Exemplo n.º 1
0
pol = Config.getboolean("reconstruction", "pol")
shape_sim, wcs_sim, shape_dat, wcs_dat = aio.enmaps_from_config(Config,
                                                                "sims",
                                                                "analysis",
                                                                pol=pol)
parray_sim = aio.patch_array_from_config(Config,
                                         exp_name,
                                         shape_sim,
                                         wcs_sim,
                                         dimensionless=True)
parray_dat = aio.patch_array_from_config(Config,
                                         expf_name,
                                         shape_dat,
                                         wcs_dat,
                                         dimensionless=True)
lmax, tellmin, tellmax, pellmin, pellmax, kellmin, kellmax = aio.ellbounds_from_config(
    Config, "reconstruction")

if cluster:
    gradCut = 2000
else:
    gradCut = None

if pol:
    pol_list = ['TT', 'EB', 'EE', 'ET', 'TE', 'TB']
else:
    pol_list = ['TT']

debug = False

out_dir = os.environ['WWW'] + "plots/halotest/smallpatch_"
Exemplo n.º 2
0
# Efficiently distribute sims over MPI cores
num_each, each_tasks = mpi_distribute(Nsims, numcores)
# Initialize a container for stats and stacks
mpibox = MPIStats(comm, num_each, tag_start=333)
if rank == 0: print(("At most ", max(num_each), " tasks..."))
# What am I doing?
my_tasks = each_tasks[rank]

# === COSMOLOGY ===
theory, cc, lmax = aio.theory_from_config(Config,
                                          cosmology_section,
                                          dimensionless=False)
parray_dat.add_theory(theory, lmax, orphics_is_dimensionless=False)
parray_sim.add_theory(theory, lmax, orphics_is_dimensionless=False)

lb = aio.ellbounds_from_config(Config, "reconstruction_pol", min_ell)
tellmin = lb['tellminY']
tellmax = lb['tellmaxY']
pellmin = lb['pellminY']
pellmax = lb['pellmaxY']
kellmin = lb['kellmin']
kellmax = lb['kellmax']

lxmap_dat, lymap_dat, modlmap_dat, angmap_dat, lx_dat, ly_dat = fmaps.get_ft_attributes_enmap(
    shape_dat, wcs_dat)
lxmap_sim, lymap_sim, modlmap_sim, angmap_sim, lx_sim, ly_sim = fmaps.get_ft_attributes_enmap(
    shape_sim, wcs_sim)
kellmin = 200
kellmax = 6000
lbin_edges = np.arange(kellmin, kellmax, 50)
lbinner_dat = stats.bin2D(modlmap_dat, lbin_edges)
Exemplo n.º 3
0
# Efficiently distribute sims over MPI cores
num_each, each_tasks = mpi_distribute(Nsims, numcores)
# Initialize a container for stats and stacks
mpibox = MPIStats(comm, num_each, tag_start=333)
if rank == 0: print(("At most ", max(num_each), " tasks..."))
# What am I doing?
my_tasks = each_tasks[rank]

# === COSMOLOGY ===
theory, cc, lmax = aio.theory_from_config(Config,
                                          cosmology_section,
                                          dimensionless=False)
parray_dat.add_theory(theory=theory, lmax=lmax, orphics_is_dimensionless=False)
parray_sim.add_theory(theory=theory, lmax=lmax, orphics_is_dimensionless=False)

lb = aio.ellbounds_from_config(Config, recon_section, min_ell)
tellmin = lb['tellminY']
tellmax = lb['tellmaxY']
pellmin = lb['pellminY']
pellmax = lb['pellmaxY']
kellmin = lb['kellmin']
kellmax = lb['kellmax']

lxmap_dat, lymap_dat, modlmap_dat, angmap_dat, lx_dat, ly_dat = fmaps.get_ft_attributes_enmap(
    shape_dat, wcs_dat)
lxmap_sim, lymap_sim, modlmap_sim, angmap_sim, lx_sim, ly_sim = fmaps.get_ft_attributes_enmap(
    shape_sim, wcs_sim)
lbin_edges = np.arange(kellmin, kellmax, 200)
lbinner_dat = stats.bin2D(modlmap_dat, lbin_edges)
lbinner_sim = stats.bin2D(modlmap_sim, lbin_edges)
bin_edges = np.arange(0., 20., analysis_resolution * 2.)