Exemplo n.º 1
0
def mock_ks_explainer(request):
    """
    Instantiates a KernelShap explainer with a mock predictor.
    """
    pred_out_dim, link = request.param
    predictor = MockPredictor(out_dim=pred_out_dim, seed=0)
    explainer = KernelShap(predictor=predictor, seed=0)

    return explainer
Exemplo n.º 2
0
def mock_ale_explainer(request):
    """
    Instantiates an ALE explainer with a mock predictor.
    """
    out_dim, out_type = request.param
    predictor = MockPredictor(out_dim=out_dim, out_type=out_type, seed=0)
    explainer = ALE(predictor)

    return explainer
Exemplo n.º 3
0
def patch_transformer(monkeypatch, request):
    out_dim, out_type, sz = request.param
    transformer = ArgmaxTransformer(None)
    monkeypatch.setattr(
        transformer, "predictor",
        MockPredictor(out_dim,
                      out_type=out_type,
                      sz=sz,
                      key=(out_dim, out_type, sz)))

    return transformer
Exemplo n.º 4
0
def mock_kernel_shap_explainer(request):
    """
    Instantiates a KernelShap explainer with a mock predictor.
    """

    pred_out_dim, link, distributed_opts = request.param
    predictor = MockPredictor(out_dim=pred_out_dim, seed=0)
    explainer = KernelShap(predictor=predictor,
                           link=link,
                           distributed_opts=distributed_opts,
                           seed=0)

    return explainer
Exemplo n.º 5
0
def mock_tree_shap_explainer(monkeypatch, request):
    """
    Instantiates a TreeShap explainer where both the `_explainer` and `model` atttributes
    are mocked

    Parameters
    ----------
    request:
        Tuple containing number of outputs and model_output string (see TreeShap constructor).
    """

    n_outs, model_output = request.param
    seed = 0
    predictor = MockPredictor(out_dim=n_outs, out_type=model_output, seed=seed)
    tree_explainer = MockTreeExplainer(predictor, seed=seed)
    monkeypatch.setattr(shap, "TreeExplainer", tree_explainer)
    explainer = TreeShap(predictor, model_output=model_output)

    return explainer
Exemplo n.º 6
0
def test_argmax_transformer(monkeypatch, out_dim, out_type):
    """
    Test that the conversion of output probabilities to class labels works
    for a range of classifier output types.
    """

    # setup a transformer with a mock predictor
    transformer = ArgmaxTransformer(None)
    monkeypatch.setattr(
        transformer,
        "predictor",
        MockPredictor(
            out_dim,
            out_type=out_type,
        )
    )
    # fake predictor input
    X = np.random.random(size=(50, 14))

    result = transformer(X)
    # argmax transformer should do get rid of the feature dimension
    assert len(result.shape) == len(X.shape) - 1