Exemplo n.º 1
0
def hybrid():

    # Read Images
    input_image_1 = skio.imread(INPUT_IMAGES_NAME[0])
    input_image_2 = skio.imread(INPUT_IMAGES_NAME[1])

    #----------------------------------------------------------------------

    # Transform to float
    image_1 = img_as_float(input_image_1)
    image_2 = img_as_float(input_image_2)

    #----------------------------------------------------------------------

    # Align images using provided functiom
    image_aligned_1, image_aligned_2 = align_images(image_1, image_2)

    #----------------------------------------------------------------------

    # Divide image in color channels
    color_channels_1 = np.array([
        image_aligned_1[:, :, 0], image_aligned_1[:, :, 1],
        image_aligned_1[:, :, 2]
    ])
    color_channels_2 = np.array([
        image_aligned_2[:, :, 0], image_aligned_2[:, :, 1],
        image_aligned_2[:, :, 2]
    ])

    # Use color channels to compose an unique gray scale image
    # http://stackoverflow.com/questions/12201577/how-can-i-convert-an-rgb-image-into-grayscale-in-python
    image_1_grayscale = np.clip(
        color_channels_1[0] * 0.299 + color_channels_1[1] * 0.587 +
        color_channels_1[2] * 0.114, 0.0, 1.0)
    image_2_grayscale = np.clip(
        color_channels_2[0] * 0.299 + color_channels_2[1] * 0.587 +
        color_channels_2[2] * 0.114, 0.0, 1.0)

    #----------------------------------------------------------------------

    # Apply the Laplacian Filter (high pass filter) to the first image by subtracting the Gaussian Filtered Image from the original
    low_frequency_image_1 = filter.gaussian_filter(image_1_grayscale,
                                                   HIGH_FREQUENCY_BLUR_RATIO)
    high_frequency_image_1 = image_1_grayscale - low_frequency_image_1

    # Apply the Gaussian Filter (low pass filter) to the second image
    low_frequency_image_2 = filter.gaussian_filter(image_2_grayscale,
                                                   LOW_FREQUENCY_BLUR_RATIO)

    #----------------------------------------------------------------------

    # Add pictures together
    output_image = np.clip(high_frequency_image_1 + low_frequency_image_2, 0.0,
                           1.0)

    #----------------------------------------------------------------------

    # Show final image
    skio.imshow(output_image)
    skio.show()
def plots(folder):
    # high sf
    im1 = plt.imread(os.path.join(folder, 'image1.jpg'))
    im1 = im1[:, :, :3]

    # low sf
    im2 = plt.imread(os.path.join(folder, 'image2.jpg'))
    im2 = im2[:, :, :3]

    # Next align images (this code is provided, but may be improved)
    im1_aligned, im2_aligned = align_images(im1, im2)

    ## You will provide the code below. Sigma1 and sigma2 are arbitrary
    ## cutoff values for the high and low frequencies
    sigma1 = 2
    sigma2 = 3

    im1_filtered, im2_filtered, hybrid = hybrid_image(im1_aligned, im2_aligned,
                                                      sigma1, sigma2)

    ### plot the hybrid image
    plt.imshow(hybrid)
    plt.savefig(
        os.path.join(folder,
                     'hybrid_' + str(sigma1) + '_' + str(sigma2) + '.png'))
    plt.imshow(im1_filtered)
    plt.savefig(
        os.path.join(
            folder,
            'im1_filtered_' + str(sigma1) + '_' + str(sigma2) + '.png'))
    plt.imshow(im2_filtered)
    plt.savefig(
        os.path.join(
            folder,
            'im2_filtered_' + str(sigma1) + '_' + str(sigma2) + '.png'))
Exemplo n.º 3
0
def main():
    # First load images
    # high sf
    im1 = plt.imread(args.img_high)/255.
    # low sf
    im2 = plt.imread(args.img_low)/255
    # Next align images (this code is provided, but may be improved)
    if len(im1.shape) != len(im2.shape) or im1.shape[2] != im2.shape[2]:
        print("two image cannot be aligned with ease, pick another pair")
        return 
    im1_aligned, im2_aligned = align_images(im1, im2)
    # im1_aligned = rgb2gray(im1_aligned)
    # im2_aligned = rgb2gray(im2_aligned)
    #change to single color channel
    hybrid = hybrid_image(im1_aligned, im2_aligned, args.cutoff1, args.cutoff2, args.filter_size)
    plt.imshow(hybrid)
    io.imsave(args.img_high[:-4]+args.img_low[:-4]+"hybride.jpg", hybrid)
    if args.img_high == "apple.jpg":
        gray_apple = rgb2gray(im1)
        gray_bad = rgb2gray(im2)
        filtered_high = high_pass(im1_aligned, args.filter_size, args.cutoff1)
        filtered_low = high_pass(im2_aligned, args.filter_size, args.cutoff2)
        io.imsave("fourier_high.jpg", fourier(gray_apple))
        io.imsave("fourier_low.jpg", fourier(gray_bad))
        io.imsave("fourier_filtered_high.jpg", fourier(filtered_high))
        io.imsave("fourier_filtered_low.jpg", fourier(filtered_low))
        io.imsave("fourier_hybride.jpg", fourier(hybrid))
    ## Compute and display Gaussian and Laplacian Pyramids
    ## You also need to supply this function
    return 
Exemplo n.º 4
0
def hybrid_image(im1, im2, sigma1, sigma2):
    # Next align images (this code is provided, but may be improved)
    im1_aligned, im2_aligned = align_images(im1, im2)

    low_pass_im = low_pass(im1_aligned, sigma1)
    skio.imsave("./1_2/karl_filtered.png", low_pass_im)
    gray_low_pass = misc.imread("./1_2/karl_filtered.png", flatten=True) / 255.
    fourier_save("./1_2/karl_fft.png", gray_low_pass)
    high_pass_im = high_pass(im2_aligned, sigma2)
    skio.imsave("./1_2/akita_filtered.png", high_pass_im)
    gray_high_pass = misc.imread("./1_2/akita_filtered.png",
                                 flatten=True) / 255.
    fourier_save("./1_2/akita_fft.png", gray_high_pass)
    return np.clip(low_pass_im + high_pass_im, 0, 1)
def main():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('im_names', nargs='*', type=str)
    parser.add_argument('--show_originals', action='store_true')
    parser.add_argument('--plot_filters', action='store_true')
    parser.add_argument('--plot_fft', action='store_true')
    parser.add_argument('--gray', action='store_true')
    parser.add_argument('--restore', action='store_true')
    parser.add_argument('--s1', type=int, default=6)
    parser.add_argument('--s2', type=int, default=6)
    parser.add_argument('--lam', type=float, default=0.8)
    args = parser.parse_args()

    assert(len(args.im_names) == 2)

    if args.restore:
        save_file = 'pickle/{}_{}.pkl'.format(args.im_names[0], args.im_names[1])
        with open(save_file, 'rb') as f:
            hybrid = pickle.load(f)
    else:

        im1 = plt.imread('images/{}.png'.format(args.im_names[0]))
        im1 = im1[:,:,:3] #only keeps 3 channels -rgb

        im2 = plt.imread('images/{}.png'.format(args.im_names[1]))
        im2 = im2[:,:,:3]

        im1_aligned, im2_aligned = align_images(im1, im2)

        if args.show_originals:
            generate_greyscale(im1_aligned)
            generate_greyscale(im1_aligned)
            generate_fft_plot(im1_aligned)
            generate_fft_plot(im2_aligned)

        sigma1 = args.s1
        sigma2 = args.s2
        save_file = 'pickle/{}_{}.pkl'.format(args.im_names[0], args.im_names[1])
        hybrid = hybrid_image(im1_aligned, im2_aligned, sigma1, sigma2, lam=args.lam, plot_filters=args.plot_filters, plot_fft=args.plot_fft)

        with open(save_file, 'wb') as f:
            pickle.dump(hybrid, f)

    if args.gray:
        generate_greyscale(hybrid)
    else:
        generate_rgb(hybrid)
    
    show_scales(hybrid, gray=args.gray)
Exemplo n.º 6
0
def morpher_main(start_image_path, end_image_path, gif_name):
    start_image = mpl.pyplot.imread(start_image_path)
    start_gray = sk.color.rgb2gray(start_image)

    end_image = mpl.pyplot.imread(end_image_path)
    end_gray = sk.color.rgb2gray(end_image)

    start_keypoints = menpo.utils.detect_landmarks(start_gray, 1)
    end_keypoints = menpo.utils.detect_landmarks(end_gray, 1)

    start_landmarks = start_keypoints[0].landmarks
    end_landmarks = end_keypoints[0].landmarks

    start_left_eye = (start_landmarks[left_eye_index][1],
                      start_landmarks[left_eye_index][0])
    start_right_eye = (start_landmarks[right_eye_index][1],
                       start_landmarks[right_eye_index][0])
    end_left_eye = (end_landmarks[left_eye_index][1],
                    end_landmarks[left_eye_index][0])
    end_right_eye = (end_landmarks[right_eye_index][1],
                     end_landmarks[right_eye_index][0])

    start_aligned, end_aligned = align_images(
        start_image, end_image,
        (start_left_eye, start_right_eye, end_left_eye, end_right_eye))
    start_aligned = img_as_float(start_aligned)
    end_aligned = img_as_float(end_aligned)

    start_aligned_gray = sk.color.rgb2gray(start_aligned)
    end_aligned_gray = sk.color.rgb2gray(end_aligned)

    start_keypoints = menpo.utils.detect_landmarks(start_aligned_gray, 1)
    end_keypoints = menpo.utils.detect_landmarks(end_aligned_gray, 1)

    start_inputs = np.flip(np.array(start_keypoints[0].landmarks), 1)
    end_inputs = np.flip(np.array(end_keypoints[0].landmarks), 1)

    for i in range(len(ts)):
        t = ts[i]
        print i
        mid_way_s, mid_way_e = generate_mid_way(start_aligned, start_inputs,
                                                end_aligned, end_inputs, t)
        final_mid = t * mid_way_s + (1 - t) * mid_way_e
        images.append(final_mid)

    images.extend(images[::-1])
    imageio.mimsave(gif_name, images, 'GIF', **kargs)
Exemplo n.º 7
0
def hybrid_image(im1, im2, gaussian_kernel, save_intermediates=False):
    im1, im2 = align_images(im1, im2)
    # Normalize images
    im1 = im1 / np.max(im1)
    im2 = im2 / np.max(im2)
    # Low pass filter first image
    lpf_im1 = blur(im1, gaussian_kernel)
    lpf_im2 = blur(im2, gaussian_kernel)
    # Get high frequencies for image 2
    hpf_im2 = im2 - lpf_im2
    # Average images
    hybrid = (lpf_im1 + hpf_im2)/2

    if save_intermediates:
        os.makedirs('outputs/hybrid/fft/', exist_ok=True)
        save_fft('outputs/hybrid/fft/im1.jpg', rgb2gray(im1))
        save_fft('outputs/hybrid/fft/im2.jpg', rgb2gray(im2))
        save_fft('outputs/hybrid/fft/lpf_im1.jpg', rgb2gray(lpf_im1))
        save_fft('outputs/hybrid/fft/hpf_im2.jpg', rgb2gray(hpf_im2))
        save_fft('outputs/hybrid/fft/hybrid.jpg', rgb2gray(hybrid))

    return hybrid
Exemplo n.º 8
0
def hybrid(im1_name, im2_name, sig1, sig2):
    # high sf
    im1 = plt.imread(im1_name) / 255.

    # low sf
    im2 = plt.imread(im2_name) / 255.

    # Next align images (this code is provided, but may be improved)
    im1_aligned, im2_aligned = align_images(im1, im2)

    im1_aligned = rgb2gray(im1_aligned)
    im2_aligned = rgb2gray(im2_aligned)

    orig = scipy.ndimage.filters.gaussian_filter(im1, 1)
    low_pass = scipy.ndimage.filters.gaussian_filter(im1, 5)
    high_pass = orig - low_pass
    final = low_pass + high_pass

    sigma1 = sig1
    sigma2 = sig2
    hybrid = hybrid_image(im1_aligned, im2_aligned, sigma1, sigma2)

    plt.imshow(hybrid, cmap="Greys_r")
    plt.show()
Exemplo n.º 9
0
def hybrid(im1_name, im2_name, sig1, sig2):
	# high sf
	im1 = plt.imread(im1_name)/255.

	# low sf
	im2 = plt.imread(im2_name)/255.

	# Next align images (this code is provided, but may be improved)
	im1_aligned, im2_aligned = align_images(im1, im2)

	im1_aligned = rgb2gray(im1_aligned)
	im2_aligned = rgb2gray(im2_aligned)

	orig = scipy.ndimage.filters.gaussian_filter(im1, 1)
	low_pass = scipy.ndimage.filters.gaussian_filter(im1, 5)
	high_pass = orig - low_pass
	final = low_pass + high_pass

	sigma1 = sig1
	sigma2 = sig2
	hybrid = hybrid_image(im1_aligned, im2_aligned, sigma1, sigma2)

	plt.imshow(hybrid, cmap="Greys_r")
	plt.show()
Exemplo n.º 10
0
import matplotlib.pyplot as plt
from align_image_code import align_images

# First load images

# high sf
im1 = plt.imread('data/DerekPicture.jpg') / 255.

# low sf
im2 = plt.imread('data/nutmeg.jpg') / 255

# Next align images (this code is provided, but may be improved)
im1_aligned, im2_aligned = align_images(im1, im2)

## You will provide the code below. Sigma1 and sigma2 are arbitrary
## cutoff values for the high and low frequencies

sigma1 = 2
sigma2 = 2
# hybrid = hybrid_image(im1, im2, sigma1, sigma2)

# plt.imshow(hybrid)
# plt.show

## Compute and display Gaussian and Laplacian Pyramids
## You also need to supply this function
N = 5  # suggested number of pyramid levels (your choice)
# pyramids(hybrid, N)
Exemplo n.º 11
0
    im = plt.imread(file)
    img3 = laplacian_filter(im, 10, 4.0)
    plt.imshow(img3)
    plt.show()

    skio.imsave("part0_unsharp_builtin.jpg", img2)
    skio.imsave("part0_unsharp_coded.jpg", img3)

# high sf
if part1:
    im1 = plt.imread("./sup2.jpg") / 255.0
    # plt.imshow(gray, cmap = plt.get_cmap('gray'))
    # low sf
    im2 = plt.imread("./darrell.jpg") / 255.0
    # Next align images (this code is provided, but may be improved)
    im1_aligned, im2_aligned = align_images(im1, im2)
    if debug:
        plt.imshow(im1_aligned)
        plt.figure()
        plt.imshow(im2_aligned)
        plt.show()

    manual = True
    if manual:
        sigma1 = 1.5
        filter_n = 5
        G_HPF = np.zeros([filter_n, filter_n])
        for x in range(filter_n):
            for y in range(filter_n):
                weight = 1.0 / (2.0 * np.pi * pow(sigma1, 2))
                exp_weight = -(pow((x - filter_n // 2), 2) + pow((y - filter_n // 2), 2)) / (2.0 * pow(sigma1, 2))
Exemplo n.º 12
0
    path = BASE_DIR + '/%s.jpg' % name
    cv2.imwrite(path, img)


if __name__ == '__main__':
    from settings import BASE_DIR
    from align_image_code import align_images
    import matplotlib.pyplot as plt
    from base_service import *
    #
    im1 = plt.imread(BASE_DIR + '/img/man.jpg')
    print im1.shape
    #
    im2 = plt.imread(BASE_DIR + '/img/cat.jpg')

    re2, re1 = align_images(im2, im1)
    print re1.shape
    save_plt_img(re1, "img", "align1")
    save_plt_img(re2, "img", "align2")
    plt.close()

    a1 = read_cv2_img("align1")
    a2 = read_cv2_img("align2")
    print a1.shape
    hig = high_pass_filter(a2, 15)
    low = low_pass_filter(a1, 15)
    re = hybrid_img(hig, low)
    save_photo(re, "result")
    cv2.imshow("result", re)
    # save_plt_img(re, "img", "result")
    cv2.waitKey(0)
Exemplo n.º 13
0
def hybrid():

    # Read Images
    input_image_1 = skio.imread(INPUT_IMAGES_NAME[0])
    input_image_2 = skio.imread(INPUT_IMAGES_NAME[1])

    #----------------------------------------------------------------------

    # Transform to float
    image_1 = img_as_float(input_image_1)
    image_2 = img_as_float(input_image_2)

    #----------------------------------------------------------------------

    # Align images using provided functiom
    image_aligned_1, image_aligned_2 = align_images(image_1, image_2)

    #----------------------------------------------------------------------

    # Divide image in color channels
    color_channels_1 = np.array([
        image_aligned_1[:, :, 0], image_aligned_1[:, :, 1],
        image_aligned_1[:, :, 2]
    ])
    color_channels_2 = np.array([
        image_aligned_2[:, :, 0], image_aligned_2[:, :, 1],
        image_aligned_2[:, :, 2]
    ])

    #----------------------------------------------------------------------

    # For each channel, do the same process as in a gray image
    result_channels = []
    for c1, c2 in zip(color_channels_1, color_channels_2):

        #---------------------------------------------------------------

        # Apply the Laplacian Filter (high pass filter) to the first image by subtracting the Gaussian Filtered Image from the original
        low_frequency_c1 = filter.gaussian_filter(c1,
                                                  HIGH_FREQUENCY_BLUR_RATIO)
        high_frequency_c1 = c1 - low_frequency_c1

        # Apply the Gaussian Filter (low pass filter) to the second image
        low_frequency_c2 = filter.gaussian_filter(c2, LOW_FREQUENCY_BLUR_RATIO)

        #---------------------------------------------------------------

        # Add pictures together
        result = np.clip(high_frequency_c1 + low_frequency_c2, 0.0, 1.0)

        #---------------------------------------------------------------

        # Save the processed channel
        result_channels.append(result)

#----------------------------------------------------------------------

# Colapse every channel into the final colored image
    output_image = np.dstack(result_channels)

    # Show final image
    skio.imshow(output_image)
    skio.show()
Exemplo n.º 14
0
def align(im1, im2):
    im1_aligned, im2_aligned = align_images(im1, im2)
    # plt.imshow(im1_aligned * 0.5 + im2_aligned * 0.5)
    # plt.show()
    return im1_aligned, im2_aligned