Exemplo n.º 1
0
    def test_data_meta_persistence(self):

        freq = '5b'
        universe = Universe('zz800')
        batch = 4
        neutralized_risk = ['SIZE']
        risk_model = 'long'
        pre_process = ['standardize', 'winsorize_normal']
        post_process = ['standardize', 'winsorize_normal']
        warm_start = 2
        data_source = 'postgresql://*****:*****@server/dummy'

        data_meta = DataMeta(freq=freq,
                             universe=universe,
                             batch=batch,
                             neutralized_risk=neutralized_risk,
                             risk_model=risk_model,
                             pre_process=pre_process,
                             post_process=post_process,
                             warm_start=warm_start,
                             data_source=data_source)

        data_desc = data_meta.save()

        loaded_data = DataMeta.load(data_desc)
        self.assertEqual(data_meta.freq, loaded_data.freq)
        self.assertEqual(data_meta.universe, loaded_data.universe)
        self.assertEqual(data_meta.batch, loaded_data.batch)
        self.assertEqual(data_meta.neutralized_risk, loaded_data.neutralized_risk)
        self.assertEqual(data_meta.risk_model, loaded_data.risk_model)
        self.assertEqual(data_meta.pre_process, loaded_data.pre_process)
        self.assertEqual(data_meta.post_process, loaded_data.post_process)
        self.assertEqual(data_meta.warm_start, loaded_data.warm_start)
        self.assertEqual(data_meta.data_source, loaded_data.data_source)
Exemplo n.º 2
0
    def fetch_model(self,
                    ref_date=None,
                    model_type=None,
                    model_version=None,
                    is_primary=True,
                    model_id=None) -> pd.DataFrame:
        from alphamind.model.composer import DataMeta

        conditions = []

        if ref_date:
            conditions.append(Models.trade_date == ref_date)

        if model_id:
            conditions.append(Models.model_id == model_id)

        if model_type:
            conditions.append(Models.model_type == model_type)

        if model_version:
            conditions.append(Models.model_version == model_version)

        conditions.append(Models.is_primary == is_primary)

        query = select([Models]).where(and_(*conditions))

        model_df = pd.read_sql(query, self.engine)

        for i, data in enumerate(zip(model_df.model_desc, model_df.data_meta)):
            model_desc, data_desc = data
            model_df.loc[i, 'model'] = load_model(model_desc)
            model_df.loc[i, 'data_meta'] = DataMeta.load(data_desc)

        del model_df['model_desc']
        return model_df
Exemplo n.º 3
0
    def test_composer_persistence(self):
        freq = '5b'
        universe = Universe('zz800')
        batch = 4
        neutralized_risk = ['SIZE']
        risk_model = 'long'
        pre_process = ['standardize', 'winsorize_normal']
        post_process = ['standardize', 'winsorize_normal']
        warm_start = 2
        data_source = 'postgresql://*****:*****@server/dummy'

        data_meta = DataMeta(freq=freq,
                             universe=universe,
                             batch=batch,
                             neutralized_risk=neutralized_risk,
                             risk_model=risk_model,
                             pre_process=pre_process,
                             post_process=post_process,
                             warm_start=warm_start,
                             data_source=data_source)

        features = {'f1': 'closePrice', 'f2': 'openPrice'}
        alpha_model = XGBClassifier(features=features)

        composer = Composer(alpha_model=alpha_model,
                            data_meta=data_meta)

        comp_desc = composer.save()
        loaded_comp = Composer.load(comp_desc)
        self._assert_composer_equal(composer, loaded_comp)