clab2 = (1 - phi_on)*clab + (1-f_auto)*(1-f_fol)*f_lab*gpp
        cf2 = (1 - phi_off)*cf + phi_on*clab + (1-f_auto)*f_fol*gpp
        cr2 = (1 - theta_roo)*cr + (1-f_auto)*(1-f_fol)*(1-f_lab)*f_roo*gpp
        cw2 = (1 - theta_woo)*cw + (1-f_auto)*(1-f_fol)*(1-f_lab)*(1-f_roo)*gpp
        cl2 = (1-(theta_lit+theta_min)*temp)*cl + theta_roo*cr + phi_off*cf
        cs2 = (1 - theta_som*temp)*cs + theta_woo*cw + theta_min*temp*cl
        """
        out = algopy.zeros(len(p), dtype=p['cf'])
        # ACM
        gpp = self.acm(p['cf'], p['clma'], p['ceff'], self.dC.acm)
        # Labile release and leaf fall factors
        phi_on = self.phi_onset(p['d_onset'], p['cronset'])
        phi_off = self.phi_fall(p['d_fall'], p['crfall'], p['clspan'])
        # Temperature factor
        temp = self.temp_term(p['Theta'], self.dC.t_mean[self.x])

        out[-6] = (1 - phi_on) * p['clab'] + (1 - p['f_auto']) * (
            1 - p['f_fol']) * p['f_lab'] * gpp
        out[-5] = (1 - phi_off) * p['cf'] + phi_on * p['clab'] + (
            1 - p['f_auto']) * (1 - p['f_fol']) * p['f_lab'] * gpp
        out[-4] = (1 - p['theta_roo']) * p['cr'] + (1 - p['f_auto']) * (
            1 - p['f_fol']) * (1 - p['f_lab']) * p['f_roo'] * gpp
        out[-3] = (1 - p['theta_woo']) * p['cw'] + (1 - p['f_auto']) * (
            1 - p['f_fol']) * (1 - p['f_lab']) * (1 - p['f_roo']) * gpp
        out[-2] = (1 - (p['theta_lit'] + p['theta_min']) * temp
                   ) * p['cl'] + p['theta_roo'] * p['cr'] + phi_off * p['cf']
        out[-1] = (1 - p['theta_som'] * temp) * p['cs'] + p['theta_woo'] * p[
            'cw'] + p['theta_min'] * temp * p['cl']
        for x in xrange(len(p) - 6):
            out[x] = p[self.names[x]]
        return out
Exemplo n.º 54
0
def eval_f_eigh(Y):
    """ some reformulations to make eval_f_orig
        compatible with algopy

        replaced scipy.linalg.expm by a symmetric eigenvalue decomposition

        this function **can** be differentiated with algopy

    """
    a, b, v = transform_params(Y)

    Q = algopy.zeros((4, 4), dtype=Y)
    Q[0, 0] = 0
    Q[0, 1] = a
    Q[0, 2] = b
    Q[0, 3] = b
    Q[1, 0] = a
    Q[1, 1] = 0
    Q[1, 2] = b
    Q[1, 3] = b
    Q[2, 0] = b
    Q[2, 1] = b
    Q[2, 2] = 0
    Q[2, 3] = a
    Q[3, 0] = b
    Q[3, 1] = b
    Q[3, 2] = a
    Q[3, 3] = 0

    Q = algopy.dot(Q, algopy.diag(v))
    Q -= algopy.diag(algopy.sum(Q, axis=1))
    va = algopy.diag(algopy.sqrt(v))
    vb = algopy.diag(1. / algopy.sqrt(v))
    W, U = algopy.eigh(algopy.dot(algopy.dot(va, Q), vb))
    M = algopy.dot(U, algopy.dot(algopy.diag(algopy.exp(W)), U.T))
    P = algopy.dot(vb, algopy.dot(M, va))
    S = algopy.log(algopy.dot(algopy.diag(v), P))
    return -algopy.sum(S * g_data)