Exemplo n.º 1
0
    def test_tracer_on_mixed_utpm_ndarray_mul(self):
        D, P = 1, 1
        A = numpy.arange(2 * 2, dtype=float).reshape(2, 2)

        x = UTPM(numpy.zeros((D, P, 2, 2)))

        def f(x):
            return sum(A * x)

        cg = CGraph()
        ax = Function(x)
        ay = f(ax)
        cg.independentFunctionList = [ax]
        cg.dependentFunctionList = [ay]

        assert_array_almost_equal(A, cg.gradient(x))
Exemplo n.º 2
0
    def test_expm(self):
        def f(x):
            x = x.reshape((2, 2))
            return sum(expm(x))

        x = numpy.random.random(2 * 2)

        # forward mode

        ax = UTPM.init_jacobian(x)
        ay = f(ax)
        g1 = UTPM.extract_jacobian(ay)

        # reverse mode

        cg = CGraph()
        ax = Function(x)
        ay = f(ax)
        cg.independentFunctionList = [ax]
        cg.dependentFunctionList = [ay]

        g2 = cg.gradient(x)

        assert_array_almost_equal(g1, g2)

# create an UTPM instance
D, N, M = 2, 3, 2
P = 2 * N

x = UTPM(numpy.zeros((D, P, 2 * N, 1)))
x.data[0, :] = numpy.random.rand(2 * N, 1)
x.data[1, :, :, 0] = numpy.eye(P)
y = x[N:]
x = x[:N]

# wrap the UTPM instance in a Function instance to trace all operations
# that have x as an argument
# create a CGraph instance that to store the computational trace
cg = CGraph().trace_on()
x = Function(x)
y = Function(y)
z = f(x, y)
cg.trace_off()

# define dependent and independent variables in the computational procedure
cg.independentFunctionList = [x, y]
cg.dependentFunctionList = [z]

# Since the UTPM instrance is wrapped in a Function instance we have to access it
# by y.x. That means the Jacobian is
grad1 = z.x.data[1, :, 0]

print('forward gradient g(x) = \n', grad1)
Exemplo n.º 4
0
    return dot(x,y) - x*(x-y)
    
We want to compute the Hessian of that function.

"""

import numpy
from algopy import CGraph, Function, UTPM, dot, qr, eigh, inv, zeros


def f(x, N):
    return dot(x[:N], x[N:]) * x[N:] - x[:N] * (x[:N] - x[N:])


# create a CGraph instance that to store the computational trace
cg = CGraph()

# create an UTPM instance
D, N, M = 2, 3, 2
P = N

A = UTPM(numpy.zeros((D, P, M, N)))
x = UTPM(numpy.zeros((D, P, N, 1)))

x.data[0, :] = numpy.random.rand(N, 1)
A.data[0, :] = numpy.random.rand(M, N)

x.data[1, :, :, 0] = numpy.eye(P)

x = Function(x)
A = Function(A)
def eval_covariance_matrix_qr(J1, J2):
    M, N = J1.shape
    K, N = J2.shape
    Q, R = qr_full(J2.T)
    Q2 = Q[:, K:].T
    J1_tilde = dot(J1, Q2.T)
    Q, R = qr(J1_tilde)
    V = solve(R.T, Q2)
    return dot(V.T, V)


# dimensions of the involved matrices
D, P, M, N, K, Nx = 2, 1, 5, 3, 1, 1

# trace the function evaluation of METHOD 1: nullspace method
cg1 = CGraph()
J1 = Function(UTPM(numpy.random.rand(*(D, P, M, N))))
J2 = Function(UTPM(numpy.random.rand(*(D, P, K, N))))
C = eval_covariance_matrix_qr(J1, J2)
y = C[0, 0]
cg1.trace_off()
cg1.independentFunctionList = [J1, J2]
cg1.dependentFunctionList = [y]
print('covariance matrix: C =\n', C)

# trace the function evaluation of METHOD 2: naive method (potentially numerically unstable)
cg2 = CGraph()
J1 = Function(J1.x)
J2 = Function(J2.x)
C2 = eval_covariance_matrix_naive(J1, J2)
y = C2[0, 0]
c = 0.4
Msat = 1.35e5

# Eingangsgrößen
r = 2.0e-2  # m, Radius
i_hat = 20.0  # A, Strom
f = 1000.0  # Hz, Frequenz
n = 3  # Anzahl Perioden
n_p = 512  # Datenpunkte pro Periode

t = np.arange(n * n_p) / (n_p * f)  # Zeitvektor
current = i_hat * (np.sin(2 * np.pi * f * t) +
                   0.7 * np.sin(6 * np.pi * f * t + 1))  # Stromvorgabe
H = current / (2 * np.pi * r)  # Resultierende Feldvorgabe

graph = CGraph()
graph.trace_on()
x = Function([alpha, a, k, c, Msat])

# Parametervektor
p = {'alpha': x[0], 'a': x[1], 'k': x[2], 'c': x[3], 'm_sat': x[4]}

model = JilesAthertonModel.from_dict(p)
M = model.integrate_rk4(t, H)

H = H[::2]
t = t[::2]
B = mu_0 * (H + M)
dB_dt = np.zeros(np.size(B))
new = np.append([0.0], (B[1:] - B[0:-1]) / (t[1:] - t[0:-1]))