Exemplo n.º 1
0
 def test_projects_properly(self):
     embedder = BagOfWordCountsTokenEmbedder(vocab=self.vocab,
                                             projection_dim=50)
     numpy_tensor = np.array([[1, 0], [1, 0], [4, 4]])
     inputs = torch.from_numpy(numpy_tensor)
     embedder_output = embedder(inputs)
     assert embedder_output.shape[1] == 50
Exemplo n.º 2
0
 def test_projects_properly(self):
     params = Params({"projection_dim": 50})
     embedder = BagOfWordCountsTokenEmbedder.from_params(self.vocab,
                                                         params=params)
     numpy_tensor = np.array([[1, 0], [1, 0], [4, 4]])
     inputs = torch.from_numpy(numpy_tensor)
     embedder_output = embedder(inputs)
     assert embedder_output.shape[1] == 50
 def test_projects_properly(self):
     params = Params({"projection_dim": 50})
     embedder = BagOfWordCountsTokenEmbedder.from_params(self.vocab,
                                                         params=params)
     numpy_tensor = np.array(
         [self.vocab.get_token_index(x) for x in ["1", "2", "3"]])
     inputs = torch.from_numpy(numpy_tensor).unsqueeze(1)
     embedder_output = embedder(inputs)
     assert embedder_output.shape[1] == 50
Exemplo n.º 4
0
 def test_zeros_out_unknown_tokens(self):
     embedder = BagOfWordCountsTokenEmbedder(self.vocab, ignore_oov=True)
     numpy_tensor = np.array([[1, 5], [2, 0], [4, 4]])
     inputs = torch.from_numpy(numpy_tensor)
     embedder_output = embedder(inputs)
     numpy_tensor = np.array([[0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0],
                              [0, 0, 0, 0, 2, 0]])
     manual_output = torch.from_numpy(numpy_tensor).float()
     assert_almost_equal(embedder_output.data.numpy(),
                         manual_output.data.numpy())
Exemplo n.º 5
0
 def test_forward_calculates_bow_properly(self):
     embedder = BagOfWordCountsTokenEmbedder(self.vocab)
     numpy_tensor = np.array([[2, 0], [3, 0], [4, 4]])
     inputs = torch.from_numpy(numpy_tensor)
     embedder_output = embedder(inputs)
     numpy_tensor = np.array([[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0],
                              [0, 0, 0, 0, 2, 0]])
     manual_output = torch.from_numpy(numpy_tensor).float()
     assert_almost_equal(embedder_output.data.numpy(),
                         manual_output.data.numpy())
Exemplo n.º 6
0
 def test_ignore_oov_should_fail_on_non_padded_vocab(self):
     with pytest.raises(ConfigurationError):
         BagOfWordCountsTokenEmbedder(self.non_padded_vocab,
                                      ignore_oov=True)