Exemplo n.º 1
0
def distribute_lesions(g,
                       nb_lesions=1,
                       disease_model='septoria_exchanging_rings',
                       initiation_model=RandomInoculation(),
                       label="LeafElement"):
    """ Distribute lesions on the MTG.
    
    Parameters
    ----------
    g: MTG
        MTG representing the canopy
    nb_lesions: int
        Number of lesions to distribute on the MTG
    disease_model: model
        Type of model to compute disease lesion development
    initiation_model: model
        Model that sets the position of each DU/lesion in stock on g
        Requires a method named 'allocate' (see doc)
        
    Returns
    -------
    g: MTG
        Updated MTG with dispersal units or lesions
    """
    distribute_disease(g,
                       fungal_object='lesion',
                       nb_objects=nb_lesions,
                       disease_model=disease_model,
                       initiation_model=initiation_model,
                       label=label)
Exemplo n.º 2
0
def distribute_dispersal_units(g, nb_dus=1, model="SeptoriaWithRings"):
    """ Distribute new dispersal units on g. 
    
    Call the method 'initiate' from the protocol with dispersal units.
    
    Parameters
    ----------
    g: MTG
        MTG representing the canopy
    nb_dus: int
        Number of dispersal units to put on g
        
    Returns
    -------
    g: MTG
        Updated MTG representing the canopy
    """
    fungus = septoria(model=model)
    fungus = septoria(model=model)
    SeptoriaDU.fungus = fungus
    dispersal_units = ([SeptoriaDU(nb_spores=rd.randint(1,100), status='emitted')
                        for i in range(nb_dus)])

    inoculator = RandomInoculation()
    initiate(g, dispersal_units, inoculator)
    
    return g
Exemplo n.º 3
0
def test_initiate(model="septoria_exchanging_rings"):
    """ Check if 'initiate' from 'protocol.py' deposits dispersal units on the MTG.

    Generate a wheat MTG and distribute dispersal units randomly on leaf elements.
    Check that all the stock of DU is distributed in properties of leaf elements.

    Parameters
    ----------
    model: model
        One version of the model of septoria lesion among:
        'septoria_exchanging_rings', 'septoria_with_rings', 'septoria_continuous'
    """
    # Generate a wheat MTG
    g = adel_one_leaf_element()
    set_properties(g,
                   label='LeafElement',
                   area=5.,
                   green_area=5.,
                   position_senescence=None)

    # Generate a stock of septoria dispersal units and distribute it on g
    nb_initial_dus = 100
    distribute_dispersal_units(g,
                               nb_dus=nb_initial_dus,
                               disease_model=model,
                               initiation_model=RandomInoculation(),
                               label='LeafElement')

    # Check that all the DUs that were in the stock are now instantiated
    # on leaf elements :
    dispersal_units = g.property('dispersal_units')
    nb_dus_on_leaves = sum(len(dus) for dus in dispersal_units.itervalues())
    assert nb_dus_on_leaves == nb_initial_dus
Exemplo n.º 4
0
def distribute_lesions(g, nb_lesions=1, model="SeptoriaWithRings"):
    """ Distribute new lesions on g. 
    
    Call the method 'initiate' from the protocol with lesions.
    
    Parameters
    ----------
    g: MTG
        MTG representing the canopy
    nb_lesions: int
        Number of lesions to put on g
    model: str
        Type of model of septoria lesion
        
    Returns
    -------
    g: MTG
        Updated MTG representing the canopy
    """
    fungus = septoria(model=model)
    models = ({"SeptoriaExchangingRings":SeptoriaExchangingRings,
                    "SeptoriaWithRings":SeptoriaWithRings, 
                    "ContinuousSeptoria":ContinuousSeptoria})
    if model in models:
        models[model].fungus = fungus
        lesions = [models[model](nb_spores=rd.randint(1,100)) for i in range(nb_lesions)]

    inoculator = RandomInoculation()
    initiate(g, lesions, inoculator)
    
    return g
Exemplo n.º 5
0
def distribute_lesions(g,
                       nb_objects=1,
                       disease_model='powdery_mildew',
                       initiation_model=RandomInoculation()):
    """ Use the method 'distribute_disease' to distribute lesions on g. 
    
    Parameters
    ----------
    g: MTG
        MTG representing the canopy
    nb_objects: int
        Number of dispersal units or lesions to distribute on the MTG
    disease_model: model
        Type of model to compute disease lesion development
    initiation_model: model
        Model that sets the position of each DU/lesion in stock on g
        Requires a method named 'allocate' (see doc)
        
    Returns
    -------
    g: MTG
        Updated MTG with lesions
    """
    distribute_disease(g,
                       fungal_object='lesion',
                       nb_objects=nb_objects,
                       disease_model=disease_model,
                       initiation_model=initiation_model)
Exemplo n.º 6
0
def test_update():
    """ Check if 'update' from 'protocol.py' provokes the growth of a lesion instantiated on the MTG.

    """
    g = adel_mtg2()
    set_properties(g, area=20., green_area=20.)
    septoria = plugin_septoria()
    SeptoriaDU = septoria.dispersal_unit()
    stock = [SeptoriaDU(nb_spores=random.randint(1,100), status='emitted') for i in range(100)]
    inoculator = RandomInoculation()
    initiate(g, stock, inoculator)
    
    controler = NoPriorityGrowthControl()
    
    dt = 1
    nb_steps = 750
    nb_les_inc = numpy.zeros(nb_steps)
    # nb_les_chlo = numpy.array([0. for i in range(nb_steps)])
    # nb_les_nec = numpy.array([0. for i in range(nb_steps)])
    nb_les_spo = numpy.zeros(nb_steps)
    # nb_les_empty = numpy.array([0. for i in range(nb_steps)])
    nb_les = 0.
    for i in range(nb_steps):

        ts = time.clock()
        #print('time step %d' % i)
        
        update_climate_all(g)
            
        #grow(g)
        update_healthy_area(g, label = 'LeafElement')
        infect(g, dt)
        update(g,dt, growth_control_model=controler)
        # control_growth(g, controler)
        
        # Count of lesions :
        nb_les_inc[i] = count_lesions_in_state(g, state = 0)
        # nb_les_chlo[i] = count_lesions_in_state(g, state = 1)
        # nb_les_nec[i] = count_lesions_in_state(g, state = 2)
        nb_les_spo[i] = count_lesions_in_state(g, state = 3)
        # nb_les_empty[i] = count_lesions_in_state(g, state = 4)

        te = time.clock()
        #print "time ", i, " : ", te-ts
                
    # Display results
    plot(nb_les_inc)
    plot(nb_les_spo)
    ylabel('Nombre de lesions dans cet etat sur le MTG')
    xlabel('Pas de temps de simulation')
    ylim([0, 120])
    
    # displayer = DisplayLesions()
    # displayer.print_all_lesions(g)
  
    # plot_lesions(g)
    return g
Exemplo n.º 7
0
def test_growth_control():
    g = adel_mtg()
    set_initial_properties_g(g, surface_leaf_element=5.)
    fungus = septoria(); SeptoriaDU.fungus = fungus
    stock = [SeptoriaDU(nb_spores=random.randint(1,100), status='emitted') for i in range(1000)]
    inoculator = RandomInoculation()
    initiate(g, stock, inoculator)
   
    controler = NoPriorityGrowthControl()
    
    # compute infection:
    nb_steps_inf = 11  
    for i in range(nb_steps_inf):
        print('time step %d' % i)       
        update_climate_all(g)           
        #grow(g)
        infect(g, dt=1.)
    
    lesions = g.property('lesions')
    if lesions:
        # compute competition
        dt = 50
        nb_steps = 500
        dates = range(0,nb_steps,dt)
        sum_surface = numpy.array([0. for i in dates])
        for i in dates:
            print('time step %d' % i)       
            update_climate_all(g)
                
            #grow(g)      
            update(g,dt, growth_control_model=controler)
            # control_growth(g, controler)
            
            vids = [v for v in g if g.label(v).startswith("LeafElement")]
            count_surf = 0.
            for v in vids:
                leaf = g.node(v)
                count_surf += leaf.healthy_surface
                # if 'lesions' in leaf.properties():
                    # count_surf += sum([l.surface for l in leaf.lesions])
                    # print('leaf element %d - ' % v + 'Healthy surface : %f'  % leaf.healthy_surface) 
            
            index = i/dt
            sum_surface[index] = count_surf
            
        # Display results:
        plot(dates, sum_surface)
        ylabel('Surface saine totale sur le MTG')
        xlabel('Pas de temps de simulation')
        show()
        
    return g
Exemplo n.º 8
0
def test_initiate():
    """ Check if 'initiate' from 'protocol.py' deposits dispersal units on the MTG.
    
    """
    g = adel_mtg2()
    set_initial_properties_g(g, surface_leaf_element=5.)
    fungus = septoria()
    SeptoriaDU.fungus = fungus
    stock = [SeptoriaDU(nb_spores=random.randint(1,100), status='emitted') for i in range(100)]
    inoculator = RandomInoculation()
    initiate(g, stock, inoculator)
    plot_DU(g)
    return g
Exemplo n.º 9
0
def test_washing():
    """ Check if 'washing' from 'protocol.py' washes dispersal units out of the MTG.

    """
    g = adel_mtg()
    set_initial_properties_g(g, surface_leaf_element=5.)
    fungus = septoria(); SeptoriaDU.fungus = fungus
    stock = [SeptoriaDU(nb_spores=random.randint(1,100), status='emitted') for i in range(100)]
    inoculator = RandomInoculation()
    initiate(g, stock, inoculator)
    
    washor = RapillyWashing()
    
    dt = 1
    nb_steps = 100
    nb_DU = numpy.array([0. for i in range(nb_steps)])
    for i in range(nb_steps):
        # Update climate and force rain occurences       
        if i>2 and i%5 == 0 or (i-1)%5 == 0:
            global_rain_intensity = 4.
        else:
            global_rain_intensity = 0.
        update_climate_all(g, wetness=True, temp=22., rain_intensity = global_rain_intensity*0.75)
                
        # Compute washing 
        # (needs to be done even if no rain to update variables in the washing model)
        wash(g, washor, global_rain_intensity, DU_status='deposited')
           
        # Count of DU :
        nb_DU[i] = count_DU(g)

        # Display results
        if global_rain_intensity != 0. :
            print('\n')
            print('   _ _ _')
            print('  (pluie)')
            print(' (_ _ _ _)')
            print('   |  |')
            print('    |  | ')
            print('\n')
            print('Sur le MTG il y a %d DU actives en tout' % nb_DU[i])

    # Display results
    plot(nb_DU)
    ylim([0, 120])
    ylabel('Nombre de DU sur le MTG')
    xlabel('Pas de temps de simulation')
    show()
    
    return g
Exemplo n.º 10
0
def test_disperse():
    """ Check if 'disperse' from 'protocol.py' disperse new dispersal units on the MTG.

    """
    g = adel_mtg2()
    set_initial_properties_g(g, surface_leaf_element=5.)
    fungus = septoria(); SeptoriaDU.fungus = fungus
    stock = [SeptoriaDU(nb_spores=random.randint(1,100), status='emitted') for i in range(10)]
    inoculator = RandomInoculation()
    initiate(g, stock, inoculator)
    
    controler = NoPriorityGrowthControl()
    
    dt = 1
    nb_steps = 750
    nb_les = numpy.array([0 for i in range(nb_steps)])
    for i in range(nb_steps):
        print('time step %d' % i)
        
        # Update climate and force rain occurences       
        if i>400 and i%100 == 0:
            global_rain_intensity = 4.
        else:
            global_rain_intensity = 0.
        update_climate_all(g, wetness=True, temp=22., rain_intensity = global_rain_intensity*0.75)
        
        # grow(g)
        infect(g, dt)
        update(g,dt, growth_control_model=controler)
        # control_growth(g, controler)
        
        if global_rain_intensity != 0.:
            scene = plot3d(g)
            disperse(g, scene, dispersor(), "Septoria")
               
        # Count of lesions :
        nb_les[i] = count_lesions(g)
        
        # Display results
        plot_lesions(g)
        
        # displayer = DisplayLesions()
        # displayer.print_new_lesions(g)
    
    plot(nb_les)
    ylabel('Nombre de lesions sur le MTG')
    xlabel('Pas de temps de simulation')
    show()
    
    return g
Exemplo n.º 11
0
def test_all(model="SeptoriaExchangingRings"):
    # Generate a MTG with required properties :
    g = adel_mtg2()
    set_initial_properties_g(g, surface_leaf_element=5.)
    
    # Deposit first dispersal units on the MTG :
    fungus = septoria(model=model); SeptoriaDU.fungus = fungus
    stock = [SeptoriaDU(nb_spores=rd.randint(1,100), status='emitted') for i in range(10)]
    inoculator = RandomInoculation()
    initiate(g, stock, inoculator)
    
    # Call the models that will be used during the simulation :
    controler = NoPriorityGrowthControl()
    washor = RapillyWashing()
    dispersor = RandomDispersal()
    position_checker = BiotrophDUProbaModel()
   
    # Prepare the simulation loop
    dt = 1
    nb_steps = 750
    nb_max_les = 0.
    nb_les = 0.
    for i in range(0,nb_steps,dt):
        # Update climate and force rain occurences       
        if i>400 and i%100 == 0:
            global_rain_intensity = 4.
        else:
            global_rain_intensity = 0.
        update_climate_all(g, wetness=True, temp=22., rain_intensity = global_rain_intensity*0.75)
        
        # grow(g)
        infect(g, dt, position_checker)
        update(g,dt, growth_control_model=controler)
        
        if global_rain_intensity != 0.:
            scene = plot3d(g)
            disperse(g, scene, dispersor, "Septoria")            
            wash(g, washor, global_rain_intensity, DU_status='deposited')
        
        # Count how many lesions are simultaneously active on the MTG at maximum charge
        nb_les = count_lesions(g)
        if nb_les > nb_max_les:
            nb_max_les = nb_les
    
    print('max number lesions %d' % nb_max_les)
    
    return g
Exemplo n.º 12
0
def test_infect(model="septoria_exchanging_rings"):
    """ Check if 'infect' from 'protocol.py' leads to infection by dispersal units
        on the MTG.

    Generate a wheat MTG and distribute dispersal units randomly on leaf elements.
    Run a short loop to compute infection. Check that all the stock of DU caused
    appearance of a lesion on leaf elements.

    Parameters
    ----------
    model: model
        One version of the model of septoria lesion among:
        'septoria_exchanging_rings', 'septoria_with_rings', 'septoria_continuous'
    """
    # Generate a wheat MTG
    g = adel_one_leaf_element()
    set_properties(g,
                   label='LeafElement',
                   area=5.,
                   green_area=5.,
                   healthy_area=5.,
                   position_senescence=None)

    # Generate a stock of septoria dispersal units and distribute it on g
    nb_dus = 100
    distribute_dispersal_units(g,
                               nb_dus=nb_dus,
                               disease_model=model,
                               initiation_model=RandomInoculation(),
                               label='LeafElement')

    # Loop of simulation
    septo_timing = TimeControl(delay=1, steps=10)
    timer = TimeControler(disease=septo_timing)
    for t in timer:
        # Offer good conditions for at least 10h
        set_properties(g, label='LeafElement', wetness=True, temp=20.)

        # Infect
        infect(g, t['disease'].dt, label='LeafElement')

    # Check that all the DUs that were in the stock are now lesions on leaf elements
    lesions = g.property('lesions')
    nb_lesions_on_leaves = sum(len(l) for l in lesions.itervalues())
    assert nb_lesions_on_leaves == nb_dus
Exemplo n.º 13
0
def distribute_disease(g,
                       fungal_object='lesion',
                       nb_objects=1,
                       disease_model='powdery_mildew',
                       initiation_model=RandomInoculation(),
                       label="LeafElement"):
    """ Distribute fungal objects on the MTG.
    
    Parameters
    ----------
    g: MTG
        MTG representing the canopy
    fungal_object: str
        Type of fungal object. Choose between : 'dispersal_unit' or 'lesion'
    nb_objects: int
        Number of dispersal units or lesions to distribute on the MTG
    disease_model: model
        Type of model to compute disease lesion development
    initiation_model: model
        Model that sets the position of each DU/lesion in stock on g
        Requires a method named 'allocate' (see doc)
        
    Returns
    -------
    g: MTG
        Updated MTG with dispersal units or lesions
    """
    # Create a pool of dispersal units (DU)
    diseases = plugin.discover('alep.disease')
    disease = diseases[disease_model].load()
    if fungal_object == 'dispersal_unit':
        objects = generate_stock_du(nb_dus=nb_objects, disease=disease)
    elif fungal_object == 'lesion':
        objects = generate_stock_lesions(nb_lesions=nb_objects,
                                         disease=disease)
    else:
        raise Exception('fungal object is not valid: choose between '
                        'dispersal_unit'
                        ' or '
                        'lesion')
    # Distribute the DU
    initiate(g, objects, initiation_model, label=label)
    return g
Exemplo n.º 14
0
def test_infect():
    """ Check if 'infect' from 'protocol.py' leads to infection by dispersal units on the MTG.

    """
    g = adel_mtg2()
    set_initial_properties_g(g, surface_leaf_element=5.)
    fungus = septoria(); SeptoriaDU.fungus = fungus
    stock = [SeptoriaDU(nb_spores=random.randint(1,100), status='emitted') for i in range(100)]
    inoculator = RandomInoculation()
    initiate(g, stock, inoculator)
    
    dt = 1
    nb_steps = 100
    plot_DU(g)
    for i in range(nb_steps):
        update_climate_all(g)
        infect(g, dt)
            
    plot_lesions(g)
    return g
Exemplo n.º 15
0
def run_simulation_septoria():
    # Initialization #####################################################
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Choose dates of simulation and initialize the value of date
    start_date = datetime(2000, 10, 1, 1, 00, 00)
    end_date = datetime(2001, 07, 01, 00, 00)
    date = None

    # Read weather and adapt it to septoria (add wetness)
    weather = get_septoria_weather(data_file='meteo01.csv')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0.,
                                                     length=0.1,
                                                     width=0.2,
                                                     sowing_density=150,
                                                     plant_density=150,
                                                     inter_row=0.12)

    # Initialize the models for septoria
    septoria = plugin_septoria()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission()
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    nb_steps = len(pandas.date_range(start_date, end_date, freq='H'))
    weather_timing = TimeControl(delay=1, steps=nb_steps)
    wheat_timing = TimeControl(delay=24,
                               steps=nb_steps,
                               model=wheat,
                               weather=weather,
                               start_date=start_date)
    septo_timing = TimeControl(delay=1, steps=nb_steps)
    timer = TimeControler(weather=weather_timing,
                          wheat=wheat_timing,
                          disease=septo_timing)

    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    # for rank in range(1,3):
    # inspectors[rank] = LeafInspector(g, blade_id=find_blade_id(g, leaf_rank = rank, only_visible=False))
    inspectors[1] = LeafInspector(g, blade_id=96)
    inspectors[2] = LeafInspector(g, blade_id=88)
    inspectors[3] = LeafInspector(g, blade_id=80)
    inspectors[4] = LeafInspector(g, blade_id=72)
    dates = []
    # Simulation #########################################################
    for t in timer:
        # print(timer.numiter)
        # Update date
        date = (weather.next_date(t['weather'].dt, date)
                if date != None else start_date)
        dates.append(date)
        print(date)

        # Get weather for date and add it as properties on leaves
        _, data = weather.get_weather(t['weather'].dt, date)
        set_properties(g,
                       label='LeafElement',
                       wetness=data.wetness.values[0],
                       temp=data.temperature_air.values[0],
                       rain_intensity=data.rain.values[0],
                       rain_duration=data.rain_duration.values[0],
                       relative_humidity=data.relative_humidity.values[0],
                       wind_speed=data.wind_speed.values[0])

        # Grow wheat canopy
        grow_canopy(g, wheat, t['wheat'])
        update_healthy_area(g, label='LeafElement')
        # Note : The position of senescence goes back to its initial value after
        # a while for undetermined reason
        # --> temporary hack for keeping senescence position low when it is over
        positions = g.property('position_senescence')
        are_green = g.property('is_green')
        leaves = get_leaves(g, label='LeafElement')
        vids = [leaf for leaf in leaves if leaf in g.property('geometry')]
        positions.update({
            vid: (0 if positions[vid] == 1 and not are_green[vid] else
                  positions[vid])
            for vid in vids
        })

        # Develop disease
        if data.dispersal_event.values[
                0] == True and timer.numiter >= 1000 and timer.numiter <= 2000:
            # Refill pool of initial inoculum to simulate differed availability
            dispersal_units = generate_stock_du(nb_dus=10, disease=septoria)
            initiate(g, dispersal_units, inoculator)

        infect(g, t['disease'].dt, infection_controler, label='LeafElement')
        update(g,
               t['disease'].dt,
               growth_controler,
               sen_model,
               label='LeafElement')
        for inspector in inspectors.itervalues():
            inspector.compute_severity(g)
            inspector.update_disease_area(g)
            inspector.update_green_area(g)
            inspector.update_area(g)
        if data.dispersal_event.values[0] == True:
            disperse(g, emitter, transporter, "septoria", label='LeafElement')
            wash(g, washor, data.rain.values[0], label='LeafElement')

        # if timer.numiter%24 == 0:
        # update_plot(g)

    # Tout stocker dans un dataframe avec les dates en index
    outputs = {}
    for id, inspector in inspectors.iteritems():
        outs = {
            'severity': inspectors[id].severity,
            'disease_area': inspectors[id].leaf_disease_area,
            'green_area': inspectors[id].leaf_green_area,
            'total_area': inspectors[id].leaf_area
        }
        outputs[id] = pandas.DataFrame(data=outs, index=dates)
    return outputs
Exemplo n.º 16
0
def test_senescence(status='CHLOROTIC', model="septoria_exchanging_rings"):
    """ Check if 'senescence' from 'protocol.py' compute the effects of
    senescence on the lesions of the MTG

    Generate a wheat MTG and distribute 2 DUs with know position on leaf elements.
    Make them grow into lesions until chosen status, then stop updating them.

    Set senescence on first lesion. Check that the activity of this lesion is reduced
    by senescence comparatively to the other lesion, but not the stock of spores.

    Parameters
    ----------
    status: str: 'CHLOROTIC' or 'SPORULATING'
        Status of the lesion when touched by senescence.
    model: model
        One version of the model of septoria lesion among:
        'septoria_exchanging_rings', 'septoria_with_rings', 'septoria_continuous'
    """
    # Generate a wheat MTG
    g = adel_one_leaf_element()
    set_properties(g,
                   label='LeafElement',
                   area=5.,
                   green_area=5.,
                   healthy_area=5.,
                   position_senescence=None)

    # Generate a stock of septoria dispersal units and distribute it on g
    distribute_lesions(g,
                       nb_lesions=2,
                       disease_model=model,
                       initiation_model=RandomInoculation(),
                       label='LeafElement')

    # create a flat list of lesions and fix their position
    lesions = g.property('lesions')
    les = sum(lesions.values(), [])
    les[0].position = [0.3, 0]
    les[1].position = [0.7, 0]
    # Call a models growth control and senescence
    controler = NoPriorityGrowthControl()
    senescence_model = WheatSeptoriaPositionedSenescence(g)

    # Test if lesion is CHLOROTIC when senescence occur
    if status == "CHLOROTIC":
        if model != "septoria_exchanging_rings":
            dt = 300
            set_properties(g,
                           label='LeafElement',
                           wetness=True,
                           temp=22.,
                           rain_intensity=0.)
            # Simulation to obtain a lesion in chosen status
            update(g,
                   dt=dt,
                   growth_control_model=controler,
                   senescence_model=senescence_model)
        else:
            dt = 1
            nb_steps = 300
            for i in range(0, nb_steps, dt):
                # Simulation to obtain a lesion in chosen status
                set_properties(g,
                               label='LeafElement',
                               wetness=True,
                               temp=22.,
                               rain_intensity=0.)
                update(g,
                       dt=dt,
                       growth_control_model=controler,
                       senescence_model=senescence_model)

        # 1. Compare lesions before senescence
        # Compute variables of interest
        l = g.property('lesions')
        l = sum(l.values(), [])
        lesion1 = l[0]
        lesion1.compute_all_surfaces()
        lesion2 = l[1]
        lesion2.compute_all_surfaces()
        # Compare the two lesions
        assert lesion1.status == lesion2.status == 1
        assert lesion1.surface_alive == lesion2.surface_alive
        assert lesion1.surface_dead == lesion2.surface_dead == 0.

        # 2. Set senescence, update lesion so they know they
        #    are on a senescent tissue and compare lesions
        set_properties(g, label='LeafElement', position_senescence=0.6)
        update(g,
               dt=0.,
               growth_control_model=controler,
               senescence_model=senescence_model)

        # Compute variables of interest
        l = g.property('lesions')
        l = sum(l.values(), [])
        lesion1 = l[0]
        lesion1.compute_all_surfaces()
        lesion2 = l[1]
        lesion2.compute_all_surfaces()
        # Compare the two lesions
        assert lesion2.growth_is_active == False
        assert lesion2.is_active == False
        assert lesion1.surface_alive > lesion2.surface_alive
        assert lesion2.surface_alive == 0.
        assert lesion1.surface_dead == 0.
        assert lesion2.surface_dead > 0.
        assert lesion2.surface == lesion2.surface_dead

    # Test if lesion is SPORULATING when senescence occur
    elif status == "SPORULATING":
        if model != "septoria_exchanging_rings":
            dt = 400
            set_properties(g,
                           label='LeafElement',
                           wetness=True,
                           temp=22.,
                           rain_intensity=0.)
            # Simulation to obtain a lesion in chosen status
            update(g,
                   dt=dt,
                   growth_control_model=controler,
                   senescence_model=senescence_model)
        else:
            dt = 1
            nb_steps = 400
            for i in range(0, nb_steps, dt):
                # Simulation to obtain a lesion in chosen status
                set_properties(g,
                               label='LeafElement',
                               wetness=True,
                               temp=22.,
                               rain_intensity=0.)
                update(g,
                       dt=dt,
                       growth_control_model=controler,
                       senescence_model=senescence_model)

        # 1. Compare lesions before senescence
        # Compute variables of interest
        l = g.property('lesions')
        l = sum(l.values(), [])
        lesion1 = l[0]
        lesion1.compute_all_surfaces()
        lesion2 = l[1]
        lesion2.compute_all_surfaces()
        # Compare the two lesions
        assert lesion1.status == lesion2.status == 3
        assert lesion1.surface_alive == lesion2.surface_alive
        assert lesion1.surface_dead == lesion2.surface_dead == 0.
        assert lesion1.stock_spores == lesion2.stock_spores > 0.

        # 2. Set senescence, update lesion so they know they
        #    are on a senescent tissue and compare lesions
        set_properties(g, label='LeafElement', position_senescence=0.6)
        update(g,
               dt=0.,
               growth_control_model=controler,
               senescence_model=senescence_model)

        # Compute variables of interest
        l = g.property('lesions')
        l = sum(l.values(), [])
        lesion1 = l[0]
        lesion1.compute_all_surfaces()
        lesion2 = l[1]
        lesion2.compute_all_surfaces()
        # Compare the two lesions
        assert lesion2.growth_is_active == False
        assert lesion2.is_active == True
        assert lesion1.surface_alive > lesion2.surface_alive
        assert lesion2.surface_alive > 0.
        assert lesion1.surface_dead == 0.
        assert lesion2.surface_dead > 0.
        assert lesion2.surface > lesion2.surface_dead
        assert lesion1.stock_spores == lesion2.stock_spores > 0.


# if __name__ == '__main__':
# g=test_growth_control()
Exemplo n.º 17
0
def test_disperse(model="septoria_exchanging_rings"):
    """ Check if 'disperse' from 'protocol.py' disperse new
        dispersal units on the MTG.

    Generate a wheat MTG and distribute lesions randomly on leaf elements.
    Run a loop to compute infection and update. Create artificial rains in the loop
    on a regular basis. Check that the number of lesions on the MTG increases.

    Parameters
    ----------
    model: model
        One version of the model of septoria lesion among:
        'septoria_exchanging_rings', 'septoria_with_rings', 'septoria_continuous'
    """
    # Generate a wheat MTG
    g = adel_one_leaf()
    set_properties(g,
                   label='LeafElement',
                   area=5.,
                   green_area=5.,
                   healthy_area=5.,
                   position_senescence=None)

    # Generate a stock of septoria dispersal units and distribute it on g
    distribute_lesions(g,
                       nb_lesions=1,
                       disease_model=model,
                       initiation_model=RandomInoculation(),
                       label='LeafElement')

    # Call models of growth control and dispersal
    controler = NoPriorityGrowthControl()
    emitter = SeptoriaRainEmission()
    transporter = Septo3DSplash()

    # Loop of simulation
    septo_timing = TimeControl(delay=1, steps=1000)
    timer = TimeControler(disease=septo_timing)
    for t in timer:
        # Update climate and force rain occurences
        if timer.numiter > 400 and timer.numiter % 100 == 0:
            rain_intensity = 3.
        else:
            rain_intensity = 0.
        set_properties(g,
                       label='LeafElement',
                       wetness=True,
                       temp=22.,
                       relative_humidity=85.,
                       rain_intensity=rain_intensity)

        # Update
        update(g,
               t['disease'].dt,
               controler,
               senescence_model=None,
               label='LeafElement')

        # Force rain occurences
        if rain_intensity != 0:
            # Count objects on the MTG before dispersal event
            lesions = g.property('lesions')
            dispersal_units = g.property('dispersal_units')
            total_stock_spores_before = sum(l.stock_spores
                                            for les in lesions.values()
                                            for l in les)
            total_DUs_before = sum(
                len(du) for du in dispersal_units.itervalues())

            # Dispersal event
            disperse(g, dispersor, "septoria", label='LeafElement')

            # Check that stocks of spores on lesions decrease
            if total_stock_spores_before != 0.:
                total_stock_spores_after = sum(l.stock_spores
                                               for les in lesions.values()
                                               for l in les)
                # print(total_stock_spores_after)
                assert total_stock_spores_after < total_stock_spores_before

                # Check that new DUs are deposited on the MTG
                total_DUs_after = sum(
                    len(du) for du in dispersal_units.itervalues())
                if total_DUs_after != 0:
                    assert total_DUs_after >= total_DUs_before
Exemplo n.º 18
0
def inoculator():            
    """ Instantiate the class RandomInoculation().
    
    """
    inoculator = RandomInoculation()
    return inoculator
Exemplo n.º 19
0
def test_growth_control(model="septoria_exchanging_rings"):
    """ Check if 'control_growth' from 'protocol.py' limits the lesion growth
        up to available surface on the leaf.

    Generate a wheat MTG and deposit sumultaneously 1000 lesions on a leaf element.
    Run a loop to compute update and growth. Check that the healthy surface of the
    leaf decreases up to 0. Check that lesion growth is stopped after this point.

    Parameters
    ----------
    model: model
        One version of the model of septoria lesion among:
        'septoria_exchanging_rings', 'septoria_with_rings', 'septoria_continuous'
    """
    # Generate a wheat MTG
    g = adel_one_leaf()
    initial_leaf_area = 5.
    set_properties(g,
                   label='LeafElement',
                   area=initial_leaf_area,
                   green_area=initial_leaf_area,
                   healthy_area=initial_leaf_area,
                   position_senescence=None)
    labels = g.property('label')
    total_initial_area = sum(
        g.node(vid).area for vid in labels.iterkeys()
        if labels[vid].startswith('LeafElement'))

    # Generate a stock of septoria dispersal units and distribute it on g
    distribute_lesions(g,
                       nb_lesions=1000,
                       disease_model=model,
                       initiation_model=RandomInoculation(),
                       label='LeafElement')

    # Call model of growth control
    controler = NoPriorityGrowthControl()

    # Initiation of healthy area the day before
    healthy_area_before = []

    # Loop of simulation
    septo_timing = TimeControl(delay=1, steps=100)
    timer = TimeControler(disease=septo_timing)
    for t in timer:
        # print(timer.numiter)
        # After infection, the lesion 'age_dday' will be added 1 DD by time step
        # Note : base temperature for septoria = -2 degrees celsius
        set_properties(g,
                       label='LeafElement',
                       wetness=True,
                       temp=22.,
                       rain_intensity=0.)

        # Update
        update(g,
               t['disease'].dt,
               controler,
               senescence_model=None,
               label='LeafElement')
        update_healthy_area(g, label='LeafElement')

        # Find the value of interest on the MTG (total healthy area of the leaf)
        lesions = g.property('lesions')
        healthy_areas = g.property('healthy_area')

        bids = (v for v, l in labels.iteritems() if l.startswith('blade'))
        for blade in bids:
            leaf = [
                vid for vid in g.components(blade)
                if labels[vid].startswith('LeafElement')
            ]
            leaf_healthy_area = sum(healthy_areas[lf] for lf in leaf)
            print(leaf_healthy_area)

        # Check that healthy area + lesion surface = initial healthy surface
        if lesions:
            leaf_lesion_area = sum(l.surface for les in lesions.itervalues()
                                   for l in les)
            assert round(leaf_healthy_area, 6) + round(
                leaf_lesion_area, 6) == round(total_initial_area, 6)

        # Check that healthy area decreases after emergence of the first lesion
        if lesions and not healthy_area_before:
            # Emergence of the first lesion
            healthy_area_before.append(leaf_healthy_area)
        elif lesions and healthy_area_before[0] > 0.:
            # Check that healthy area decreases
            assert leaf_healthy_area < healthy_area_before
            # Update of 'healthy_area_before' for next step
            healthy_area_before[0] = leaf_healthy_area
        elif lesions and healthy_area_before[0] == 0.:
            # Check that healthy area stays null
            assert leaf_healthy_area == 0.
            # Update of 'healthy_surface_before' for next step
            healthy_area_before[0] = leaf_healthy_area
Exemplo n.º 20
0
def run_simulation():
    # Initialization #####################################################
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Read weather and adapt it to septoria (add wetness)
    meteo_path = shared_data(alinea.septo3d, 'meteo98-99.txt')
    weather = Weather(data_file=meteo_path)
    weather.check(varnames=['wetness'], models={'wetness': wetness_rapilly})
    seq = pandas.date_range(start="1998-10-01 01:00:00",
                            end="1999-07-01 01:00:00",
                            freq='H')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0.,
                                                     length=0.1,
                                                     width=0.2,
                                                     sowing_density=150,
                                                     plant_density=150,
                                                     inter_row=0.12,
                                                     seed=8)

    # Initialize the models for septoria
    # septoria = new_septoria(senescence_treshold=senescence_treshold)
    septoria = plugin_septoria()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission(domain_area=domain_area)
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    every_h = time_filter(seq, delay=1)
    every_24h = time_filter(seq, delay=24)
    every_rain = rain_filter(seq, weather)
    weather_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    wheat_timing = IterWithDelays(*time_control(seq, every_24h, weather.data))
    septo_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    rain_timing = IterWithDelays(*time_control(seq, every_rain, weather.data))

    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    # for rank in range(1,3):
    # inspectors[rank] = LeafInspector(g, blade_id=find_blade_id(g, leaf_rank = rank, only_visible=False))
    inspectors[1] = LeafInspector(g, blade_id=96)
    # inspectors[2] = LeafInspector(g, blade_id=88)
    # inspectors[3] = LeafInspector(g, blade_id=80)
    dates = []
    # Simulation #########################################################
    for i, controls in enumerate(
            zip(weather_timing, wheat_timing, septo_timing, rain_timing)):
        weather_eval, wheat_eval, septo_eval, rain_eval = controls

        # Update date
        date = weather_eval.value.index[0]
        dates.append(date)

        # Get weather for date and add it as properties on leaves
        if weather_eval:
            set_properties(
                g,
                label='LeafElement',
                temp=weather_eval.value.temperature_air[0],
                wetness=weather_eval.value.wetness[0],
                relative_humidity=weather_eval.value.relative_humidity[0],
                wind_speed=weather_eval.value.wind_speed[0])
        if rain_eval:
            set_properties(g,
                           label='LeafElement',
                           rain_intensity=rain_eval.value.rain.mean(),
                           rain_duration=len(rain_eval.value.rain)
                           if rain_eval.value.rain.sum() > 0 else 0.)

        # Grow wheat canopy
        if wheat_eval:
            print(date)
            g, _ = grow_canopy(g, wheat, wheat_eval.value)
            # Note : The position of senescence goes back to its initial value after
            # a while for undetermined reason
            # --> temporary hack for keeping senescence position low when it is over
            positions = g.property('position_senescence')
            are_green = g.property('is_green')
            areas = g.property('area')
            senesced_areas = g.property('senesced_area')
            leaves = get_leaves(g, label='LeafElement')
            vids = [leaf for leaf in leaves if leaf in g.property('geometry')]
            positions.update({
                vid: (0 if (positions[vid] == 1 and not are_green[vid]) or
                      (positions[vid] > 0 and round(areas[vid], 5) == round(
                          senesced_areas[vid], 5)) else positions[vid])
                for vid in vids
            })

        # Develop disease
        if septo_eval:
            sen_model.find_senescent_lesions(g, label='LeafElement')
            update_healthy_area(g, label='LeafElement')
            if rain_eval and i <= 500:
                # Refill pool of initial inoculum to simulate differed availability
                dispersal_units = generate_stock_du(nb_dus=rd.randint(0, 5),
                                                    disease=septoria)
                initiate(g, dispersal_units, inoculator)
            infect(g, septo_eval.dt, infection_controler, label='LeafElement')
            update(g,
                   septo_eval.dt,
                   growth_controler,
                   sen_model,
                   label='LeafElement')
        if rain_eval:
            if rain_eval.value.rain.mean() > 0:
                g, nb = disperse(g,
                                 emitter,
                                 transporter,
                                 "septoria",
                                 label='LeafElement')
                for inspector in inspectors.itervalues():
                    inspector.update_du_variables(g)
                wash(g,
                     washor,
                     rain_eval.value.rain.mean(),
                     label='LeafElement')
                # Save outputs after washing
                infection_controler.control_position(g)
                for inspector in inspectors.itervalues():
                    inspector.update_du_variables(g)
                    inspector.update_green_area(g)
                    inspector.update_healthy_area(g)
            else:
                for inspector in inspectors.itervalues():
                    inspector.nb_dus += [0, 0]
                    inspector.nb_dus_on_green += [0, 0]
                    inspector.nb_dus_on_healthy += [0, 0]
                    inspector.update_green_area(g)
                    inspector.update_healthy_area(g)
        else:
            for inspector in inspectors.itervalues():
                inspector.nb_dus += [0, 0]
                inspector.nb_dus_on_green += [0, 0]
                inspector.nb_dus_on_healthy += [0, 0]
                inspector.update_green_area(g)
                inspector.update_healthy_area(g)

        for inspector in inspectors.itervalues():
            inspector.compute_nb_infections(g)

        if wheat_eval:
            update_plot(g)
            # scene = plot3d(g)
            # index = i/24
            # if index < 10 :
            # image_name='./images_septo2/image0000%d.png' % index
            # elif index < 100 :
            # image_name='./images_septo2/image000%d.png' % index
            # elif index < 1000 :
            # image_name='./images_septo2/image00%d.png' % index
            # elif index < 10000 :
            # image_name='./images_septo2/image0%d.png' % index
            # else :
            # image_name='./images_septo/image%d.png' % index
            # save_image(scene, image_name=image_name)

    # Tout stocker dans un dataframe avec les dates en index
    outs = {
        'nb_dus': inspectors[1].nb_dus[::2],
        'nb_unwashed_dus': inspectors[1].nb_dus[1::2],
        'nb_dus_on_healthy': inspectors[1].nb_dus_on_healthy[1::2],
        'nb_infections': inspectors[1].nb_infections,
        'green_area': inspectors[1].leaf_green_area,
        'healthy_area': inspectors[1].leaf_healthy_area
    }
    outputs = pandas.DataFrame(data=outs, index=dates)
    return outputs
Exemplo n.º 21
0
def test_update(model="septoria_exchanging_rings"):
    """ Check if 'update' from 'protocol.py' provokes the growth of a lesion
        instantiated on the MTG.

    Generate a wheat MTG and deposit 1 lesion on a leaf element. Run a loop
    to compute update and growth. Check that all the stages of a lesion of
    septoria have been reached eventually. Check that the lesion size does
    not exceed Smax.

    Parameters
    ----------
    model: model
        One version of the model of septoria lesion among:
        'septoria_exchanging_rings', 'septoria_with_rings', 'septoria_continuous'
    """
    # Generate a wheat MTG
    g = adel_one_leaf_element()
    set_properties(g,
                   label='LeafElement',
                   area=5.,
                   green_area=5.,
                   healthy_area=5.,
                   position_senescence=None)

    # Generate a stock of septoria dispersal units and distribute it on g
    distribute_lesions(g,
                       nb_lesions=1,
                       disease_model=model,
                       initiation_model=RandomInoculation(),
                       label='LeafElement')

    # Call model of growth control
    controler = NoPriorityGrowthControl()

    # Loop of simulation
    septo_timing = TimeControl(delay=1, steps=1000)
    timer = TimeControler(disease=septo_timing)
    for t in timer:
        # print(timer.numiter)
        # After infection, the lesion 'age_dday' will be added 1 DD by time step
        # Note : base temperature for septoria = -2 degrees celsius
        set_properties(g,
                       label='LeafElement',
                       wetness=True,
                       temp=22.,
                       rain_intensity=0.)

        # Update
        update(g,
               t['disease'].dt,
               controler,
               senescence_model=None,
               label='LeafElement')

        # Check that the lesion is in the right status and has the right surface
        lesion = g.property('lesions')
        if lesion:
            assert sum(len(l) for l in lesion.itervalues()) == 1
            l = lesion.values()[0][0]
            assert l.age_dday == timer.numiter
            f = l.fungus
            print('lesion surface: %f' % round(l.surface, 6))
            if l.age_dday < 220.:
                assert l.status == 0
                assert round(l.surface, 6) < round(f.Smin, 6)
            if 220. <= l.age_dday < 330.:
                assert l.status == 1
                assert round(f.Smin, 6) <= round(l.surface, 6)
                assert round(l.surface, 6) < round(
                    f.Smin + f.growth_rate * f.degree_days_to_necrosis, 6)
            elif 330. <= l.age_dday < 350.:
                assert l.status == 2
                assert round(
                    f.Smin + f.growth_rate * f.degree_days_to_necrosis,
                    6) <= round(l.surface, 6)
                assert round(l.surface, 6) < round(
                    f.Smin + f.growth_rate *
                    (f.degree_days_to_necrosis + f.degree_days_to_sporulation),
                    6)
            elif l.age_dday >= 350.:
                assert l.status == 3
                assert round(
                    f.Smin + f.growth_rate * f.degree_days_to_sporulation,
                    6) <= round(l.surface, 6)
                assert round(l.surface, 6) <= round(l.fungus.Smax, 6)
Exemplo n.º 22
0
# Initialize a wheat canopy
g, wheat, domain_area, domain = initialize_stand(age=0.,
                                                 length=1,
                                                 width=1,
                                                 sowing_density=250,
                                                 plant_density=250,
                                                 inter_row=0.12,
                                                 seed=3)

# Choose source leaf in canopy
# (Here the value of the leaf is known but it changes with another initialize_stand)
source_leaf = g.node(21943)

# Initialize the models for septoria
septoria = plugin_septoria()
inoculator = RandomInoculation()
growth_controler = NoPriorityGrowthControl()
infection_controler = BiotrophDUPositionModel()
sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
emitter = SeptoriaRainEmission(domain_area=domain_area)
transporter = SeptoriaRainDispersal()
washor = RapillyWashing()

# Define the schedule of calls for each model
every_h = time_filter(seq, delay=1)
every_24h = time_filter(seq, delay=24)
every_rain = rain_filter(seq, weather)
weather_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
wheat_timing = IterWithDelays(*time_control(seq, every_24h, weather.data))
septo_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
rain_timing = IterWithDelays(*time_control(seq, every_rain, weather.data))
Exemplo n.º 23
0
def run_simulation(start_year, variability=True, **kwds):
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Read weather and adapt it to septoria (add wetness)
    weather_file = 'meteo' + str(start_year)[-2:] + '-' + str(start_year +
                                                              1)[-2:] + '.txt'
    meteo_path = shared_data(alinea.septo3d, weather_file)
    weather = Weather(data_file=meteo_path)
    weather.check(varnames=['wetness'], models={'wetness': wetness_rapilly})
    seq = pandas.date_range(start=str(start_year) + "-10-01 01:00:00",
                            end=str(start_year + 1) + "-07-01 01:00:00",
                            freq='H')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0.,
                                                     length=0.1,
                                                     width=0.2,
                                                     sowing_density=150,
                                                     plant_density=150,
                                                     inter_row=0.12,
                                                     seed=3)

    # Initialize the models for septoria
    if 'alinea.alep.septoria_age_physio' in sys.modules:
        del (sys.modules['alinea.alep.septoria_age_physio'])
    if variability == True:
        septoria = variable_septoria(**kwds)
    else:
        septoria = plugin_septoria(model="septoria_age_physio")
    DU = septoria.dispersal_unit()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission(domain_area=domain_area)
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    every_h = time_filter(seq, delay=1)
    every_24h = time_filter(seq, delay=24)
    every_rain = rain_filter(seq, weather)
    weather_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    wheat_timing = IterWithDelays(*time_control(seq, every_24h, weather.data))
    septo_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    rain_timing = IterWithDelays(*time_control(seq, every_rain, weather.data))

    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    first_blade = 80
    ind = 4.
    for blade in range(first_blade, 104, 8):
        ind -= 1
        inspectors[ind] = LeafInspector(g, blade_id=blade)

    # Simulation loop
    for i, controls in enumerate(
            zip(weather_timing, wheat_timing, septo_timing, rain_timing)):
        weather_eval, wheat_eval, septo_eval, rain_eval = controls

        # Update date
        date = weather_eval.value.index[0]

        # Get weather for date and add it as properties on leaves
        if weather_eval:
            set_properties(
                g,
                label='LeafElement',
                temp=weather_eval.value.temperature_air[0],
                wetness=weather_eval.value.wetness[0],
                relative_humidity=weather_eval.value.relative_humidity[0],
                wind_speed=weather_eval.value.wind_speed[0])
        if rain_eval:
            set_properties(g,
                           label='LeafElement',
                           rain_intensity=rain_eval.value.rain.mean(),
                           rain_duration=len(rain_eval.value.rain)
                           if rain_eval.value.rain.sum() > 0 else 0.)

        # Grow wheat canopy
        if wheat_eval:
            print(date)
            g, _ = grow_canopy(g, wheat, wheat_eval.value)
            # Note : The position of senescence goes back to its initial value after
            # a while for undetermined reason
            # --> temporary hack for keeping senescence position low when it is over
            positions = g.property('position_senescence')
            are_green = g.property('is_green')
            leaves = get_leaves(g, label='LeafElement')
            positions.update({
                leaf: (0 if positions[leaf] == 1 and not are_green[leaf] else
                       positions[leaf])
                for leaf in leaves
            })

        # Develop disease
        if septo_eval:
            sen_model.find_senescent_lesions(g, label='LeafElement')
            update_healthy_area(g, label='LeafElement')
            if rain_eval and i <= 500:
                # Refill pool of initial inoculum to simulate differed availability
                if rd.random() < 0.4:
                    dispersal_units = [
                        DU(nb_spores=rd.randint(1, 100), status='emitted')
                        for i in range(rd.randint(0, 3))
                    ]
                    initiate(g, dispersal_units, inoculator)
            infect(g, septo_eval.dt, infection_controler, label='LeafElement')
            update(g,
                   septo_eval.dt,
                   growth_controler,
                   sen_model,
                   label='LeafElement')

        les = g.property('lesions')
        lesions = sum([l for l in les.values()], [])

        print([l.fungus.degree_days_to_chlorosis for l in lesions])

        # if len(lesions)>10:
        # import pdb
        # pdb.set_trace()

        if rain_eval:
            g, nb = disperse(g,
                             emitter,
                             transporter,
                             "septoria",
                             label='LeafElement')
            wash(g, washor, rain_eval.value.rain.mean(), label='LeafElement')

        # Save outputs
        for inspector in inspectors.itervalues():
            inspector.update_variables(g)
            inspector.update_du_variables(g)

        if wheat_eval:
            plot_severity_by_leaf(g)

    return inspectors