def __init__(self,
                 vocab: Vocabulary,
                 bert_model: Union[str, BertModel],
                 dropout: float = 0.0,
                 num_labels: int = None,
                 index: str = "tokens",
                 label_namespace: str = "labels",
                 trainable: bool = True,
                 initializer: InitializerApplicator = InitializerApplicator()) -> None:
        super().__init__(vocab)

        if isinstance(bert_model, str):
            self.bert_model = PretrainedBertModel.load(bert_model)
        else:
            self.bert_model = bert_model

        self.bert_model.requires_grad = trainable

        in_features = self.bert_model.config.hidden_size

        #if num_labels:
        out_features = 1
        #else:
        #    out_features = vocab.get_vocab_size(label_namespace)

        self._dropout = torch.nn.Dropout(p=dropout)

        self._classification_layer = torch.nn.Linear(in_features, out_features)
        #self._accuracy = CategoricalAccuracy()
        #self._loss = torch.nn.CrossEntropyLoss()
        self._index = index
Exemplo n.º 2
0
    def __init__(
        self,
        vocab: Vocabulary,
        bert_model: BertModel,
        dropout: float = 0.0,
        index: str = "bert",
        trainable: bool = True,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        self._index = index
        self.bert_model = PretrainedBertModel.load(bert_model)
        hidden_size = self.bert_model.config.hidden_size

        for param in self.bert_model.parameters():
            param.requires_grad = trainable

        self.dropout = Dropout(dropout)
        # 1. Instantiate any additional parts of your network
        self.start_linear = torch.nn.Linear(hidden_size, 1)
        self.end_linear = torch.nn.Linear(hidden_size, 1)

        self.loss_function = CrossEntropyLoss()
        # 2. DON'T FORGET TO INITIALIZE the additional parts of your network.
        initializer(self.start_linear)
        initializer(self.end_linear)

        # 3. Instantiate your metrics
        self._span_start_accuracy = CategoricalAccuracy()
        self._span_end_accuracy = CategoricalAccuracy()
Exemplo n.º 3
0
    def __init__(self, vocab, text_field_embedder, hidden_size=128, num_layers=2, dropout=0.5,
                 tag_namespace='tags', initializer=None, metric=None):
        if initializer is None:
            initializer = InitializerApplicator()
        if metric is None:
            metric = SpanBasedF1Measure(vocab, tag_namespace=tag_namespace)

        super().__init__(vocab)
        self.text_field_embedder = text_field_embedder
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.dropout = dropout
        self.tag_namespace = tag_namespace
        self.initializer = initializer
        self.metric = metric
        self.seq2seq_encoder = Seq2SeqEncoder.from_params(Params({
            'type': 'lstm',
            'input_size': text_field_embedder.get_output_dim(),
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'dropout': dropout,
            'bidirectional': True,
        }))
        self.num_tags = vocab.get_vocab_size(tag_namespace)
        self.tags_projection_layer = TimeDistributed(
            Linear(self.seq2seq_encoder.get_output_dim(), self.num_tags))
        self.crf = CRF(self.num_tags)
        self.initializer(self)
Exemplo n.º 4
0
    def __init__(
        self,
        vocab: Vocabulary,
        bert_model: PretrainedBertEmbedder,
        aggregate_feedforward: FeedForward,
        dropout: float = 0.0,
        index: str = "bert",
        label_namespace: str = "labels",
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        self.bert_model = bert_model.bert_model

        self._label_namespace = label_namespace

        self._dropout = torch.nn.Dropout(p=dropout)

        self._classification_layer = aggregate_feedforward
        self._loss = torch.nn.CrossEntropyLoss()
        self._index = index

        self._f1 = BinaryThresholdF1()

        initializer(self._classification_layer)
Exemplo n.º 5
0
    def __init__(self,
                 vocab: Vocabulary,
                 mydatabase: str,
                 schema_path: str,
                 utterance_embedder: TextFieldEmbedder,
                 action_embedding_dim: int,
                 encoder: Seq2SeqEncoder,
                 decoder_beam_search: BeamSearch,
                 max_decoding_steps: int,
                 input_attention: Attention,
                 add_action_bias: bool = True,
                 dropout: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self._utterance_embedder = utterance_embedder
        self._encoder = encoder
        self._max_decoding_steps = max_decoding_steps
        self._add_action_bias = add_action_bias
        self._dropout = torch.nn.Dropout(p=dropout)

        self._exact_match = Average()
        self._action_similarity = Average()

        self._valid_sql_query = SqlValidity(mydatabase=mydatabase)
        self._token_match = TokenSequenceAccuracy()
        self._kb_match = KnowledgeBaseConstsAccuracy(schema_path=schema_path)
        self._schema_free_match = GlobalTemplAccuracy(schema_path=schema_path)
        self._coverage_loss = CoverageAttentionLossMetric()

        # the padding value used by IndexField
        self._action_padding_index = -1
        num_actions = vocab.get_vocab_size("rule_labels")
        input_action_dim = action_embedding_dim
        if self._add_action_bias:
            input_action_dim += 1
        self._action_embedder = Embedding(num_embeddings=num_actions,
                                          embedding_dim=input_action_dim)
        self._output_action_embedder = Embedding(
            num_embeddings=num_actions, embedding_dim=action_embedding_dim)

        # This is what we pass as input in the first step of decoding, when we don't have a
        # previous action, or a previous utterance attention.
        self._first_action_embedding = torch.nn.Parameter(
            torch.FloatTensor(action_embedding_dim))
        self._first_attended_utterance = torch.nn.Parameter(
            torch.FloatTensor(encoder.get_output_dim()))
        torch.nn.init.normal_(self._first_action_embedding)
        torch.nn.init.normal_(self._first_attended_utterance)

        self._beam_search = decoder_beam_search
        self._decoder_trainer = MaximumMarginalLikelihood(beam_size=1)
        self._transition_function = BasicTransitionFunction(
            encoder_output_dim=self._encoder.get_output_dim(),
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            add_action_bias=self._add_action_bias,
            dropout=dropout)
        initializer(self)
Exemplo n.º 6
0
    def __init__(
        self,
        vocab: Vocabulary,
        criterion: Criterion,
        evaluate_mode: bool = False,
        attention_dim: int = 1024,
        hidden_size: int = 1024,
        dropout: float = 0.1,
        vocab_size: int = 50264,
        model_name: str = 'roberta-base',
        namespace: str = 'bpe',
        index: str = 'roberta',
        padding_value: int = 1,
        use_context: bool = True,
        sampling_topk: int = 1,
        sampling_temp: float = 1.0,
        weigh_bert: bool = False,
        initializer: InitializerApplicator = InitializerApplicator()
    ) -> None:
        super().__init__(vocab)
        # self.criterion = criterion
        self.criterion = nn.BCELoss()

        self.index = index
        self.namespace = namespace
        self.resnet = resnet152()
        self.roberta = torch.hub.load('pytorch/fairseq:2f7e3f3323',
                                      'roberta.large')
        self.roberta.eval()
        self.use_context = use_context
        self.padding_idx = padding_value
        self.evaluate_mode = evaluate_mode
        self.sampling_topk = sampling_topk
        self.sampling_temp = sampling_temp
        self.weigh_bert = weigh_bert

        self.lstm = nn.LSTM(hidden_size=1024,
                            input_size=1024,
                            num_layers=2,
                            batch_first=True)
        self.loss_func = nn.MSELoss()

        size = 100
        self.conv = nn.Conv2d(2048, size, 7)
        self.linear = nn.Linear(1024, size)
        self.relu = nn.ReLU()
        if weigh_bert:
            self.bert_weight = nn.Parameter(torch.Tensor(25))
            nn.init.uniform_(self.bert_weight)

        self.n_batches = 0
        self.n_samples = 0
        self.sample_history = {}

        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

        self.dbr = "/specific/netapp5/joberant/nlp_fall_2021/shlomotannor/newscaptioning/dbr/"

        initializer(self)
Exemplo n.º 7
0
    def from_params(cls, vocab: Vocabulary, params: Params) -> 'DecomposableAttention':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)

        premise_encoder_params = params.pop("premise_encoder", None)
        if premise_encoder_params is not None:
            premise_encoder = Seq2SeqEncoder.from_params(premise_encoder_params)
        else:
            premise_encoder = None

        hypothesis_encoder_params = params.pop("hypothesis_encoder", None)
        if hypothesis_encoder_params is not None:
            hypothesis_encoder = Seq2SeqEncoder.from_params(hypothesis_encoder_params)
        else:
            hypothesis_encoder = None

        attend_feedforward = FeedForward.from_params(params.pop('attend_feedforward'))
        similarity_function = SimilarityFunction.from_params(params.pop("similarity_function"))
        compare_feedforward = FeedForward.from_params(params.pop('compare_feedforward'))
        aggregate_feedforward = FeedForward.from_params(params.pop('aggregate_feedforward'))
        initializer = InitializerApplicator.from_params(params.pop("initializer", []))

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   attend_feedforward=attend_feedforward,
                   similarity_function=similarity_function,
                   compare_feedforward=compare_feedforward,
                   aggregate_feedforward=aggregate_feedforward,
                   initializer=initializer,
                   premise_encoder=premise_encoder,
                   hypothesis_encoder=hypothesis_encoder)
Exemplo n.º 8
0
    def __init__(
        self,
        vocab: Vocabulary,
        bert_model: BertModel,
        dropout: float = 0.0,
        index: str = "bert",
        trainable: bool = True,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        self._index = index
        self.bert_model = PretrainedBertModel.load(bert_model)
        hidden_size = self.bert_model.config.hidden_size

        for param in self.bert_model.parameters():
            param.requires_grad = trainable

        # TODO 1. Instantiate any additional parts of your network
        self.drop = torch.nn.Dropout(p=dropout)
        self.encoded2start_index = torch.nn.Linear(
            self.bert_model.config.hidden_size, 1)
        self.encoded2end_index = torch.nn.Linear(
            self.bert_model.config.hidden_size, 1)

        # TODO 2. DON'T FORGET TO INITIALIZE the additional parts of your network.
        initializer(self)
        # TODO 3. Instantiate your metrics
        self.start_acc = CategoricalAccuracy()
        self.end_acc = CategoricalAccuracy()
        self.span_acc = BooleanAccuracy()
Exemplo n.º 9
0
    def __init__(
            self,
            vocab: Vocabulary,
            embedding_size: int,
            encoder_hidden_size: int,
            encoder_num_layers: int,
            decoder: DecoderNet,
            decoder_type: str = "lstm",
            decoder_num_layers: int = 1,
            share_decoder_params:
        bool = True,  # only valid when decoder_type == `transformer`
            text_field_embedder: TextFieldEmbedder = None,
            start_token: str = "[CLS]",
            end_token: str = "[SEP]",
            index_name: str = "tokens",
            beam_size: int = 4,
            max_turn_len: int = 3,
            min_dec_len: int = 4,
            max_dec_len: int = 30,
            coverage_factor: float = 0.0,
            device: Union[int, str, List[int]] = -1,
            metrics: Optional[List[Metric]] = None,
            valid_metric_keys: List[str] = None,
            dropout_rate: float = 0.1,
            seed: int = 42,
            initializer: InitializerApplicator = InitializerApplicator(),
            regularizer: RegularizerApplicator = None):
        # 初始化vocab和regularizer
        Model.__init__(self, vocab, regularizer)

        # ----------- 定义embedding和编码器 ---------------
        # 获取单词序列的embedding
        self._text_field_embedder = text_field_embedder

        # 定义编码器
        self.encoder = torch.nn.LSTM(input_size=embedding_size,
                                     hidden_size=encoder_hidden_size,
                                     num_layers=encoder_num_layers,
                                     batch_first=True,
                                     dropout=dropout_rate,
                                     bidirectional=True)
        self.encoder_num_layers = encoder_num_layers
        # 由于编码器是双向的,而解码器是单向的
        # 所有将编码器的输出转换成单向的维度
        self.bi2uni_dec_init_state = torch.nn.Linear(2 * encoder_hidden_size,
                                                     encoder_hidden_size)

        self.encoder_output_dim = encoder_hidden_size

        # ------------- 通用初始化过程 ---------------------
        self.common_init(self.encoder_output_dim, decoder, decoder_type,
                         decoder_num_layers, share_decoder_params, start_token,
                         end_token, index_name, beam_size, min_dec_len,
                         max_dec_len, coverage_factor, device, metrics,
                         valid_metric_keys, seed, initializer)

        # -------------- 不同编码器不同的初始化过程 ---------------
        # 获取embedding的维度
        embedding_size = self._text_field_embedder.get_output_dim()
        self.turn_embedding = torch.nn.Embedding(max_turn_len, embedding_size)
Exemplo n.º 10
0
    def __init__(
        self,
        vocab: Vocabulary,
        bert_model: Union[str, BertModel],
        dropout: float = 0.0,
        num_labels: int = None,
        index: str = "bert",
        label_namespace: str = "labels",
        trainable: bool = True,
        initializer: InitializerApplicator = InitializerApplicator()
    ) -> None:
        super().__init__(vocab)

        if isinstance(bert_model, str):
            self.bert_model = PretrainedBertModel.load(bert_model)
        else:
            self.bert_model = bert_model
        self.bert_model.requires_grad = trainable

        in_features = self.bert_model.config.hidden_size
        if num_labels:
            out_features = num_labels
        else:
            out_features = vocab.get_vocab_size(label_namespace)

        self._dropout = torch.nn.Dropout(p=dropout)
        self._tagger_layer = torch.nn.Linear(in_features, out_features)
        self._span_f1 = SpanBasedF1Measure(vocab,
                                           label_namespace,
                                           label_encoding='BIO')
        self._loss = torch.nn.CrossEntropyLoss()
        self._index = index
        initializer(self._tagger_layer)
Exemplo n.º 11
0
    def __init__(
        self,
        vocab: Vocabulary,
        text_field_embedder: TextFieldEmbedder,
        encoder: Seq2VecEncoder,
        dropout_proba: float = 0.5,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: RegularizerApplicator = None,
    ) -> None:
        super().__init__(vocab, regularizer)
        self.text_field_embedder = text_field_embedder
        self.encoder = encoder

        num_dense = encoder.get_output_dim() * 2
        self.projection = nn.Sequential(
            nn.BatchNorm1d(num_dense, num_dense),
            nn.Dropout(p=dropout_proba),
            nn.Linear(num_dense, num_dense),
            nn.ReLU(inplace=True),
            nn.BatchNorm1d(num_dense, num_dense),
            nn.Dropout(p=dropout_proba),
            nn.Linear(num_dense, 1),
            nn.Sigmoid(),
        )

        self.lossfun = nn.BCEWithLogitsLoss()
        self.metrics = {"accuracy": CategoricalAccuracy()}

        initializer(self)
Exemplo n.º 12
0
    def __init__(
        self,
        vocab: Vocabulary,
        bert_model: Union[str, LayeredPretrainedBertModel],
        dropout: float = 0.0,
        num_labels: int = None,
        index: str = "bert",
        label_namespace: str = "labels",
        trainable: bool = True,
        scaling_temperature: str = "1",
        temperature_threshold: float = -1,
        layer_indices: str = "23",
        multitask: bool = False,
        debug: bool = False,
        add_previous_layer_logits: bool = True,
        initializer: InitializerApplicator = InitializerApplicator()
    ) -> None:
        super().__init__(vocab)

        if isinstance(bert_model, str):
            self.bert_model = LayeredPretrainedBertModel.load(bert_model)
        else:
            self.bert_model = bert_model

#        self.bert_model.requires_grad = trainable

        self._dropout = torch.nn.Dropout(p=dropout)

        self._add_previous_layer_logits = add_previous_layer_logits
        self._layer_indices = [int(x) for x in layer_indices.split("_")]
        self._sum_weights = torch.nn.ParameterList([
            torch.nn.Parameter(torch.randn(i + 1)) for i in self._layer_indices
        ])
        self._multitask = multitask
        self._debug = debug

        self._normalize_sum_weights()

        max_layer = max(self._layer_indices)

        assert max_layer < len(
            self.bert_model.encoder.layer
        ), "Recieved layer {} (in {}) which is not smaller than the number of layers in BERT model ({})".format(
            max_layer, layer_indices, len(self.bert_model.encoder.layer))

        # Removing all unused parameters
        self.bert_model.encoder.layer = self.bert_model.encoder.layer[:
                                                                      max_layer
                                                                      + 1]

        for param in self.bert_model.parameters():
            param.requires_grad = trainable

        self._count_n_layers = CountNLayers(self._layer_indices)
        self._index = index
        self._scaling_temperatures = [
            float(x) for x in scaling_temperature.split("_")
        ]
        self._temperature_threshold = temperature_threshold
Exemplo n.º 13
0
    def __init__(self,
                 vocab: Vocabulary,
                 utterance_embedder: TextFieldEmbedder,
                 action_embedding_dim: int,
                 encoder: Seq2SeqEncoder,
                 decoder_beam_search: BeamSearch,
                 max_decoding_steps: int,
                 input_attention: Attention,
                 database_file: str,
                 add_action_bias: bool = True,
                 dropout: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self._utterance_embedder = utterance_embedder
        self._encoder = encoder
        self._max_decoding_steps = max_decoding_steps
        self._add_action_bias = add_action_bias
        self._dropout = torch.nn.Dropout(p=dropout)

        self._exact_match = Average()
        self._valid_sql_query = Average()
        self._action_similarity = Average()
        self._denotation_accuracy = Average()

        self._executor = SqlExecutor(database_file)
        # the padding value used by IndexField
        self._action_padding_index = -1
        num_actions = vocab.get_vocab_size("rule_labels")
        input_action_dim = action_embedding_dim
        if self._add_action_bias:
            input_action_dim += 1
        self._action_embedder = Embedding(num_embeddings=num_actions,
                                          embedding_dim=input_action_dim)
        self._output_action_embedder = Embedding(
            num_embeddings=num_actions, embedding_dim=action_embedding_dim)

        # This is what we pass as input in the first step of decoding, when we don't have a
        # previous action, or a previous utterance attention.
        self._first_action_embedding = torch.nn.Parameter(
            torch.FloatTensor(action_embedding_dim))
        self._first_attended_utterance = torch.nn.Parameter(
            torch.FloatTensor(encoder.get_output_dim()))
        torch.nn.init.normal_(self._first_action_embedding)
        torch.nn.init.normal_(self._first_attended_utterance)

        self._beam_search = decoder_beam_search
        self._decoder_trainer = MaximumMarginalLikelihood(beam_size=1)
        self._transition_function = BasicTransitionFunction(
            encoder_output_dim=self._encoder.get_output_dim(),
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            predict_start_type_separately=False,
            add_action_bias=self._add_action_bias,
            dropout=dropout)
        initializer(self)
Exemplo n.º 14
0
    def from_params(cls, vocab: Vocabulary, params: Params) -> 'SemanticRoleLabeler':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)
        stacked_encoder = Seq2SeqEncoder.from_params(params.pop("stacked_encoder"))
        binary_feature_dim = params.pop("binary_feature_dim")
        initializer = InitializerApplicator.from_params(params.pop("initializer", []))

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   stacked_encoder=stacked_encoder,
                   binary_feature_dim=binary_feature_dim,
                   initializer=initializer)
Exemplo n.º 15
0
    def from_params(cls, vocab: Vocabulary,
                    params: Params) -> 'SemanticRoleLabeler':
        """
        With an empty ``params`` argument, this will instantiate a SRL model with the same
        configuration as published in the "Deep Semantic Role Labeling - What works and what's
        next" paper, as long as you've set ``allennlp.common.constants.GLOVE_PATH`` to the
        location of your gzipped 100-dimensional glove vectors.

        If you want to change parameters, the keys in the ``params`` object must match the
        constructor arguments above.
        """
        default_embedder_params = {
            'tokens': {
                'type': 'embedding',
                'pretrained_file': GLOVE_PATH,
                'trainable': True
            }
        }

        embedder_params = params.pop("text_field_embedder",
                                     default_embedder_params)
        text_field_embedder = TextFieldEmbedder.from_params(
            vocab, embedder_params)

        default_lstm_params = {
            'type': 'alternating_lstm',
            'input_size': 101,  # Because of the verb_indicator feature.
            'hidden_size': 300,
            'num_layers': 8,
            'recurrent_dropout_probability': 0.1,
            'use_highway': True
        }
        encoder_params = params.pop("stacked_encoder", default_lstm_params)
        stacked_encoder = Seq2SeqEncoder.from_params(encoder_params)

        default_initializer_params = {
            'bias': {
                'type': 'normal',
                'std': 0.1
            },
            'default': 'orthogonal'
        }

        initializer_params = params.pop('initializer',
                                        default_initializer_params)
        initializer = InitializerApplicator.from_params(initializer_params)

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   stacked_encoder=stacked_encoder,
                   initializer=initializer)
    def from_params(cls, vocab: Vocabulary, params: Params) -> 'SentenceClassifier':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)

        question_encoder = Seq2VecEncoder.from_params(params.pop("question_encoder"))

        initializer = InitializerApplicator.from_params(params.pop('initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   question_encoder=question_encoder,
                   initializer=initializer,
                   regularizer=regularizer)
Exemplo n.º 17
0
    def __init__(
        self,
        vocab: Vocabulary,
        criterion: Criterion,
        evaluate_mode: bool = False,
        attention_dim: int = 1024,
        hidden_size: int = 1024,
        dropout: float = 0.1,
        vocab_size: int = 50264,
        model_name: str = 'roberta-base',
        namespace: str = 'bpe',
        index: str = 'roberta',
        padding_value: int = 1,
        use_context: bool = True,
        sampling_topk: int = 1,
        sampling_temp: float = 1.0,
        weigh_bert: bool = False,
        initializer: InitializerApplicator = InitializerApplicator()
    ) -> None:
        super().__init__(vocab)
        self.criterion = criterion

        self.index = index
        self.namespace = namespace
        self.resnet = resnet152()
        self.roberta = torch.hub.load('pytorch/fairseq:2f7e3f3323',
                                      'roberta.large')
        self.roberta.eval()
        self.use_context = use_context
        self.padding_idx = padding_value
        self.evaluate_mode = evaluate_mode
        self.sampling_topk = sampling_topk
        self.sampling_temp = sampling_temp
        self.weigh_bert = weigh_bert

        self.loss_func = nn.MSELoss()

        self.conv = nn.Conv2d(2048, 512, 7)
        self.linear = nn.Linear(2048, 512)
        self.relu = nn.ReLU()
        if weigh_bert:
            self.bert_weight = nn.Parameter(torch.Tensor(25))
            nn.init.uniform_(self.bert_weight)

        self.n_batches = 0
        self.n_samples = 0
        self.sample_history = {}

        initializer(self)
Exemplo n.º 18
0
    def from_params(cls, vocab: Vocabulary, params: Params) -> 'ToxicModel':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)
        encoder = Seq2VecEncoder.from_params(params.pop("encoder"))
        classifier_feedforward = FeedForward.from_params(params.pop("classifier_feedforward"))

        initializer = InitializerApplicator.from_params(params.pop('initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   encoder=encoder,
                   classifier_feedforward=classifier_feedforward,
                   initializer=initializer,
                   regularizer=regularizer)
Exemplo n.º 19
0
    def __init__(self,
                 vocab: Vocabulary,
                 doc_field_embedder: TextFieldEmbedder,
                 scorer: Scorer,
                 validation_metrics: Dict[str, Metric],
                 temperature: float = 2.0,
                 alpha: float = 0.8,
                 ranking_loss: bool = False,
                 query_field_embedder: Optional[TextFieldEmbedder] = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None,
                 idf_embedder: Optional[TextFieldEmbedder] = None,
                 dropout: Optional[float] = 0.) -> None:
        super(LeToRWrapper, self).__init__(vocab, regularizer)

        self.query_field_embedder = query_field_embedder
        if self.query_field_embedder is None:
            self.query_field_embedder = doc_field_embedder

        self.doc_field_embedder = doc_field_embedder
        self.idf_embedder = idf_embedder

        self.scorer = scorer

        self.initializer = initializer
        self.regularizer = regularizer
        self.accuracy = CategoricalAccuracy()

        self.metrics = copy.deepcopy(validation_metrics)
        self.metrics.update({'accuracy': CategoricalAccuracy()})

        self.training_metrics = {
            True: ['accuracy'],
            False: validation_metrics.keys()
        }

        self.temperature = temperature
        self.kd_alpha = alpha

        self.classification_loss = nn.CrossEntropyLoss()
        self.kl_loss = nn.KLDivLoss(reduction='batchmean')

        # self.ranking_loss = ranking_loss
        # if self.ranking_loss:
        #     self.loss = nn.MarginRankingLoss(margin=1.0)
        # else:
        #     self.loss = nn.CrossEntropyLoss()
        initializer(self)
Exemplo n.º 20
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2VecEncoder,
                 classifier_feedforward: FeedForward,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.num_classes = self.vocab.get_vocab_size("labels")
        self.encoder = encoder
        self.classifier_feedforward = classifier_feedforward
        self.f1 = MultiLabelF1Measure()
        self.loss = torch.nn.MultiLabelSoftMarginLoss()

        initializer(self)
    def __init__(
        self,
        vocab: Vocabulary,
        model_name: str,
        num_labels: int,
        translation_factor: float = 0.5,
        seq_decoder: SeqDecoder = None,
        decoding_dim: int = 512,
        target_embedding_dim: int = 512,
        load_classifier: bool = False,
        transformer_trainable: bool = True,
        classifier_traninable: bool = True,
        dropout: float = 0.1,
        index: str = "transformer",
        label_namespace: str = "label",
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        if not num_labels:
            num_labels = vocab.get_vocab_size(namespace=label_namespace)
        config = AutoConfig.from_pretrained(model_name)
        config.num_labels = num_labels
        self.transformer = AutoModel.from_pretrained(model_name, config=config)
        for param in self.transformer.parameters():
            param.requires_grad = transformer_trainable
        # Only BERT supports loading classifier layer currently
        if load_classifier:
            self.classifier = BertForNextSentencePrediction.from_pretrained(
                model_name, config=config).cls
            for param in self.classifier.parameters():
                param.requires_grad = classifier_traninable
        else:
            classifier = torch.nn.Linear(config.hidden_size, config.num_labels)
            initializer(classifier)
            self.classifier = torch.nn.Sequential(torch.nn.Dropout(dropout),
                                                  classifier)

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()
        self._index = index
        self._label_namespace = label_namespace
        self._translation_factor = translation_factor
        self._seq_decoder = seq_decoder
Exemplo n.º 22
0
    def __init__(
        self,
        vocab: Vocabulary,
        bert_model: BertModel,
        dropout: float = 0.0,
        index: str = "bert",
        trainable: bool = True,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        self._index = index
        self.bert_model = PretrainedBertModel.load(bert_model)
        hidden_size = self.bert_model.config.hidden_size

        for param in self.bert_model.parameters():
            param.requires_grad = trainable
Exemplo n.º 23
0
    def __init__(
        self,
        vocab: Vocabulary,
        bert_model: Union[str, BertModel],
        dropout: float = 0.0,
        num_labels: int = None,
        index: str = "bert",
        label_namespace: str = "labels",
        trainable: bool = True,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        if isinstance(bert_model, str):
            self.bert_model = PretrainedBertModel.load(bert_model)
        else:
            self.bert_model = bert_model

        for param in self.bert_model.parameters():
            param.requires_grad = trainable

        in_features = self.bert_model.config.hidden_size

        self._label_namespace = label_namespace

        if num_labels:
            out_features = num_labels
        else:
            out_features = vocab.get_vocab_size(
                namespace=self._label_namespace)

        self._dropout = torch.nn.Dropout(p=dropout)

        self._classification_layer = torch.nn.Linear(in_features, out_features)
        self._accuracy = CategoricalAccuracy()

        # ****** add by jlk ******
        self._f1score = F1Measure(positive_label=1)
        # ****** add by jlk ******

        self._loss = torch.nn.CrossEntropyLoss()
        self._index = index
        initializer(self._classification_layer)
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 question_encoder: Seq2VecEncoder,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder

        self.nb_classes = self.vocab.get_vocab_size("labels")
        self.question_encoder = question_encoder
        self.enc_dropout = torch.nn.Dropout(0.5)
        self.classifier_feedforward = Linear(question_encoder.get_output_dim(), self.nb_classes)
        self.ff_dropout = torch.nn.Dropout(0.5)
        self.metrics = {
            "accuracy": CategoricalAccuracy(),
        }
        self.loss = torch.nn.CrossEntropyLoss()
        initializer(self)
    def __init__(self,
                 vocab: Vocabulary,
                 bert_model: Union[str, LayeredPretrainedBertModel],
                 dropout: float = 0.0,
                 num_labels: int = None,
                 index: str = "bert",
                 label_namespace: str = "labels",
                 trainable: bool = True,
                 scaling_temperature: str = "1",
                 temperature_threshold: float = -1,
                 layer_indices: str = "23",
                 multitask: bool = False,
                 debug: bool = False,
                 add_previous_layer_logits: bool = True,
                 print_selected_layer: bool = False,
                 ensemble: str = None,
                 initializer: InitializerApplicator = InitializerApplicator()) -> None:
        super().__init__(vocab, bert_model, dropout, num_labels, index, label_namespace, trainable, scaling_temperature, 
                        temperature_threshold, layer_indices, multitask, debug, add_previous_layer_logits, initializer)

        self._accuracy = CategoricalAccuracy()

        self._loss = torch.nn.CrossEntropyLoss()

        self.print_selected_layer = print_selected_layer

        in_features = self.bert_model.config.hidden_size

        if num_labels:
            out_features = num_labels
        else:
            out_features = vocab.get_vocab_size(label_namespace)

        if ensemble is not None:
            self.ensemble = [float(x) for x in ensemble.split(",")]
        else:
            self.ensemble = None

        self._classification_layers = torch.nn.ModuleList([torch.nn.Linear(in_features+(i*out_features*add_previous_layer_logits), out_features)
                                                            for i in range(len(self._layer_indices))])
        for l in self._classification_layers:
            initializer(l)
Exemplo n.º 26
0
    def __init__(self,
                 vocab: Vocabulary,
                 decoder: Decoder,
                 criterion: Criterion,
                 evaluate_mode: bool = False,
                 namespace: str = 'bpe',
                 index: str = 'roberta',
                 padding_value: int = 1,
                 use_context: bool = True,
                 sampling_topk: int = 1,
                 sampling_temp: float = 1.0,
                 max_caption_len: int = 50,
                 weigh_bert: bool = False,
                 initializer: InitializerApplicator = InitializerApplicator()) -> None:
        super().__init__(vocab)
        self.decoder = decoder
        self.criterion = criterion

        self.index = index
        self.namespace = namespace
        self.resnet = resnet152()
        self.roberta = torch.hub.load(
            'pytorch/fairseq:2f7e3f3323', 'roberta.large')
        self.use_context = use_context
        self.padding_idx = padding_value
        self.evaluate_mode = evaluate_mode
        self.sampling_topk = sampling_topk
        self.sampling_temp = sampling_temp
        self.max_caption_len = max_caption_len
        self.weigh_bert = weigh_bert
        if weigh_bert:
            self.bert_weight = nn.Parameter(torch.Tensor(25))
            nn.init.uniform_(self.bert_weight)

        self.n_batches = 0
        self.n_samples = 0
        self.sample_history: Dict[str, float] = defaultdict(float)

        initializer(self)

        self.nlp = spacy.load('en_core_web_lg',
                              disable=['textcat', 'parser', 'tagger', 'ner'])
Exemplo n.º 27
0
    def __init__(self,
                 vocab: Vocabulary,
                 query_field_embedder: TextFieldEmbedder,
                 doc_field_embedder: TextFieldEmbedder,
                 scorer: Scorer,
                 validation_metrics: Dict[str, Metric],
                 temperature: float = 15.0,
                 alpha: float = 0.8,
                 ranking_loss: bool = False,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None,
                 idf_embedder: Optional[TextFieldEmbedder] = None,
                 dropout: float = 0.) -> None:
        super(LeToRWrapper, self).__init__(vocab, regularizer)

        self.embedder = doc_field_embedder
        self.idf_embedder = idf_embedder
        self.final_scorer = FeedForward(2, 1, 1, lambda x: x)

        self.scorer = scorer

        self.initializer = initializer
        self.regularizer = regularizer

        self.metrics = copy.deepcopy(validation_metrics)
        self.metrics.update({'accuracy': CategoricalAccuracy()})

        self.training_metrics = {
            True: ['accuracy'],
            False: validation_metrics.keys()
        }

        self.temperature = temperature
        self.kd_alpha = alpha

        # self.ranking_loss = ranking_loss
        # if self.ranking_loss:
        #self.loss = nn.MarginRankingLoss(margin=1.0)
        # else:
        self.loss = nn.CrossEntropyLoss()
        initializer(self)
Exemplo n.º 28
0
    def __init__(
        self,
        vocab: Vocabulary,
        bert_model: PretrainedBertEmbedder,
        aggregate_feedforward: FeedForward,
        dropout: float = 0.0,
        index: str = "bert",
        label_namespace: str = "labels",
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        self.bert_model = bert_model.bert_model

        self._label_namespace = label_namespace
        label_vocab = self.vocab.get_index_to_token_vocabulary('labels')

        try:
            print(list(self.vocab._retained_counter["labels"].items()))

            total_size = sum(self.vocab._retained_counter['labels'].values())
            self._class_weight = [0] * len(label_vocab)
            for i, t in label_vocab.items():
                self._class_weight[
                    i] = total_size / self.vocab._retained_counter['labels'][t]
        except:
            self._class_weight = [1.0] * len(label_vocab)

        self._dropout = torch.nn.Dropout(p=dropout)
        self._pos_index = self.vocab.get_token_to_index_vocabulary(
            label_namespace)['True']

        self._classification_layer = aggregate_feedforward
        self._index = index
        self._loss = torch.nn.CrossEntropyLoss(
            weight=torch.tensor(self._class_weight))

        self._f1 = BinaryThresholdF1()

        initializer(self._classification_layer)
Exemplo n.º 29
0
    def from_params(cls, vocab: Vocabulary, params: Params) -> 'DecAccSRL':
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab, embedder_params)

        premise_encoder_params = params.pop("premise_encoder", None)
        if premise_encoder_params is not None:
            premise_encoder = Seq2SeqEncoder.from_params(premise_encoder_params)
        else:
            premise_encoder = None

        hypothesis_encoder_params = params.pop("hypothesis_encoder", None)
        if hypothesis_encoder_params is not None:
            hypothesis_encoder = Seq2SeqEncoder.from_params(hypothesis_encoder_params)
        else:
            hypothesis_encoder = None

        srl_model_archive = params.pop('srl_model_archive', None)
        if srl_model_archive is not None:
            logger.info("Loaded pretrained SRL model from {}".format(srl_model_archive))
            archive = load_archive(srl_model_archive)
            srl_model = archive.model
        else:
            srl_model = None

        attend_feedforward = FeedForward.from_params(params.pop('attend_feedforward'))
        similarity_function = SimilarityFunction.from_params(params.pop("similarity_function"))
        compare_feedforward = FeedForward.from_params(params.pop('compare_feedforward'))
        aggregate_feedforward = FeedForward.from_params(params.pop('aggregate_feedforward'))
        initializer = InitializerApplicator.from_params(params.pop("initializer", []))

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   attend_feedforward=attend_feedforward,
                   similarity_function=similarity_function,
                   compare_feedforward=compare_feedforward,
                   aggregate_feedforward=aggregate_feedforward,
                   initializer=initializer,
                   srl_model=srl_model,
                   premise_encoder=premise_encoder,
                   hypothesis_encoder=hypothesis_encoder)
Exemplo n.º 30
0
    def __init__(
        self,
        vocab: Vocabulary,
        transformer_embedder: Union[str, TransformerEmbedder, Params],
        dropout: float = 0.0,
        index: str = "bert",
        label_namespace: str = "labels",
        classification_type: str = 'multi-class',
        pos_label: str = None,
        threshold: float = 0.5,
        neg_weight: float = 1.0,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:

        super().__init__(vocab=vocab,
                         classification_type=classification_type,
                         pos_label=pos_label,
                         threshold=threshold,
                         neg_weight=neg_weight,
                         label_namespace=label_namespace,
                         regularizer=regularizer)

        # 不知道什么原因,在使用配置文件的时候,embedder无法从Params实例化获得
        if isinstance(transformer_embedder, Params):
            self.transformer_model = TokenEmbedder.from_params(
                transformer_embedder, vocab=vocab)
        elif isinstance(transformer_embedder, TransformerEmbedder):
            self.transformer_model = transformer_embedder
        else:
            logging.fatal("embedder 无法实例化")
            exit()

        self.classification_layer = nn.Sequential(
            nn.Dropout(dropout),
            nn.Linear(self.transformer_model.get_output_dim(),
                      vocab.get_vocab_size(self._label_namespace)))

        self._index = index
        initializer(self.classification_layer)