Exemplo n.º 1
0
def test_stimulus_file_from_json(stimulus_file_fixture):
    stim_pkl_path, stim_pkl_data = stimulus_file_fixture

    # Basic test case
    input_json_dict = {"behavior_stimulus_file": str(stim_pkl_path)}
    stimulus_file = StimulusFile.from_json(input_json_dict)
    assert stimulus_file.data == stim_pkl_data

    # Now test caching by deleting the stimulus_file
    stim_pkl_path.unlink()
    stimulus_file_cached = StimulusFile.from_json(input_json_dict)
    assert stimulus_file_cached.data == stim_pkl_data
Exemplo n.º 2
0
 def from_json(cls, dict_repr: dict) -> "StimulusTimestamps":
     if 'sync_file' in dict_repr:
         sync_file = SyncFile.from_json(dict_repr=dict_repr)
         return cls.from_sync_file(sync_file=sync_file)
     else:
         stim_file = StimulusFile.from_json(dict_repr=dict_repr)
         return cls.from_stimulus_file(stimulus_file=stim_file)
Exemplo n.º 3
0
    def test_from_stimulus_file2(self, tmpdir):
        """
        Test that Licks.from_stimulus_file returns a dataframe
        of licks whose timestamps are based on their frame number
        with respect to the stimulus_timestamps
        """
        stimulus_filepath = self._create_test_stimulus_file(
            lick_events=[12, 15, 90, 136], tmpdir=tmpdir)
        stimulus_file = StimulusFile.from_json(
            dict_repr={'behavior_stimulus_file': str(stimulus_filepath)})
        timestamps = StimulusTimestamps(timestamps=np.arange(0, 2.0, 0.01))
        licks = Licks.from_stimulus_file(stimulus_file=stimulus_file,
                                         stimulus_timestamps=timestamps)

        expected_dict = {
            'timestamps': [0.12, 0.15, 0.90, 1.36],
            'frame': [12, 15, 90, 136]
        }
        expected_df = pd.DataFrame(expected_dict)
        assert expected_df.columns.equals(licks.value.columns)
        np.testing.assert_array_almost_equal(
            expected_df.timestamps.to_numpy(),
            licks.value['timestamps'].to_numpy(),
            decimal=10)
        np.testing.assert_array_almost_equal(expected_df.frame.to_numpy(),
                                             licks.value['frame'].to_numpy(),
                                             decimal=10)
Exemplo n.º 4
0
    def from_json(cls,
                  session_data: dict,
                  monitor_delay: Optional[float] = None) \
            -> "BehaviorSession":
        """

        Parameters
        ----------
        session_data
            Dict of input data necessary to construct a session
        monitor_delay
            Monitor delay. If not provided, will use an estimate.
            To provide this value, see for example
            allensdk.brain_observatory.behavior.data_objects.stimuli.util.
            calculate_monitor_delay

        Returns
        -------
        `BehaviorSession` instance

        """
        behavior_session_id = BehaviorSessionId.from_json(
            dict_repr=session_data)
        stimulus_file = StimulusFile.from_json(dict_repr=session_data)
        stimulus_timestamps = StimulusTimestamps.from_json(
            dict_repr=session_data)
        running_acquisition = RunningAcquisition.from_json(
            dict_repr=session_data)
        raw_running_speed = RunningSpeed.from_json(dict_repr=session_data,
                                                   filtered=False)
        running_speed = RunningSpeed.from_json(dict_repr=session_data)
        metadata = BehaviorMetadata.from_json(dict_repr=session_data)

        if monitor_delay is None:
            monitor_delay = cls._get_monitor_delay()

        licks, rewards, stimuli, task_parameters, trials = \
            cls._read_data_from_stimulus_file(
                stimulus_file=stimulus_file,
                stimulus_timestamps=stimulus_timestamps,
                trial_monitor_delay=monitor_delay
            )
        date_of_acquisition = DateOfAcquisition.from_json(
            dict_repr=session_data)\
            .validate(
            stimulus_file=stimulus_file,
            behavior_session_id=behavior_session_id.value)

        return BehaviorSession(behavior_session_id=behavior_session_id,
                               stimulus_timestamps=stimulus_timestamps,
                               running_acquisition=running_acquisition,
                               raw_running_speed=raw_running_speed,
                               running_speed=running_speed,
                               metadata=metadata,
                               licks=licks,
                               rewards=rewards,
                               stimuli=stimuli,
                               task_parameters=task_parameters,
                               trials=trials,
                               date_of_acquisition=date_of_acquisition)
Exemplo n.º 5
0
    def test_get_licks_excess(self, tmpdir):
        """
        Test that Licks.from_stimulus_file
        in the case where
        there is an extra frame at the end of the trial log and the mouse
        licked on that frame

        https://github.com/AllenInstitute/visual_behavior_analysis/blob
        /master/visual_behavior/translator/foraging2/extract.py#L640-L647
        """
        stimulus_filepath = self._create_test_stimulus_file(
            lick_events=[12, 15, 90, 136, 200],  # len(timestamps) == 200,
            tmpdir=tmpdir)
        stimulus_file = StimulusFile.from_json(
            dict_repr={'behavior_stimulus_file': str(stimulus_filepath)})
        timestamps = StimulusTimestamps(timestamps=np.arange(0, 2.0, 0.01))
        licks = Licks.from_stimulus_file(stimulus_file=stimulus_file,
                                         stimulus_timestamps=timestamps)

        expected_dict = {
            'timestamps': [0.12, 0.15, 0.90, 1.36],
            'frame': [12, 15, 90, 136]
        }
        expected_df = pd.DataFrame(expected_dict)
        assert expected_df.columns.equals(licks.value.columns)
        np.testing.assert_array_almost_equal(
            expected_df.timestamps.to_numpy(),
            licks.value['timestamps'].to_numpy(),
            decimal=10)
        np.testing.assert_array_almost_equal(expected_df.frame.to_numpy(),
                                             licks.value['frame'].to_numpy(),
                                             decimal=10)
Exemplo n.º 6
0
    def setup_class(cls):
        dir = Path(__file__).parent.resolve()
        test_data_dir = dir / 'test_data'

        cls.stimulus_file = StimulusFile(filepath=test_data_dir /
                                         'behavior_stimulus_file.pkl')
        expected = pd.read_pickle(str(test_data_dir / 'licks.pkl'))
        cls.expected = Licks(licks=expected)
Exemplo n.º 7
0
 def test_from_stimulus_file(self):
     stimulus_file = StimulusFile.from_lims(
         behavior_session_id=self.behavior_session_id, db=self.dbconn)
     timestamps = StimulusTimestamps.from_stimulus_file(
         stimulus_file=stimulus_file)
     rewards = Rewards.from_stimulus_file(stimulus_file=stimulus_file,
                                          stimulus_timestamps=timestamps)
     assert rewards == self.expected
Exemplo n.º 8
0
    def setup_class(cls):
        dir = Path(__file__).parent.resolve()
        test_data_dir = dir / 'test_data'

        stimulus_file = StimulusFile(filepath=test_data_dir /
                                     'behavior_stimulus_file.pkl')
        ts = StimulusTimestamps.from_stimulus_file(stimulus_file=stimulus_file)
        cls.licks = Licks.from_stimulus_file(stimulus_file=stimulus_file,
                                             stimulus_timestamps=ts)
Exemplo n.º 9
0
    def setup_method(self, method):
        self.nwbfile = pynwb.NWBFile(session_description='asession',
                                     identifier='1234',
                                     session_start_time=datetime.now())

        # Need to write stimulus timestamps first
        bsf = StimulusFile(filepath=self.test_data_dir /
                           'behavior_stimulus_file.pkl')
        ts = StimulusTimestamps.from_stimulus_file(stimulus_file=bsf)
        ts.to_nwb(nwbfile=self.nwbfile)
Exemplo n.º 10
0
    def test_get_licks_failure(self, tmpdir):
        stimulus_filepath = self._create_test_stimulus_file(
            lick_events=[12, 15, 90, 136, 201],  # len(timestamps) == 200,
            tmpdir=tmpdir)
        stimulus_file = StimulusFile.from_json(
            dict_repr={'behavior_stimulus_file': str(stimulus_filepath)})
        timestamps = StimulusTimestamps(timestamps=np.arange(0, 2.0, 0.01))

        with pytest.raises(IndexError):
            Licks.from_stimulus_file(stimulus_file=stimulus_file,
                                     stimulus_timestamps=timestamps)
Exemplo n.º 11
0
def test_stimulus_file_from_lims(stimulus_file_fixture, behavior_session_id):
    stim_pkl_path, stim_pkl_data = stimulus_file_fixture

    mock_db_conn = create_autospec(PostgresQueryMixin, instance=True)

    # Basic test case
    mock_db_conn.fetchone.return_value = str(stim_pkl_path)
    stimulus_file = StimulusFile.from_lims(mock_db_conn, behavior_session_id)
    assert stimulus_file.data == stim_pkl_data

    # Now test caching by deleting stimulus_file and also asserting db
    # `fetchone` called only once
    stim_pkl_path.unlink()
    stimfile_cached = StimulusFile.from_lims(mock_db_conn, behavior_session_id)
    assert stimfile_cached.data == stim_pkl_data

    query = STIMULUS_FILE_QUERY_TEMPLATE.format(
        behavior_session_id=behavior_session_id)

    mock_db_conn.fetchone.assert_called_once_with(query, strict=True)
Exemplo n.º 12
0
def test_stimulus_timestamps_from_json2():
    dir = Path(__file__).parent.parent.resolve()
    test_data_dir = dir / 'test_data'
    sf_path = test_data_dir / 'stimulus_file.pkl'

    sf = StimulusFile.from_json(
        dict_repr={'behavior_stimulus_file': str(sf_path)})
    stimulus_timestamps = StimulusTimestamps.from_stimulus_file(
        stimulus_file=sf)
    expected = np.array([0.016 * i for i in range(11)])
    assert np.allclose(expected, stimulus_timestamps.value)
Exemplo n.º 13
0
 def test_from_stimulus_file(self):
     stimulus_file = StimulusFile.from_lims(
         behavior_session_id=self.behavior_session_id, db=self.dbconn)
     stimulus_timestamps = StimulusTimestamps.from_stimulus_file(
         stimulus_file=stimulus_file)
     stimuli = Stimuli.from_stimulus_file(
         stimulus_file=stimulus_file,
         stimulus_timestamps=stimulus_timestamps,
         limit_to_images=['im065'])
     assert stimuli.presentations == self.expected_presentations
     assert stimuli.templates == self.expected_templates
Exemplo n.º 14
0
    def from_lims(
            cls,
            db: PostgresQueryMixin,
            behavior_session_id: int,
            ophys_experiment_id: Optional[int] = None) -> "StimulusTimestamps":
        stimulus_file = StimulusFile.from_lims(db, behavior_session_id)

        if ophys_experiment_id:
            sync_file = SyncFile.from_lims(
                db=db, ophys_experiment_id=ophys_experiment_id)
            return cls.from_sync_file(sync_file=sync_file)
        else:
            return cls.from_stimulus_file(stimulus_file=stimulus_file)
Exemplo n.º 15
0
    def test_from_stimulus_file2(self, tmpdir):
        """
        Test that Rewards.from_stimulus_file returns
        expected results (main nuance is that timestamps should be
        determined by applying the reward frame as an index to
        stimulus_timestamps)
        """
        def _create_dummy_stimulus_file():
            trial_log = [{
                'rewards': [(0.001, -1.0, 4)],
                'trial_params': {
                    'auto_reward': True
                }
            }, {
                'rewards': []
            }, {
                'rewards': [(0.002, -1.0, 10)],
                'trial_params': {
                    'auto_reward': False
                }
            }]
            data = {
                'items': {
                    'behavior': {
                        'trial_log': trial_log
                    }
                },
            }
            tmp_path = tmpdir / 'stimulus_file.pkl'
            with open(tmp_path, 'wb') as f:
                pickle.dump(data, f)
                f.seek(0)

            return tmp_path

        stimulus_filepath = _create_dummy_stimulus_file()
        stimulus_file = StimulusFile.from_json(
            dict_repr={'behavior_stimulus_file': str(stimulus_filepath)})
        timestamps = StimulusTimestamps(timestamps=np.arange(0, 2.0, 0.01))
        rewards = Rewards.from_stimulus_file(stimulus_file=stimulus_file,
                                             stimulus_timestamps=timestamps)

        expected_dict = {
            'volume': [0.001, 0.002],
            'timestamps': [0.04, 0.1],
            'autorewarded': [True, False]
        }
        expected_df = pd.DataFrame(expected_dict)
        expected_df = expected_df
        assert expected_df.equals(rewards.value)
Exemplo n.º 16
0
    def from_json(cls,
                  dict_repr: dict,
                  filtered: bool = True,
                  zscore_threshold: float = 10.0) -> "RunningSpeed":
        stimulus_file = StimulusFile.from_json(dict_repr)
        stimulus_timestamps = StimulusTimestamps.from_json(dict_repr)

        running_speed = cls._get_running_speed_df(stimulus_file,
                                                  stimulus_timestamps,
                                                  filtered, zscore_threshold)
        return cls(running_speed=running_speed,
                   stimulus_file=stimulus_file,
                   stimulus_timestamps=stimulus_timestamps,
                   filtered=filtered)
Exemplo n.º 17
0
    def from_json(
        cls,
        dict_repr: dict,
    ) -> "RunningAcquisition":
        stimulus_file = StimulusFile.from_json(dict_repr)
        stimulus_timestamps = StimulusTimestamps.from_json(dict_repr)
        running_acq_df = get_running_df(
            data=stimulus_file.data,
            time=stimulus_timestamps.value,
        )
        running_acq_df.drop("speed", axis=1, inplace=True)

        return cls(
            running_acquisition=running_acq_df,
            stimulus_file=stimulus_file,
            stimulus_timestamps=stimulus_timestamps,
        )
Exemplo n.º 18
0
    def from_lims(
        cls,
        db: PostgresQueryMixin,
        behavior_session_id: int,
        filtered: bool = True,
        zscore_threshold: float = 10.0,
        stimulus_timestamps: Optional[StimulusTimestamps] = None
    ) -> "RunningSpeed":
        stimulus_file = StimulusFile.from_lims(db, behavior_session_id)
        if stimulus_timestamps is None:
            stimulus_timestamps = StimulusTimestamps.from_stimulus_file(
                stimulus_file=stimulus_file)

        running_speed = cls._get_running_speed_df(stimulus_file,
                                                  stimulus_timestamps,
                                                  filtered, zscore_threshold)
        return cls(running_speed=running_speed,
                   stimulus_file=stimulus_file,
                   stimulus_timestamps=stimulus_timestamps,
                   filtered=filtered)
Exemplo n.º 19
0
    def test_empty_licks(self, tmpdir):
        """
        Test that Licks.from_stimulus_file in the case where
        there are no licks
        """

        stimulus_filepath = self._create_test_stimulus_file(lick_events=[],
                                                            tmpdir=tmpdir)
        stimulus_file = StimulusFile.from_json(
            dict_repr={'behavior_stimulus_file': str(stimulus_filepath)})
        timestamps = StimulusTimestamps(timestamps=np.arange(0, 2.0, 0.01))
        licks = Licks.from_stimulus_file(stimulus_file=stimulus_file,
                                         stimulus_timestamps=timestamps)

        expected_dict = {'timestamps': [], 'frame': []}
        expected_df = pd.DataFrame(expected_dict)
        assert expected_df.columns.equals(licks.value.columns)
        np.testing.assert_array_equal(expected_df.timestamps.to_numpy(),
                                      licks.value['timestamps'].to_numpy())
        np.testing.assert_array_equal(expected_df.frame.to_numpy(),
                                      licks.value['frame'].to_numpy())
Exemplo n.º 20
0
    def from_lims(
        cls,
        db: PostgresQueryMixin,
        behavior_session_id: int,
        ophys_experiment_id: Optional[int] = None,
    ) -> "RunningAcquisition":

        stimulus_file = StimulusFile.from_lims(db, behavior_session_id)
        stimulus_timestamps = StimulusTimestamps.from_stimulus_file(
            stimulus_file=stimulus_file)
        running_acq_df = get_running_df(
            data=stimulus_file.data,
            time=stimulus_timestamps.value,
        )
        running_acq_df.drop("speed", axis=1, inplace=True)

        return cls(
            running_acquisition=running_acq_df,
            stimulus_file=stimulus_file,
            stimulus_timestamps=stimulus_timestamps,
        )
Exemplo n.º 21
0
    def test_get_date_of_acquisition(self, tmp_path, test_params,
                                     expected_warn_msg):
        mock_session_id = test_params["behavior_session_id"]

        pkl_save_path = tmp_path / f"mock_pkl_{mock_session_id}.pkl"
        with open(pkl_save_path, 'wb') as handle:
            pickle.dump({"start_time": test_params['pkl_expt_date']}, handle)

        tz = pytz.timezone("America/Los_Angeles")
        extractor_expt_date = tz.localize(
            test_params['extractor_expt_date']).astimezone(pytz.utc)

        stimulus_file = StimulusFile(filepath=pkl_save_path)
        obt_date = DateOfAcquisition(date_of_acquisition=extractor_expt_date)

        if expected_warn_msg:
            with pytest.warns(Warning, match=expected_warn_msg):
                obt_date.validate(
                    stimulus_file=stimulus_file,
                    behavior_session_id=test_params['behavior_session_id'])

        assert obt_date.value == extractor_expt_date
Exemplo n.º 22
0
def test_stimulus_timestamps_from_json3():
    """
    Test that StimulusTimestamps.from_stimulus_file
    just returns the sum of the intervalsms field in the
    behavior stimulus pickle file, padded with a zero at the
    first timestamp.
    """
    dir = Path(__file__).parent.parent.resolve()
    test_data_dir = dir / 'test_data'
    sf_path = test_data_dir / 'stimulus_file.pkl'

    sf = StimulusFile.from_json(
        dict_repr={'behavior_stimulus_file': str(sf_path)})

    sf._data['items']['behavior']['intervalsms'] = [0.1, 0.2, 0.3, 0.4]

    stimulus_timestamps = StimulusTimestamps.from_stimulus_file(
        stimulus_file=sf)

    expected = np.array([0., 0.0001, 0.0003, 0.0006, 0.001])
    np.testing.assert_array_almost_equal(stimulus_timestamps.value,
                                         expected,
                                         decimal=10)
Exemplo n.º 23
0
def test_stimulus_file_to_json(stimulus_file_fixture):
    stim_pkl_path, stim_pkl_data = stimulus_file_fixture

    stimulus_file = StimulusFile(filepath=stim_pkl_path)
    obt_json = stimulus_file.to_json()
    assert obt_json == {"behavior_stimulus_file": str(stim_pkl_path)}
Exemplo n.º 24
0
    def from_lims(cls, behavior_session_id: int,
                  lims_db: Optional[PostgresQueryMixin] = None,
                  stimulus_timestamps: Optional[StimulusTimestamps] = None,
                  monitor_delay: Optional[float] = None,
                  date_of_acquisition: Optional[DateOfAcquisition] = None) \
            -> "BehaviorSession":
        """

        Parameters
        ----------
        behavior_session_id
            Behavior session id
        lims_db
            Database connection. If not provided will create a new one.
        stimulus_timestamps
            Stimulus timestamps. If not provided, will calculate stimulus
            timestamps from stimulus file.
        monitor_delay
            Monitor delay. If not provided, will use an estimate.
            To provide this value, see for example
            allensdk.brain_observatory.behavior.data_objects.stimuli.util.
            calculate_monitor_delay
        date_of_acquisition
            Date of acquisition. If not provided, will read from
            behavior_sessions table.
        Returns
        -------
        `BehaviorSession` instance
        """
        if lims_db is None:
            lims_db = db_connection_creator(
                fallback_credentials=LIMS_DB_CREDENTIAL_MAP)

        behavior_session_id = BehaviorSessionId(behavior_session_id)
        stimulus_file = StimulusFile.from_lims(
            db=lims_db, behavior_session_id=behavior_session_id.value)
        if stimulus_timestamps is None:
            stimulus_timestamps = StimulusTimestamps.from_stimulus_file(
                stimulus_file=stimulus_file)
        running_acquisition = RunningAcquisition.from_lims(
            lims_db, behavior_session_id.value)
        raw_running_speed = RunningSpeed.from_lims(
            lims_db,
            behavior_session_id.value,
            filtered=False,
            stimulus_timestamps=stimulus_timestamps)
        running_speed = RunningSpeed.from_lims(
            lims_db,
            behavior_session_id.value,
            stimulus_timestamps=stimulus_timestamps)
        behavior_metadata = BehaviorMetadata.from_lims(
            behavior_session_id=behavior_session_id, lims_db=lims_db)

        if monitor_delay is None:
            monitor_delay = cls._get_monitor_delay()

        licks, rewards, stimuli, task_parameters, trials = \
            cls._read_data_from_stimulus_file(
                stimulus_file=stimulus_file,
                stimulus_timestamps=stimulus_timestamps,
                trial_monitor_delay=monitor_delay
            )
        if date_of_acquisition is None:
            date_of_acquisition = DateOfAcquisition.from_lims(
                behavior_session_id=behavior_session_id.value, lims_db=lims_db)
        date_of_acquisition = date_of_acquisition.validate(
            stimulus_file=stimulus_file,
            behavior_session_id=behavior_session_id.value)

        return BehaviorSession(behavior_session_id=behavior_session_id,
                               stimulus_timestamps=stimulus_timestamps,
                               running_acquisition=running_acquisition,
                               raw_running_speed=raw_running_speed,
                               running_speed=running_speed,
                               metadata=behavior_metadata,
                               licks=licks,
                               rewards=rewards,
                               stimuli=stimuli,
                               task_parameters=task_parameters,
                               trials=trials,
                               date_of_acquisition=date_of_acquisition)
Exemplo n.º 25
0
 def _get_stimulus_data():
     lims_db = db_connection_creator(
         fallback_credentials=LIMS_DB_CREDENTIAL_MAP)
     stimulus_file = StimulusFile.from_lims(
         db=lims_db, behavior_session_id=behavior_experiment_id)
     return stimulus_file.data
Exemplo n.º 26
0
 def test_from_stimulus_file(self):
     stimulus_file = StimulusFile.from_lims(
         behavior_session_id=self.behavior_session_id, db=self.dbconn)
     tp = TaskParameters.from_stimulus_file(stimulus_file=stimulus_file)
     assert tp == self.expected
Exemplo n.º 27
0
 def setup_class(cls):
     dir = Path(__file__).parent.parent.parent.resolve()
     test_data_dir = dir / 'test_data'
     sf_path = test_data_dir / 'stimulus_file.pkl'
     cls.stimulus_file = StimulusFile.from_json(
         dict_repr={'behavior_stimulus_file': str(sf_path)})