Exemplo n.º 1
0
def plot_tracks(temperatures_original, luminosities_original,
                temperatures_helium, luminosities_helium):

    x_label = "T [K]"
    y_label = "L [$L_\odot$]"
    figure = single_frame(x_label, y_label, logx=True, logy=True,
                          xsize=14, ysize=10)
    colors = get_distinct(2)
    
    loglog(temperatures_original, luminosities_original, label='progenitor',
           c=colors[0])
    loglog(temperatures_helium, luminosities_helium, label='helium star',
           c=colors[1])
    scatter(temperatures_helium[-1], luminosities_helium[-1], marker='*',
            s=400, c=colors[1])
    xlabel('Effective Temperature')
    ylabel('Luminosity')
    pyplot.xlim(1.0e5, 4000)
    pyplot.ylim(1.0,1.0e5)
    pyplot.legend(loc=4, fontsize=24)

    save_file = 'HertzsprungRussel_HeliumStar.png'
    pyplot.savefig(save_file)
    print('\nSaved figure in file', save_file,'\n')
    pyplot.show()
Exemplo n.º 2
0
def plot_results(stars, time):
    mass_loss = stars.zams_mass - stars.mass

    x = stars.x.in_(units.parsec)
    y = stars.y.in_(units.parsec)

    pyplot.figure(figsize=(8,8))
    aplot.plot(x, y, "*")

    for x, y, mass_loss in zip(x.number, y.number, mass_loss):
        pyplot.annotate("%0.2f"%abs(mass_loss.number), xy=(x,y+2),
            horizontalalignment='center', verticalalignment='bottom')

    pyplot.axis('equal')
    pyplot.xlim([-60, 60])
    pyplot.ylim([-60, 60])
    aplot.xlabel("x")
    aplot.ylabel("y")
    pyplot.title("time = " + str(time))

    if not os.path.exists("plots"):
        os.mkdir("plots")

    name = "plots/plot_{0:=05}.png".format(int(time.value_in(units.Myr)))
    print("creating", name)
    pyplot.savefig(name)
    pyplot.close()
Exemplo n.º 3
0
def temperature_density_plot(data, mass, age):
    figure = pyplot.figure(figsize = (8, 10))
    pyplot.subplot(2, 1, 1)
    ax = pyplot.gca()
    plotT = semilogy(data["radius"], data["temperature"], 'r-', label = r'$T(r)$')
    xlabel('Radius')
    ylabel('Temperature')
    ax.twinx()
    plotrho = semilogy(data["radius"], data["density"], 'g-', label = r'$\rho(r)$')
    plots = plotT + plotrho
    labels = [one_plot.get_label() for one_plot in plots]
    ax.legend(plots, labels, loc=3)
    ylabel('Density')
    pyplot.subplot(2, 1, 2)
    semilogy(data["radius"], data["composition"][0], label = data["species_names"][0])
    semilogy(data["radius"], data["composition"][1], label = data["species_names"][1])
    semilogy(data["radius"], data["composition"][2], label = data["species_names"][2])
    semilogy(data["radius"], data["composition"][3], label = data["species_names"][3])
    semilogy(data["radius"], data["composition"][4], label = data["species_names"][4])
    pyplot.ylim(0.0, 1.0)
    xlabel('Radius')
    ylabel('Mass fraction')
    pyplot.legend()
    pyplot.suptitle('Structure of a {0} star at {1}'.format(mass, age))
    pyplot.show()   
Exemplo n.º 4
0
def make_effective_iso_potential_plot(gravity_code):
    omega = (constants.G * gravity_code.particles.total_mass() / (1.0|units.AU**3)).sqrt()
    center_of_mass = gravity_code.particles.center_of_mass()[:2]
    pyplot.rcParams.update({'font.size': 30})
    figure = pyplot.figure(figsize = (12, 12))
    ax = pyplot.gca()
    ax.get_yaxis().get_major_formatter().set_useOffset(False)
    ax.minorticks_on() 
    
    current_axes = pyplot.subplot(1, 1, 1)
    current_axes.set_aspect("equal", adjustable = "box")
    lim = 1.7
    effective_iso_potential_plot(gravity_code, 
                                 omega,
                                 xlim = [-lim, lim] | units.AU,
                                 ylim = [-lim, lim] | units.AU,
                                 center_of_rotation = center_of_mass,
                                 fraction_screen_filled=0.8)
    xlabel('x')
    ylabel('y')
    pyplot.text(0.6, -0.06, "$L_1$")
    pyplot.text(1.35, -0.06, "$L_2$")
    pyplot.text(-0.99, -0.06, "$L_3$")
    pyplot.text(0.40, 0.82, "$L_4$")
    pyplot.text(0.40, -0.92, "$L_5$")
#    pyplot.show()
    pyplot.savefig("lagrange_points")
Exemplo n.º 5
0
def main(filename):
    pyplot.figure(figsize=(12,12))
    particles = read_set_from_file(filename, "hdf5")
    for si in particles.history:
        scatter(si.x, si.y, s=100)
    xlabel("x")
    ylabel("y")
    pyplot.show()
Exemplo n.º 6
0
def make_plot(radius_profile, brunt_profile, mass, age):
    figure = pyplot.figure()
    semilogy(radius_profile, -brunt_profile, 'g-', label = r'convective, $N^2$ < 0')
    semilogy(radius_profile, brunt_profile, 'r-', label = r'radiative, $N^2$ > 0')
    xlabel('Radius')
    ylabel(r'$\|N^2\|$')
    pyplot.title('Brunt-Vaisala frequency squared of a {0} star at {1}'.format(mass, age))
    pyplot.legend(loc=3)
    pyplot.show()   
Exemplo n.º 7
0
def main(N=10): 
    figure(figsize=(5,5))
    bodies = new_plummer_model(N)
    scatter(bodies.x, bodies.y)
    xlim(-1, 1)
    ylim(-1, 1)
    xlabel("X")
    ylabel("Y")
    show()
Exemplo n.º 8
0
def plot_track(temperature_at_time, luminosity_at_time):
    pyplot.figure(figsize=(8, 6))
    pyplot.title('Hertzsprung-Russell diagram', fontsize=12)

    loglog(temperature_at_time, luminosity_at_time)
    xlabel('Effective Temperature')
    ylabel('Luminosity')
    pyplot.xlim(pyplot.xlim()[::-1])
    pyplot.ylim(.1, 1.e4)
    pyplot.show()
Exemplo n.º 9
0
def thermal_energy_plot(time, E_therm, figname):
    if not HAS_MATPLOTLIB:
        return
    pyplot.figure(figsize = (5, 5))
    plot(time, E_therm.as_quantity_in(units.erg), label='E_therm')
    xlabel('Time')
    ylabel('Energy')
    pyplot.legend(loc=3)
    pyplot.savefig(figname)
    print "\nPlot of thermal energy evolution was saved to: ", figname
    pyplot.close()
Exemplo n.º 10
0
def plot_tracks(temperature1, luminosity1, temperature2, luminosity2):
    from matplotlib import pyplot
    from amuse.plot import loglog, xlabel, ylabel
    pyplot.figure(figsize = (8, 6))
    pyplot.title('Hertzsprung-Russell diagram', fontsize=12)
    loglog(temperature1, luminosity1)
    loglog(temperature2, luminosity2)
    xlabel('Effective Temperature')
    ylabel('Luminosity')
    pyplot.xlim(pyplot.xlim()[::-1])
    pyplot.show()
def plot_tracks(temperatures_original, luminosities_original, temperatures_helium, luminosities_helium):
    pyplot.figure(figsize = (8, 6))
    pyplot.title('Hertzsprung-Russell diagram', fontsize=12)

    loglog(temperatures_original, luminosities_original, label='progenitor')
    loglog(temperatures_helium, luminosities_helium, label='helium star')
    xlabel('Effective Temperature')
    ylabel('Luminosity')
    pyplot.xlim(pyplot.xlim()[::-1])
    pyplot.ylim(1.0,1.0e5)
    pyplot.legend(loc=3)
    pyplot.show()
Exemplo n.º 12
0
def energy_evolution_plot(time, kinetic, potential, thermal, figname = "energy_evolution.png"):
    time.prepend(0.0 | units.day)
    pyplot.figure(figsize = (5, 5))
    plot(time, kinetic, label='K')
    plot(time, potential, label='U')
    plot(time, thermal, label='Q')
    plot(time, kinetic + potential + thermal, label='E')
    xlabel('Time')
    ylabel('Energy')
    pyplot.legend(prop={'size':"x-small"}, loc=4)
    pyplot.savefig(figname)
    pyplot.close()
Exemplo n.º 13
0
def orbit_plot(distance, mass, time):
    figure = pyplot.figure(figsize=(6, 10), dpi=100)
    subplot = figure.add_subplot(2, 1, 1)
    plot(time, distance)
    xlabel('t')
    ylabel('separation')
    pyplot.margins(0.05)
    subplot = figure.add_subplot(2, 1, 2)
    plot(time, ((mass - mass[0]) / mass[0]) * 100.0)
    xlabel('t')
    ylabel('mass')
    pyplot.margins(0.05)
    pyplot.show()
Exemplo n.º 14
0
def composition_comparison_plot(radii_SE, comp_SE, radii_SPH, comp_SPH, figname):
    if not HAS_MATPLOTLIB:
        return
    pyplot.figure(figsize = (7, 5))
    plot(radii_SE.as_quantity_in(units.RSun), comp_SE, 
        label='stellar evolution model')
    plot(radii_SPH, comp_SPH, 'go', label='SPH model')
    xlabel('radius')
    ylabel('mass fraction')
    pyplot.legend()
    pyplot.savefig(figname)
    print "\nPlot of composition profiles was saved to: ", figname
    pyplot.close()
Exemplo n.º 15
0
def internal_energy_comparison_plot(radii_SE, u_SE, radii_SPH, u_SPH, figname):
    if not HAS_MATPLOTLIB:
        return
    pyplot.figure(figsize = (7, 5))
    semilogy(radii_SE.as_quantity_in(units.RSun), u_SE, 
        label='stellar evolution model')
    semilogy(radii_SPH, u_SPH, 'go', label='SPH model')
    xlabel('radius')
    ylabel('internal energy')
    pyplot.legend()
    pyplot.savefig(figname)
    print "\nPlot of internal energy profiles was saved to: ", figname
    pyplot.close()
Exemplo n.º 16
0
def energy_evolution_plot(time, kinetic, potential, thermal, figname="energy_evolution.png"):
    native_plot.subplot(211)
    plot(time, kinetic, label='K')
    plot(time, potential, label='U')
    plot(time, thermal, label='Q')
    plot(time, kinetic + potential + thermal, label='E')
    xlabel('Time')
    ylabel('Energy')
    native_plot.legend(prop={'size':"x-small"}, loc=4)
    native_plot.subplot(212)
    plot(time, thermal, label='Q')
    native_plot.savefig(figname)
    native_plot.clf()
def make_plots(Ncl, Rcl, t_end):
    """ Not finished """
    try:
        import matplotlib
        matplotlib.use("Agg")
        from matplotlib import pyplot
    except ImportError:
        print "Unable to produce plots: couldn't find matplotlib"
    else:
        fig = pyplot.figure(figsize=[10, 10])
        for data in ["hybrid", "tree", "direct"]
            print "Generating plot data of {0} run".format(data)
            data_file = "CA_Exam_TLRH_{0}.amuse".format(data)

            stars_below_cut, stars_above_cut =\
            read_set_from_file(data_file, 'amuse',
                               names=("stars_below_cut", "stars_below_cut"))

            lim = abs(next(stars_below_cut.history).position).max()

            if data == "hybrid":
                pass
                # dashed curve
                # points = aplot.scatter(dE, time, c='orange',
                #               label='Hybrid')


            if data == "direct":
                pass
                # dotted curve
                # points = aplot.scatter(dE, time, c='red',
                #               label='Direct')

            if data == "tree":
                pass
                # solid curve
                # points = aplot.scatter(dE, time, c='green',
                #               label='Tree')

        aplot.xlabel("Time")
        aplot.ylabel("Relative Energy Error")
        pyplot.axis('equal')
        aplot.xlim(-lim, lim)
        aplot.ylim(-lim, lim)
        pyplot.legend()
        pyplot.title(r'Cluster with $N=${0}, $r=${1}'
                     .format(Ncl, Rcl ) +
                     r', evolved until $t_{\rm end}$={0}'
                     .format(t_end))
        pyplot.savefig("out.png")
        pyplot.close()
Exemplo n.º 18
0
def energy_plot(time, E_kin, E_pot, E_therm, figname):
    if not HAS_MATPLOTLIB:
        return
    pyplot.figure(figsize=(5, 5))
    plot(time, E_kin.as_quantity_in(units.erg), label="E_kin")
    plot(time, E_pot, label="E_pot")
    plot(time, E_therm, label="E_therm")
    plot(time, E_kin + E_pot + E_therm, label="E_total")
    xlabel("Time")
    ylabel("Energy")
    pyplot.legend(loc=3)
    pyplot.savefig(figname)
    print "\nPlot of energy evolution was saved to: ", figname
    pyplot.close()
Exemplo n.º 19
0
def orbit_parameters_plot(semi_major_in,semi_major_out, time, par_symbol="a", par_name="semimajor_axis"):
    figure = pyplot.figure(figsize = (10, 6), dpi = 100)
    subplot = figure.add_subplot(2, 1, 1)
    plot(time,semi_major_in )
    xlabel('t')
    ylabel('$'+par_symbol+'_\mathrm{binary}$')
    
    subplot = figure.add_subplot(2, 1, 2)
    plot(time,semi_major_out )
    xlabel('t')
    ylabel('$'+par_symbol+'_\mathrm{giant}$')
    pyplot.minorticks_on()
    pyplot.savefig(par_name+"_evolution.png")
    pyplot.close()
Exemplo n.º 20
0
def orbit_ecc_plot(eccentricity_in,eccentricity_out,time):
    figure = pyplot.figure(figsize = (10, 6), dpi = 100)
    subplot = figure.add_subplot(2, 1, 1)
    plot(time,eccentricity_in)
    xlabel('t')
    ylabel('e$_\mathrm{binary}$')
    
    subplot = figure.add_subplot(2, 1, 2)
    plot(time,eccentricity_out )  
    xlabel('t')
    ylabel('e$_\mathrm{giant}$')
    pyplot.minorticks_on()
    pyplot.savefig("eccentricity_evolution.png")
    pyplot.close()
Exemplo n.º 21
0
def energy_plot(time, E_kin_list, E_pot_list, E_therm_list, figname):
    if not HAS_MATPLOTLIB:
        return
    pyplot.figure(figsize = (5, 5))
    for i, (E_kin, E_pot, E_therm) in enumerate(zip(E_kin_list, E_pot_list, E_therm_list)):
        plot(time, E_kin.as_quantity_in(units.erg), label=labels[i][0])
        plot(time, E_pot, label=labels[i][1])
        plot(time, E_therm, label=labels[i][2])
        plot(time, E_kin+E_pot+E_therm, label=labels[i][3])
    xlabel('Time')
    ylabel('Energy')
    pyplot.legend(prop={'size':"x-small"}, loc=3)
    pyplot.savefig(figname)
    print "\nPlot of energy evolution was saved to: ", figname
    pyplot.close()
def plot_cluster(stars, filename, t, rcl):
    filename += ".png"
    #lim = 10*stars.center_of_mass().length().value_in(stars.x.unit)
    lim = (R * 2).value_in(units.m)
    m = 1 + 3.0*stars.mass/min(stars.mass)

    pyplot.title("Cluster at distance "+str(R)+" with cluster radius "+
            str(rcl)+"\nat t="+str(t))

    scatter(stars.x, stars.y)  # s size (in point^2)
    xlabel("X")
    ylabel("Y")
    pyplot.xlim(-lim, lim)
    pyplot.ylim(-lim, lim)
    pyplot.savefig(filename)
    pyplot.clf()
Exemplo n.º 23
0
def plot(x, y):
    
    pyplot.figure(figsize=(8,8))

    colormap = ['yellow', 'green', 'blue']	# specific to a 3-body plot
    size = [40, 20, 20]
    edgecolor = ['orange', 'green', 'blue']
    
    for si in particles.history:
        scatter(si.x, si.y, c=colormap, s=size, edgecolor=edgecolor)
    xlabel("x")
    ylabel("y")

    save_file = 'plot_gravity.png'
    pyplot.savefig(save_file)
    print '\nSaved figure in file', save_file,'\n'
    pyplot.show()
Exemplo n.º 24
0
    def test2(self):
        """ Test a basic plot with and without units and labels"""
        if not HAS_MATPLOTLIB:
            return self.skip()
        pyplot.clf()

        x = numpy.linspace(0, 100, 100) | units.yr
        y = numpy.linspace(0, 200, 100)

        aplot.plot(x, y)
        self.assertEquals("[yr]", self.xaxis().get_label_text())
        self.assertEquals("", self.yaxis().get_label_text())

        aplot.xlabel("time")
        aplot.ylabel("radius")
        self.assertEquals("time [yr]", self.xaxis().get_label_text())
        self.assertEquals("radius ", self.yaxis().get_label_text())
Exemplo n.º 25
0
def main(filename, lim):
    pyplot.ion()
    particles = read_set_from_file(filename, "hdf5") 
    if lim<=zero:
        lim = max(particles.x).value_in(lim.unit)
    time = 0
    for si in particles.history:
        pyplot.title("Cluster at t="+str(time))
        scatter(si.x.as_quantity_in(lim.unit), si.y.as_quantity_in(lim.unit))
        xlabel("X")
        ylabel("Y")
        if lim>zero:
            pyplot.xlim(-lim.value_in(lim.unit), lim.value_in(lim.unit))
            pyplot.ylim(-lim.value_in(lim.unit), lim.value_in(lim.unit))
        pyplot.draw()
        pyplot.cla()
    pyplot.show()
    def __init__(self):
        self.merger = ClusterMerger()

        timesteps = VectorQuantity.arange(0 | units.Myr, 1 | units.Gyr, 50 | units.Myr)
        tot = len(timesteps)
        end_time = timesteps[-1]

        print "Starting Simulation :-)"
        print "Generating plots on the fly :-)"

        gasA_vel_list = [] | (units.km/units.s)
        dmA_vel_list = [] | (units.km/units.s)
        gasB_vel_list = [] | (units.km/units.s)
        dmB_vel_list = [] | (units.km/units.s)
        time_list = [] | units.Gyr
        for i, time in enumerate(timesteps):
            print_progressbar(i, tot)
            self.merger.code.evolve_model(time)
            self.merger.dm_gas_sph_subplot(i)
            gasA_vel_list.append(self.merger.gasA.center_of_mass_velocity())
            dmA_vel_list.append(self.merger.dmA.center_of_mass_velocity())
            gasB_vel_list.append(self.merger.gasB.center_of_mass_velocity())
            dmB_vel_list.append(self.merger.dmB.center_of_mass_velocity())
            time_list.append(time)
            write_set_to_file(self.merger.code.particles,
                'out/{0}/data/cluster_{1}.amuse'.format(self.merger.timestamp, i),
                "amuse")

        print "Plotting velocity as function of time"
        fig = pyplot.figure(figsize=(12, 10), dpi=50)
        plot(time_list.number, gasA_vel_list.number, label="gasA", c='r', ls='solid')
        plot(time_list.number, dmA_vel_list.number, label="dmA", c='r', ls='dashed')
        plot(time_list.number, gasB_vel_list.number, label="gasB", c='g', ls='solid')
        plot(time_list.number, dmB_vel_list.number, label="dmB", c='g', ls='dashed')
        xlabel("Time")
        ylabel("Velocity")
        pyplot.legend()
        pyplot.show()

        print "Generating gif :-)"
        self.merger.create_gif()

        print "Stopping the code. End of pipeline :-)"
        self.merger.code.stop()
Exemplo n.º 27
0
def main(filename = "nbody.hdf5", lim=3):
    pyplot.ion()
    storage = store.StoreHDF(filename,"r")
    stars = storage.load()
#    lim = 4*stars.center_of_mass().length().value_in(stars.x.unit)
    lim = 2*max(max(stars.x).value_in(stars.x.unit),  stars.center_of_mass().length().value_in(stars.x.unit))
    m =  1 + 3.0*stars.mass/min(stars.mass)
    for si in stars.history:
        time = si.get_timestamp()
        pyplot.title("Cluster at t="+str(time))
        print "time = ", time
        scatter(si.x, si.y, s=m)
        xlabel("X")
        ylabel("Y")
        pyplot.xlim(-lim, lim)
        pyplot.ylim(-lim, lim)
        pyplot.draw()
        pyplot.cla()
    pyplot.show()
Exemplo n.º 28
0
def subplot(potential, orbits, codes, fit_orbit, labels):
    hor, vert = labels
    X = numpy.linspace(-160, 160, 100) | units.parsec
    Y = numpy.linspace(-160, 160, 100) | units.parsec
    X, Y = quantities.meshgrid(X, Y)

    if labels == 'xy':
        pot_args = [X, Y, 0 | units.parsec]
        fit_horizontal = fit_orbit[0]
        fit_vertical = fit_orbit[1]
    elif labels == 'xz':
        pot_args = [X, 0 | units.parsec, Y]
        fit_horizontal = fit_orbit[0]
        fit_vertical = fit_orbit[2]
    elif labels == 'yz':
        pot_args = [0 | units.parsec, X, Y]
        fit_horizontal = fit_orbit[1]
        fit_vertical = fit_orbit[2]

    phi = potential.get_potential_at_point(None, *pot_args)
    aplot.imshow_color_plot(X, Y, phi, cmap="Blues")
    del aplot.UnitlessArgs.arg_units[2]

    aplot.scatter(0 | units.parsec, 0 | units.parsec, c='black')
    aplot.plot(fit_horizontal, fit_vertical, c="green", ls="--",
               label="Kruijssen et al. 2014")

    colors = cycle(['red', 'black', 'yellow', 'grey', 'green'])

    for full_orbit, code in zip(orbits, codes):
        horizontal = full_orbit.x if hor == 'x' else full_orbit.y
        vertical = full_orbit.y if vert == 'y' else full_orbit.z
        color = next(colors)
        aplot.plot(horizontal, vertical, c=color, label=code)
        aplot.scatter(horizontal[-1], vertical[-1], c=color, edgecolor=color)

    pyplot.axis('equal')
    aplot.xlim([-150, 150] | units.parsec)
    aplot.ylim([-150, 150] | units.parsec)
    aplot.xlabel(hor)
    aplot.ylabel(vert)
Exemplo n.º 29
0
def make_effective_iso_potential_plot(gravity_code):
    omega = (constants.G * gravity_code.particles.total_mass() /
             (1.0 | units.AU**3)).sqrt()
    center_of_mass = gravity_code.particles.center_of_mass()[:2]
    figure = pyplot.figure(figsize=(9, 8))
    current_axes = pyplot.subplot(2, 2, 1)
    current_axes.set_aspect("equal", adjustable="box")
    effective_iso_potential_plot(gravity_code,
                                 omega,
                                 center_of_rotation=center_of_mass,
                                 fraction_screen_filled=0.7)
    xlabel('x')
    ylabel('y')

    current_axes = pyplot.subplot(2, 2, 3)
    current_axes.set_aspect("equal", adjustable="box")
    effective_iso_potential_plot(gravity_code,
                                 omega,
                                 center_of_rotation=center_of_mass,
                                 xlim=[0.9, 1.1] | units.AU,
                                 ylim=[-0.1, 0.1] | units.AU,
                                 number_of_contours=20)
    xlabel('x')
    ylabel('y')

    gravity_code.particles[1].mass *= 10000
    omega = (constants.G * gravity_code.particles.total_mass() /
             (1.0 | units.AU**3)).sqrt()
    center_of_mass = gravity_code.particles.center_of_mass()[:2]
    current_axes = pyplot.subplot(2, 2, 2)
    current_axes.set_aspect("equal", adjustable="box")
    effective_iso_potential_plot(gravity_code,
                                 omega,
                                 center_of_rotation=center_of_mass,
                                 number_of_contours=20,
                                 fraction_screen_filled=0.7)
    xlabel('x')
    ylabel('y')

    current_axes = pyplot.subplot(2, 2, 4)
    current_axes.set_aspect("equal", adjustable="box")
    effective_iso_potential_plot(gravity_code,
                                 omega,
                                 center_of_rotation=center_of_mass,
                                 xlim=[0.6, 1.4] | units.AU,
                                 ylim=[-0.4, 0.4] | units.AU,
                                 number_of_contours=20,
                                 fraction_screen_filled=0.9)
    xlabel('x')
    ylabel('y')
    pyplot.show()
Exemplo n.º 30
0
    native_plot, plot, scatter, xlabel, ylabel, hist
)
import numpy as np


if __name__ == "__main__":

    # latex_support()

    x = np.pi / 20.0 * (list(range(-10, 10)) | units.m)
    y1 = units.MSun.new_quantity(np.sin(x.number))
    y2 = units.MSun.new_quantity(x.number)
    native_plot.subplot(2, 2, 1)
    plot(x, y2, label='model')
    scatter(x, y1, label='data')
    xlabel('x')
    ylabel('mass [$M_\odot$]')  # overrides auto unit!
    native_plot.legend(loc=2)

    x = list(range(50)) | units.Myr
    y1 = quantities.new_quantity(
        np.sin(np.arange(0, 1.5, 0.03)), 1e50 * units.erg)
    y2 = -(1e43 | units.J) - y1
    native_plot.subplot(2, 2, 2)
    plot(x, y1, label='$E_\mathrm{kin}$')
    plot(x, y2, label='$E_\mathrm{pot}$')
    xlabel('t')
    ylabel('E')
    native_plot.legend()

    x = list(range(7)) | units.day
Exemplo n.º 31
0
    def dm_gas_sph_subplot(self, i=0):
        fig = pyplot.figure(figsize=(20, 12))
        gs = gridspec.GridSpec(2, 2, height_ratios=[1, 4])
        # gs.update(left=0.05, right=0.48, wspace=0.05)

        ax_text = pyplot.subplot(gs[0, :])
        ax_text.axis('off')
        time_text = ax_text.text(0.02, 1.0, '', transform=ax_text.transAxes, fontsize=42)
        time_text.set_text('Time: {0:.1f} Myr'.format(self.code.model_time.value_in(units.Myr)))
        energy_text = ax_text.text(0.02, -0.2, '', transform=ax_text.transAxes, fontsize=42)

        Ekin = self.code.kinetic_energy.value_in(units.erg)
        Epot = self.code.potential_energy.value_in(units.erg)
        Eth = self.code.thermal_energy.value_in(units.erg)

        energy_text.set_text('Ekin: {0:.3e} erg\nEpot: {1:.3e} erg\nEth: {2:.3e} erg'
            .format(Ekin, Epot, Eth))


        # lim = max(abs((self.dmA.center_of_mass() - self.dmB.center_of_mass()).value_in(units.Mpc)))
        lim = 2.5
        ax_dm = pyplot.subplot(gs[1, 0], xlim=(-4*lim, 4*lim), ylim=(-4*lim, 4*lim))
        ax_gas = pyplot.subplot(gs[1, 1], aspect='equal',
            sharex=ax_dm, sharey=ax_dm, xlim=(-4*lim, 4*lim), ylim=(-4*lim, 4*lim))
        # ax_dm = fig.add_subplot(121, aspect='equal')
        # ax_gas = fig.add_subplot(122, aspect='equal',
        #    sharex=ax_dm, sharey=ax_dm)

        # plot dark matter
        pyplot.gcf().sca(ax_dm)
        x = self.dmA.x.as_quantity_in(units.Mpc)
        y = self.dmA.y.as_quantity_in(units.Mpc)
        scatter(x, y, c='red', edgecolor='red', label=str(self.subClusterA.name))
        x = self.dmB.x.as_quantity_in(units.Mpc)
        y = self.dmB.y.as_quantity_in(units.Mpc)
        scatter(x, y, c='green', edgecolor='green', label=str(self.subClusterB.name))
        xlabel(r'$x$')
        ylabel(r'$y$')
        pyplot.legend()

        # plot gas as sph plot
        def plot_sph(gas):
            # Adjusted code from amuse.plot.sph_particles_plot
            pyplot.gcf().sca(ax_gas)
            min_size = 100
            max_size = 10000
            alpha = 0.1
            x = gas.x
            y = gas.y
            z = gas.z
            z, x, y, us, h_smooths = z.sorted_with(x, y, gas.u, gas.h_smooth)
            u_min, u_max = min(us), max(us)

            log_u = numpy.log((us / u_min)) / numpy.log((u_max / u_min))
            clipped_log_u = numpy.minimum(numpy.ones_like(log_u), numpy.maximum(numpy.zeros_like(log_u), log_u))

            red = 1.0 - clipped_log_u**4
            blue = clipped_log_u**4
            green = numpy.minimum(red, blue)

            colors = numpy.transpose(numpy.array([red, green, blue]))
            n_pixels = pyplot.gcf().get_dpi() * pyplot.gcf().get_size_inches()

            ax_gas.set_axis_bgcolor('#101010')
            ax_gas.set_aspect("equal", adjustable="datalim")
            length_unit = smart_length_units_for_vector_quantity(x)
            phys_to_pix2 = n_pixels[0]*n_pixels[1] / ((max(x)-min(x))**2 + (max(y)-min(y))**2)
            sizes = numpy.minimum(numpy.maximum((h_smooths**2 * phys_to_pix2), min_size), max_size)

            scatter(x.as_quantity_in(length_unit), y.as_quantity_in(length_unit),
                    color=colors, s=sizes, edgecolors="none", alpha=alpha)

        plot_sph(self.gasA)
        plot_sph(self.gasB)
        xlabel(r'$x$')
        ylabel(r'$y$')

        pyplot.tight_layout()
        pyplot.savefig('out/{0}/plots/dm_gas_sph_subplot_{1}.png'
            .format(self.timestamp, i), dpi=50)
        # pyplot.show()
        pyplot.close()
Exemplo n.º 32
0
def plot_individual_cluster_density(cluster):
    """ Plot the particles' density radial profile and compare to model """
    pyplot.figure(figsize=(24, 18))

    # AMUSE datamodel particles. Gas has RHO and RHOm; dm rho from model.
    amuse_plot.scatter(cluster.gas.r,
                       cluster.gas.rho,
                       c="g",
                       edgecolor="face",
                       s=1,
                       label=r"Generated IC: gas $\rho$")
    # amuse_plot.scatter(cluster.gas.r,
    #    cluster.gas.rhom,
    #    c="r", edgecolor="face", s=1, label=r"Generated IC: gas $\rho_{\rm model}$")
    amuse_plot.scatter(cluster.dm.r,
                       cluster.dm.rho,
                       c="b",
                       edgecolor="none",
                       label=r"Generated IC: DM $\rho$")

    # Analytical solutions. Sample radii and plug into analytical expression.
    r = VectorQuantity.arange(units.kpc(1), units.kpc(10000),
                              units.parsec(100))

    # Plot analytical beta model (Donnert 2014) for the gas density
    amuse_plot.plot(r,
                    cluster.gas_density_double_beta(r),
                    c="k",
                    ls="dashed",
                    label=r"Analytical, $\beta$-model:"
                    "\n"
                    r"$\rho_0$ = {0} g/cm$^3$; $rc = ${1} kpc".format(
                        cluster.rho0gas.number, cluster.rc.number))
    # Plot analytical double beta model (Donnert et al. 2016, in prep) for gas
    amuse_plot.plot(
        r,
        cluster.gas_density_beta(r),
        c="k",
        ls="dotted",
        label=r"Analytical, double $\beta$-model:"
        "\n"
        r"$\rho_0$ = {0} g/cm$^3$; $rc =$ {1} kpc; $r_{{\rm cut}}$ = {2} kpc".
        format(cluster.rho0gas.number, cluster.rc.number, cluster.rcut.number))

    # Plot analytical Hernquist model for the DM density
    amuse_plot.plot(r,
                    cluster.dm_density(r),
                    c="k",
                    ls="solid",
                    label=r"Analytical, Hernquist-model"
                    "\n"
                    r"$M_{{\rm dm}}= ${0:.2e} MSun; $a = $ {1} kpc".format(
                        cluster.M_dm.number, cluster.a.number))

    pyplot.legend(loc=3)
    amuse_plot.xlabel(r"$r$")
    amuse_plot.ylabel(r"$\rho$")
    pyplot.gca().set_xlim(xmin=10, xmax=1e4)
    pyplot.gca().set_ylim(ymin=1e-30, ymax=9e-24)
    pyplot.gca().set_xscale("log")
    pyplot.gca().set_yscale("log")

    pyplot.axvline(x=cluster.R200.value_in(units.kpc), lw=1, c="grey")
    pyplot.text(cluster.R200.value_in(units.kpc), 5e-24,
                r"$r_{{cut}} =$ {0}".format(cluster.rcut))
    pyplot.axvline(x=cluster.rc.value_in(units.kpc), lw=1, c="grey")
    pyplot.text(cluster.rc.value_in(units.kpc), 5e-24,
                r"$rc =$ {0}".format(cluster.rc))
    pyplot.axvline(x=cluster.a.value_in(units.kpc), lw=1, c="grey")
    pyplot.text(cluster.a.value_in(units.kpc), 1e-24,
                r"$a =$ {0}".format(cluster.a))
Exemplo n.º 33
0
    def dm_rvir_gas_sph_3dsubplot(self):
        fig = pyplot.figure(figsize=(20, 10))
        ax_dm = fig.add_subplot(121, aspect='equal', projection='3d')
        ax_gas = fig.add_subplot(122, aspect='equal', projection='3d',
            sharex=ax_dm, sharey=ax_dm)

        # plot dark matter
        center_of_mass = self.dm.center_of_mass()
        virial_radius = self.dm.virial_radius().as_quantity_in(units.kpc)
        innersphere = self.dm.select(lambda r: (center_of_mass-r).length()<virial_radius,["position"])
        outersphere = self.dm.select(lambda r: (center_of_mass-r).length()>= virial_radius,["position"])
        pyplot.gcf().sca(ax_dm)
        x = outersphere.x.as_quantity_in(units.kpc)
        y = outersphere.y.as_quantity_in(units.kpc)
        z = outersphere.z.as_quantity_in(units.kpc)
        plot(x, y, z, 'o', c='red', label=r'$r \geq r_{\rm vir}$')
        x = innersphere.x.as_quantity_in(units.kpc)
        y = innersphere.y.as_quantity_in(units.kpc)
        z = innersphere.z.as_quantity_in(units.kpc)
        plot(x, y, z, 'o', c='green', label=r'$r < r_{\rm vir}$')
        xlabel(r'$x$')
        ylabel(r'$y$')
        ax_dm.set_zlabel(r'$z$ [{0}]'.format(virial_radius.unit))
        pyplot.legend()

        # plot gas as sph plot
        # Adjusted code from amuse.plot.sph_particles_plot
        pyplot.gcf().sca(ax_gas)
        min_size = 100
        max_size = 10000
        alpha = 0.1
        x = self.gas.x.as_quantity_in(units.kpc)
        y = self.gas.y.as_quantity_in(units.kpc)
        z = self.gas.z.as_quantity_in(units.kpc)
        z, x, y, us, h_smooths = z.sorted_with(x, y, self.gas.u, self.gas.h_smooth)
        u_min, u_max = min(us), max(us)

        log_u = numpy.log((us / u_min)) / numpy.log((u_max / u_min))
        clipped_log_u = numpy.minimum(numpy.ones_like(log_u), numpy.maximum(numpy.zeros_like(log_u), log_u))

        red = 1.0 - clipped_log_u**4
        blue = clipped_log_u**4
        green = numpy.minimum(red, blue)

        colors = numpy.transpose(numpy.array([red, green, blue]))
        n_pixels = pyplot.gcf().get_dpi() * pyplot.gcf().get_size_inches()

        ax_gas.set_axis_bgcolor('#101010')
        ax_gas.set_aspect("equal", adjustable = "datalim")
        phys_to_pix2 = n_pixels[0]*n_pixels[1] / ((max(x)-min(x))**2 + (max(y)-min(y))**2)
        sizes = numpy.minimum(numpy.maximum((h_smooths**2 * phys_to_pix2), min_size), max_size)

        ax_gas.scatter(x.number, y.number, z.number, color=colors, s=sizes, edgecolors="none", alpha=alpha)
        xlabel(r'$x$')
        ylabel(r'$y$')
        ax_gas.set_zlabel(r'$z$ [{0}]'.format(virial_radius.unit))

        xlim(-2.*virial_radius, 2*virial_radius)
        ylim(-2.*virial_radius, 2*virial_radius)
        ax_dm.set_zlim(-2.*virial_radius.number, 2*virial_radius.number)
        ax_gas.set_zlim(-2.*virial_radius.number, 2*virial_radius.number)
        pyplot.tight_layout()
        pyplot.show()
Exemplo n.º 34
0
from amuse.plot import (
        native_plot, plot, scatter, xlabel, ylabel, hist
        )
import numpy as np

if __name__ == "__main__":

    # latex_support()

    x = np.pi/20.0 * (range(-10, 10) | units.m)
    y1 = units.MSun.new_quantity(np.sin(x.number))
    y2 = units.MSun.new_quantity(x.number)
    native_plot.subplot(2, 2, 1)
    plot(x, y2, label='model')
    scatter(x, y1, label='data')
    xlabel('x')
    ylabel('mass [$M_\odot$]')  # overrides auto unit!
    native_plot.legend(loc=2)

    x = range(50) | units.Myr
    y1 = quantities.new_quantity(
        np.sin(np.arange(0, 1.5, 0.03)), 1e50*units.erg)
    y2 = -(1e43 | units.J) - y1
    native_plot.subplot(2, 2, 2)
    plot(x, y1, label='$E_\mathrm{kin}$')
    plot(x, y2, label='$E_\mathrm{pot}$')
    xlabel('t')
    ylabel('E')
    native_plot.legend()

    x = range(7) | units.day
Exemplo n.º 35
0
from matplotlib import pyplot
import pickle 


from amuse.plot import scatter, xlabel, ylabel

if __name__ in '__main__':
    datapoints = pickle.load(open("bound_mass.dat", "rb"))
    filename = "plots/bound_mass_at_6000_pc"

    pyplot.title("bound mass fraction of cluster orbiting at 6kpc")
    for datapoint in datapoints:
        scatter(datapoint["radius"], datapoint["hop_mass_fraction"])
    xlabel("cluster radius")
    ylabel("bound fraction of cluster mass")
    pyplot.savefig(filename)
Exemplo n.º 36
0
    def __init__(self):
        self.merger = ClusterMerger()

        timesteps = VectorQuantity.arange(0 | units.Myr, 1 | units.Gyr,
                                          50 | units.Myr)
        tot = len(timesteps)
        end_time = timesteps[-1]

        print "Starting Simulation :-)"
        print "Generating plots on the fly :-)"

        gasA_vel_list = [] | (units.km / units.s)
        dmA_vel_list = [] | (units.km / units.s)
        gasB_vel_list = [] | (units.km / units.s)
        dmB_vel_list = [] | (units.km / units.s)
        time_list = [] | units.Gyr
        for i, time in enumerate(timesteps):
            print_progressbar(i, tot)
            self.merger.code.evolve_model(time)
            self.merger.dm_gas_sph_subplot(i)
            gasA_vel_list.append(self.merger.gasA.center_of_mass_velocity())
            dmA_vel_list.append(self.merger.dmA.center_of_mass_velocity())
            gasB_vel_list.append(self.merger.gasB.center_of_mass_velocity())
            dmB_vel_list.append(self.merger.dmB.center_of_mass_velocity())
            time_list.append(time)
            write_set_to_file(
                self.merger.code.particles,
                'out/{0}/data/cluster_{1}.amuse'.format(
                    self.merger.timestamp, i), "amuse")

        print "Plotting velocity as function of time"
        fig = pyplot.figure(figsize=(12, 10), dpi=50)
        plot(time_list.number,
             gasA_vel_list.number,
             label="gasA",
             c='r',
             ls='solid')
        plot(time_list.number,
             dmA_vel_list.number,
             label="dmA",
             c='r',
             ls='dashed')
        plot(time_list.number,
             gasB_vel_list.number,
             label="gasB",
             c='g',
             ls='solid')
        plot(time_list.number,
             dmB_vel_list.number,
             label="dmB",
             c='g',
             ls='dashed')
        xlabel("Time")
        ylabel("Velocity")
        pyplot.legend()
        pyplot.show()

        print "Generating gif :-)"
        self.merger.create_gif()

        print "Stopping the code. End of pipeline :-)"
        self.merger.code.stop()