def fit_exp(x,
            y,
            guess_a,
            guess_A,
            guess_tau,
            fixed=[],
            show_fit=True,
            save=True,
            timestamp='',
            **kw):
    '''
	Fit single exponential to T1 data
	'''

    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
        guess_a, guess_A, guess_tau)

    fit_result = fit.fit1d(x,
                           y,
                           None,
                           p0=p0,
                           fitfunc=fitfunc,
                           fixed=fixed,
                           do_print=True,
                           ret=True)

    # Plot fit and format if requested
    keys = sorted(kw.keys())

    if show_fit:
        if len(keys) == 0:
            plot.plot_fit1d(fit_result,
                            np.linspace(0, x[-1], 201),
                            plot_data=True)
        elif len(keys) != 0 and 'ax' in keys:
            ax = kw['ax']
            plot.plot_fit1d(fit_result,
                            np.linspace(0, x[-1], 201),
                            plot_data=False,
                            ax=ax)
        elif len(keys) != 0 and 'ax' not in keys:
            print 'length of keyword arguments =', len(keys)
            raise Exception(
                "Your keywords for plot formatting didn't contain a pyplot axis with keyword 'ax'. Please provide it."
            )

    if 'xlabel' in keys:
        ax.set_xlabel(kw['xlabel'])
    if 'ylabel' in keys:
        ax.set_ylabel(kw['ylabel'])

    if timestamp != '':
        if timestamp == None:
            folder = toolbox.latest_data('ElectronT1')
        else:
            folder = toolbox.data_from_time(timestamp)

    if save:
        plt.savefig(os.path.join(folder, 'Calibrate_Pi_analysis_fit.png'))
    return fit_result
Exemplo n.º 2
0
def electron_T1_analysis(older_than='20161110_180000',
                         newer_than='20161110_141200',
                         mode='init0',
                         Amplitude=2,
                         offset=1,
                         T1=1e9,
                         do_print=True):

    Folder_list = toolbox.latest_data(
        contains='ElectronT1_111_1_sil18m0to0switch_on',
        older_than=older_than,
        newer_than=newer_than,
        return_all=True)
    x_tot = []
    y_tot = []
    y_var_tot = []

    for i in range(len(Folder_list)):
        print Folder_list[len(Folder_list) - i - 1]
        Folder = Folder_list[len(Folder_list) - i - 1]
        x, y, y_var = get_T1_data(Folder)
        #print y
        x_tot.extend(list(x))
        y_tot.extend(list(y))
        y_var_tot.extend(list(y_var))

    print x_tot
    print y_tot
    print y_var_tot

    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
        offset, Amplitude, T1)
    # fit_result = fit.fit1d(x_tot,y_tot, None, p0=p0, fitfunc=fitfunc, do_print=do_print, ret=True)
    # #plt.plot(x_tot,y_tot)
    # plot.plot_fit1d(fit_result, np.linspace(0,x_tot[-1],201), ax= None, plot_data=False)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.errorbar(x_tot, y_tot, fmt='o', yerr=y_var_tot)
    ax.set_ylim([0.0, 1.1])

    fit_result = fit.fit1d(x_tot,
                           y_tot,
                           None,
                           p0=p0,
                           fitfunc=fitfunc,
                           do_print=do_print,
                           ret=True)
    plot.plot_fit1d(fit_result,
                    np.linspace(0, x[-1], 201),
                    ax=ax,
                    plot_data=False)

    plt.savefig(os.path.join(Folder, 'analyzed_result.pdf'), format='pdf')
    plt.savefig(os.path.join(Folder, 'analyzed_result.png'), format='png')
Exemplo n.º 3
0
def fit_lifetime_curve_from_dL(p_cav_length,dL,lt,b,g_tau=2.,det_eff=0.2,fs_det_eff=0.03,ts=np.linspace(0,30e-9,31)):
    lifetime_curve = lifetime_under_vibrations(lt,b,p_cav_length,ts,det_eff=det_eff,fs_det_eff=fs_det_eff) 
    lifetime_curve_norm = lifetime_curve/lifetime_curve[0]
    plt.plot(lifetime_curve)
    plt.show()
    
    g_a = 0
    g_A = 1.
    fixed = [0]
    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(g_a, g_A, g_tau)
    fit_result = fit.fit1d(ts*1e9,lifetime_curve_norm, None, p0=p0, fitfunc=fitfunc, do_print=False, ret=True,fixed=fixed)
    ax=plot.plot_fit1d(fit_result,ts*1.e9, add_txt=True,label='Fit',show_guess=False, plot_data=True,ret='ax')
    return lifetime_curve_norm,fit_result
Exemplo n.º 4
0
def electron_T1_anal(timestamp=None,
                     measurement_name=['ms0'],
                     Amplitude=0.1,
                     T1=1000,
                     offset=1,
                     do_print=False):
    ''' Function to analyze T1 measurements. Loads the results and fits them to a simple exponential.
    Inputs:
    timestamp: in format yyyymmdd_hhmmss or hhmmss or None.
    measurement_name: list of measurement names
    '''

    if timestamp != None:
        folder = toolbox.data_from_time(timestamp)
    else:
        folder = toolbox.latest_data('ElectronT1')

    fit_results = []
    for k in range(0, len(measurement_name)):
        a = sequence.SequenceAnalysis(folder)
        a.get_sweep_pts()
        a.get_readout_results('ssro')
        #a.get_readout_results(measurement_name[k]) #commented out since newer measurements are no longer grouped which renders the whole for-loop obsolete. NK 20141110
        a.get_electron_ROC()
        ax = a.plot_result_vs_sweepparam(ret='ax')

        x = a.sweep_pts
        p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
            offset, Amplitude, T1)
        y = a.p0
        #print y
        fit_result = fit.fit1d(x,
                               y,
                               None,
                               p0=p0,
                               fitfunc=fitfunc,
                               do_print=do_print,
                               ret=True)
        plot.plot_fit1d(fit_result,
                        np.linspace(0, x[-1], 201),
                        ax=ax,
                        plot_data=False)
        fit_results.append(fit_result)

        plt.savefig(os.path.join(folder, 'analyzed_result.pdf'), format='pdf')
        plt.savefig(os.path.join(folder, 'analyzed_result.png'), format='png')

    return fit_results
def fit_exp(x, y,
	guess_a,
	guess_A,
	guess_tau,
	fixed = [],
	show_fit = True,
	save = True,
	timestamp = '',
	**kw):
	'''
	Fit single exponential to T1 data
	'''

	p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(guess_a,guess_A, guess_tau)

	fit_result = fit.fit1d(x,y, None, p0=p0, fitfunc=fitfunc, fixed=fixed,
		        do_print=True, ret=True)
	
	# Plot fit and format if requested
	keys = sorted(kw.keys())

	if show_fit:
		if len(keys) == 0:
			plot.plot_fit1d(fit_result, np.linspace(0,x[-1],201),
	       plot_data=True)
		elif len(keys) != 0 and 'ax' in keys:
			ax = kw['ax']
			plot.plot_fit1d(fit_result, np.linspace(0,x[-1],201),
	       plot_data=False, ax = ax)
		elif len(keys) != 0 and 'ax' not in keys:
			print 'length of keyword arguments =', len(keys)
			raise Exception("Your keywords for plot formatting didn't contain a pyplot axis with keyword 'ax'. Please provide it.")

	if 'xlabel' in keys:
		ax.set_xlabel(kw['xlabel'])
	if 'ylabel' in keys:
		ax.set_ylabel(kw['ylabel'])


	if timestamp != '':
		if timestamp == None:
			folder = toolbox.latest_data('ElectronT1')
		else:
			folder = toolbox.data_from_time(timestamp)

	if save:
		plt.savefig(os.path.join(folder, 'Calibrate_Pi_analysis_fit.png'))
	return fit_result	
Exemplo n.º 6
0
def electron_T1_anal(timestamp=None, measurement_name = ['ms0'],Amplitude = 0.1, T1 = 1000, offset =1,do_print = False):
    ''' Function to analyze T1 measurements. Loads the results and fits them to a simple exponential.
    Inputs:
    timestamp: in format yyyymmdd_hhmmss or hhmmss or None.
    measurement_name: list of measurement names
    '''

    if timestamp != None:
        folder = toolbox.data_from_time(timestamp)
    else:
        folder = toolbox.latest_data('T1')

    fit_results = []
    for k in range(0,len(measurement_name)):
        a = sequence.SequenceAnalysis(folder)
        a.get_sweep_pts()
        a.get_readout_results('ssro')
        #a.get_readout_results(measurement_name[k]) #commented out since newer measurements are no longer grouped which renders the whole for-loop obsolete. NK 20141110
        a.get_electron_ROC()
        ax = a.plot_result_vs_sweepparam(ret='ax')

        x = a.sweep_pts
        p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(offset, Amplitude, T1)
        y = a.p0
        print y
        fit_result = fit.fit1d(x,y, None, p0=p0, fitfunc=fitfunc, do_print=do_print, ret=True)
        plot.plot_fit1d(fit_result, np.linspace(0,x[-1],201), ax=ax, plot_data=False)
        fit_results.append(fit_result)

        plt.savefig(os.path.join(folder, 'analyzed_result.pdf'),
        format='pdf')
        plt.savefig(os.path.join(folder, 'analyzed_result.png'),
        format='png')


    return fit_results
Exemplo n.º 7
0
def repump_speed(contains='repump_speed',
                 name='adwindata',
                 do_fit=False,
                 **kw):
    show_guess = kw.pop('show_guess', False)
    g_a = kw.pop('offset', 0.0)
    g_A = kw.pop('A', 1.0)
    g_tau = kw.pop('tau', 100.0)
    fixed = kw.pop('fixed', [0])

    ### acquire data
    f = toolbox.latest_data(contains, **kw)
    a = mbi.MBIAnalysis(f)
    a.get_sweep_pts()
    a.get_readout_results(name=name)
    a.get_electron_ROC(**kw)

    x = a.sweep_pts.reshape(-1)
    y = 1.0 - a.p0.reshape(-1)
    y_u = a.u_p0.reshape(-1)

    xlabel = a.sweep_name
    ylabel = r'$1 - p(|0\rangle)$'

    fig, ax = create_plot(f,
                          xlabel=xlabel,
                          ylabel=ylabel,
                          title='repump speed')

    plot_data(x, y, y_u=y_u)

    if do_fit:

        p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
            g_a, g_A, g_tau)

        if show_guess:
            # print decay
            ax.plot(np.linspace(x[0], x[-1], 201),
                    fitfunc(np.linspace(x[0], x[-1], 201)),
                    ':',
                    lw=2)

        fit_result = fit.fit1d(x,
                               y,
                               None,
                               p0=p0,
                               fitfunc=fitfunc,
                               do_print=True,
                               fixed=fixed,
                               ret=True)

        if isinstance(fit_result, int):
            print "Fit failed!"
        else:
            plot.plot_fit1d(fit_result,
                            np.linspace(x[0], x[-1], 100),
                            ax=ax,
                            plot_data=False)

    save_and_close_plot(f)

    if kw.get('ret_data', False):
        return x, y, y_u

    if kw.get('ret', False):
        return fit_result
Exemplo n.º 8
0
def plot_summation(Amplitude=1, offset=0.333, T1=1000, do_print=True):

    x_tot1, y_tot1, y_var_tot1 = electron_T1_mul(older_than='20161110_172800',
                                                 newer_than='20161110_141500')
    x_tot2, y_tot2, y_var_tot2 = electron_T1_ms_1()
    x_tot3, y_tot3, y_var_tot3 = electron_T1_msp1()

    # print len(x_tot1)
    # print len(x_tot2)
    # print len(x_tot3)

    x_tot = (x_tot1 + x_tot2 + x_tot3) / 3.0
    y_tot = (y_tot1 + y_tot2 + y_tot3) / 3.0
    y_var_tot = ((y_var_tot1**2 + y_var_tot2**2 + y_var_tot3**2)**0.5)
    print 'y_tot is' + str(y_tot)
    print 'y_var_tot is ' + str(y_var_tot)

    fig = plt.figure(111, figsize=(9, 5))
    ax1 = fig.add_subplot(111)
    #ax1.errorbar(x_tot,y_tot,fmt='o',yerr=y_var_tot)

    ax1.errorbar(x_tot1,
                 y_tot1,
                 fmt='o',
                 color='r',
                 label='ms=0',
                 yerr=y_var_tot1)
    ax1.errorbar(x_tot2,
                 y_tot2,
                 fmt='s',
                 color='b',
                 label='ms=-1',
                 yerr=y_var_tot2)
    ax1.errorbar(x_tot3,
                 y_tot3,
                 fmt='^',
                 color='g',
                 label='ms=+1',
                 yerr=y_var_tot3)

    ax1.set_xlabel('Total evolution time (s)')
    ax1.set_ylabel('State Fidelity')
    #ax1.grid()
    ax1.set_ylim([0.3, 1.1])
    ax1.set_xscale('log')
    plt.legend(loc=3)

    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
        offset, Amplitude, T1)
    fit_result = fit.fit1d(x_tot,
                           y_tot,
                           None,
                           p0=p0,
                           fitfunc=fitfunc,
                           do_print=do_print,
                           ret=True,
                           fixed=[0])

    #y=A * exp(-x/tau) + a
    plot.plot_fit1d(fit_result,
                    np.linspace(0, 50 * x_tot[-1], 501),
                    ax=ax1,
                    add_txt=False,
                    color='b',
                    plot_data=False)

    # plt.savefig(os.path.join(Folder, 'sum_log.pdf'),
    # format='pdf')
    # plt.savefig(os.path.join(Folder, 'sum_log.png'),
    # format='png')

    # print 'data saved in  ' + str(Folder)

    return x_tot1, y_tot1, y_var_tot1
Exemplo n.º 9
0
def electron_T1_msp1(older_than='20161121_190000',
                     newer_than='20161121_171000',
                     mode='init0',
                     Amplitude=1,
                     offset=1,
                     T1=1e9,
                     do_print=True):

    Folder_list = toolbox.latest_data(contains='T1',
                                      older_than=older_than,
                                      newer_than=newer_than,
                                      return_all=True)
    x_tot = []
    y_tot = []
    y_var_tot = []

    for i in range(len(Folder_list)):
        print Folder_list[len(Folder_list) - i - 1]
        Folder = Folder_list[len(Folder_list) - i - 1]
        x, y, y_var = get_T1_data(Folder)
        #print y
        x_tot.extend(list(x))
        y_tot.extend(list(y))
        y_var_tot.extend(list(y_var))

################################################data from 20s to 60s #####################################################
# x1,y1,y_var1 = electron_T1_mul_600_1000(older_than='20161110_211700',newer_than='20161110_172900')

# x_tot.extend(list(x1))
# y_tot.extend(list(y1))
# y_var_tot.extend(list(y_var1))

############################################################## data at 5 mins
    x2, y2, y_var2 = electron_T1_mul_3(older_than='20161124_080000',
                                       newer_than='20161121_190000',
                                       contains='20s')

    x_tot.append(x2)
    y_tot.append(y2)
    y_var_tot.append(y_var2)
    ############################################################## data at 10 mins

    x3, y3, y_var3 = electron_T1_mul_3(older_than='20161124_080000',
                                       newer_than='20161121_190000',
                                       contains='40s')

    x_tot.append(x3)
    y_tot.append(y3)
    y_var_tot.append(y_var3)
    #################################################################
    x4, y4, y_var4 = electron_T1_mul_3(older_than='20161124_080000',
                                       newer_than='20161121_190000',
                                       contains='60s')

    x_tot.append(x4)
    y_tot.append(y4)
    y_var_tot.append(y_var4)

    ###############################################################
    x5, y5, y_var5 = electron_T1_mul_3(older_than='20161124_080000',
                                       newer_than='20161121_190000',
                                       contains='5_min')

    x_tot.append(x5)
    y_tot.append(y5)
    y_var_tot.append(y_var5)

    #################################################################
    x6, y6, y_var6 = electron_T1_mul_3(older_than='20161124_080000',
                                       newer_than='20161121_190000',
                                       contains='10_min')

    x_tot.append(x6)
    y_tot.append(y6)
    y_var_tot.append(y_var6)

    x_tot = np.array(x_tot) / 1e3
    y_tot = np.array(y_tot)
    y_var_tot = np.array(y_var_tot)
    #ax_tot=np.array(ax_tot)

    # print x_tot
    # print y_tot
    # print y_var_tot

    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
        offset, Amplitude, T1)
    # fit_result = fit.fit1d(x_tot,y_tot, None, p0=p0, fitfunc=fitfunc, do_print=do_print, ret=True)
    # #plt.plot(x_tot,y_tot)
    # plot.plot_fit1d(fit_result, np.linspace(0,x_tot[-1],201), ax= None, plot_data=False)

    fig = plt.figure(1, figsize=(9, 6))
    ax = fig.add_subplot(111)
    ax.grid()
    ax.set_xlabel('Total evolution time (s)')
    ax.set_ylabel('State Fidelity')
    ax.errorbar(x_tot, y_tot, fmt='o', yerr=y_var_tot)
    ax.set_ylim([0.3, 1.1])
    ax.set_xlim([0, 650])

    fit_result = fit.fit1d(x_tot,
                           y_tot,
                           None,
                           p0=p0,
                           fitfunc=fitfunc,
                           do_print=do_print,
                           ret=True)
    # plot.plot_fit1d(fit_result, np.linspace(0,x[-1],201), ax=ax, plot_data=False)

    plt.savefig(os.path.join(Folder, 'analyzed_result.pdf'), format='pdf')
    plt.savefig(os.path.join(Folder, 'analyzed_result.png'), format='png')

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.set_xlabel('Time (s)')
    ax1.set_ylabel('Fidelity')
    ax1.grid()
    ax1.errorbar(x_tot, y_tot, fmt='o', yerr=y_var_tot)
    ax1.set_ylim([0.3, 1.1])
    ax1.set_xscale('log')

    plt.savefig(os.path.join(Folder, 'analyzed_result_log.pdf'), format='pdf')
    plt.savefig(os.path.join(Folder, 'analyzed_result_log.png'), format='png')

    print 'data saved in  ' + str(Folder)

    return x_tot, y_tot, y_var_tot
Exemplo n.º 10
0
def plot_total_spin_population(Amplitude=0.69315,
                               offset=0.3333,
                               T1=1000,
                               do_print=True):
    x1, y1, e1 = electron_T1_mul_3_uncorrected(older_than='20161127_092000',
                                               newer_than='20161126_074000',
                                               Amplitude=1,
                                               offset=1,
                                               T1=1e7,
                                               return_x='all')
    x2, y2, e2 = electron_T1_mul_3_uncorrected(older_than='20170407_204000',
                                               newer_than='20170406_174400',
                                               Amplitude=1,
                                               offset=1,
                                               T1=1e7,
                                               return_x='all')
    x3, y3, e3 = electron_T1_mul_3_uncorrected(older_than='20161113_200000',
                                               newer_than='20161112_033700',
                                               Amplitude=1,
                                               offset=1,
                                               T1=1e7,
                                               return_x='2_all')

    x2 = np.delete(x2, 1)
    y2 = np.delete(y2, 1)
    x1 = np.delete(x1, 1)
    y1 = np.delete(y1, 1)
    e1 = np.delete(e1, 1)
    e2 = np.delete(e2, 1)

    e_tot = ((e1**2 + e2**2 + e3**2)**0.5) / 3

    fig = plt.figure(211, figsize=(5, 3))
    ax = fig.add_subplot(111)
    #ax.errorbar(x1*1.0e-3, y1, yerr=e1, fmt='o',color='b',label='ms=0 to ms=+1')
    #ax.errorbar(x2*1.0e-3, y2, yerr=e2, fmt='^',color='g',label='ms=0 to ms=-1')
    ax.errorbar(x3 * 1.0e-3,
                y3,
                yerr=e3,
                fmt='o',
                color='r',
                label='ms=0 to ms=0')

    ax.errorbar(x1 * 1.0e-3, (y1 + y2 + y3),
                yerr=e_tot,
                fmt='o',
                color='k',
                label='Total spin population ')

    y_tot = (y1 + y2 + y3)
    x = x1 * 1.0e-3
    print y1
    print y3
    print y_tot
    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
        offset, Amplitude, T1)
    fit_result = fit.fit1d(x,
                           y_tot,
                           None,
                           p0=p0,
                           fitfunc=fitfunc,
                           do_print=do_print,
                           ret=True,
                           fixed=[0, 1])

    #y=A * exp(-x/tau) + a
    plot.plot_fit1d(fit_result,
                    np.linspace(0, 50 * x[-1], 501),
                    ax=ax,
                    add_txt=False,
                    color='b',
                    plot_data=False)

    ax.set_xscale('log')
    ax.set_xlabel('Total evolution time (s)')
    ax.set_ylabel('Population')
    ax.set_xlim(1.0e-3, 1.0e4)
    ax.set_ylim(0.7, 1.06)
    plt.legend(fontsize=11, loc=3)

    plt.savefig(
        'C:\Users\TUD277931\Dropbox\TaminiauLab\Projects\Coherence in multi-qubit systems\Paper\Figures\Fig 1\T1_total_spin_population.pdf',
        format='pdf',
        bbox_inches='tight',
        pad_inches=0.2,
        transparent=True)
Exemplo n.º 11
0
def plot_summation(Amplitude=1, offset=0.333, T1=1000, do_print=True):

    x_tot1, y_tot1, y_var_tot1 = electron_T1_mul(older_than='20161110_172800',
                                                 newer_than='20161110_141500')
    x_tot2, y_tot2, y_var_tot2 = electron_T1_ms_1()
    x_tot3, y_tot3, y_var_tot3 = electron_T1_msp1()

    # print len(x_tot1)
    # print len(x_tot2)
    # print len(x_tot3)

    x_tot = (x_tot1 + x_tot2 + x_tot3) / 3.0
    y_tot = (y_tot1 + y_tot2 + y_tot3) / 3.0
    y_var_tot = ((y_var_tot1**2 + y_var_tot2**2 + y_var_tot3**2)**0.5)
    print 'y_tot is' + str(y_tot)
    print 'y_var_tot is ' + str(y_var_tot)

    fig = plt.figure(111, figsize=(4, 2))
    ax1 = fig.add_subplot(111)
    #ax1.errorbar(x_tot,y_tot,fmt='o',yerr=y_var_tot)

    ax1.errorbar(x_tot1,
                 y_tot1,
                 fmt='o',
                 color='r',
                 label='ms=0',
                 yerr=y_var_tot1,
                 lw=1.7,
                 markersize=3)
    ax1.errorbar(x_tot2,
                 y_tot2,
                 fmt='s',
                 color='b',
                 label='ms=-1',
                 yerr=y_var_tot2,
                 lw=1.7,
                 markersize=3)
    ax1.errorbar(x_tot3,
                 y_tot3,
                 fmt='^',
                 color='g',
                 label='ms=+1',
                 yerr=y_var_tot3,
                 lw=1.7,
                 markersize=3)

    ax1.set_xlabel('Total evolution time (s)')
    ax1.set_ylabel('State fidelity')
    #ax1.grid()
    ax1.set_ylim([0.3, 1.08])
    ax1.set_yticks([0.4, 0.6, 0.8, 1])
    ax1.set_xscale('log')
    plt.legend(numpoints=1, loc=3, fontsize=10, frameon=False)

    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
        offset, Amplitude, T1)
    fit_result = fit.fit1d(x_tot,
                           y_tot,
                           None,
                           p0=p0,
                           fitfunc=fitfunc,
                           do_print=do_print,
                           ret=True,
                           fixed=[0])

    #y=A * exp(-x/tau) + a
    plot.plot_fit1d(fit_result,
                    np.linspace(0, 50 * x_tot[-1], 501),
                    ax=ax1,
                    add_txt=False,
                    color='b',
                    plot_data=False)
    plt.savefig(
        'C:\Users\TUD277931\Dropbox\TaminiauLab\Projects\Coherence in multi-qubit systems\Paper\Figures\Fig 1\T1_tim_proposal_2.pdf',
        format='pdf',
        bbox_inches='tight',
        pad_inches=0.2,
        transparent=True)

    # plt.savefig(os.path.join(Folder, 'sum_log.png'),
    # format='png')

    #print 'data saved in  ' + str(Folder)

    return x_tot1, y_tot1, y_var_tot1
Exemplo n.º 12
0
def electron_T1_mul(older_than='20161110_180000',
                    newer_than='20161110_141200',
                    mode='init0',
                    Amplitude=1,
                    offset=1,
                    T1=1e9,
                    do_print=True):

    Folder_list = toolbox.latest_data(contains='T1',
                                      older_than=older_than,
                                      newer_than=newer_than,
                                      return_all=True)
    Directory = Folder_list[0]
    Date = Folder_list[1]
    x_tot = []
    y_tot = []
    y_var_tot = []

    for i in range(len(Folder_list)):
        #print Folder_list[len(Folder_list)-i-1]
        Folder = Folder_list[len(Folder_list) - i - 1]
        x, y, y_var = get_T1_data(Folder)
        #print y
        x_tot.extend(list(x))
        y_tot.extend(list(y))
        y_var_tot.extend(list(y_var))

    ################################################data from 20s to 60s #####################################################
    x1, y1, y_var1 = electron_T1_mul_1(older_than='20161110_211700',
                                       newer_than='20161110_172900')

    x_tot.extend(list(x1))
    y_tot.extend(list(y1))
    y_var_tot.extend(list(y_var1))

    ############################################################## data at 5 mins
    x2, y2, y_var2 = electron_T1_mul_3_uncorrected(
        older_than='20161112_033700',
        newer_than='20161110_224600',
        return_x='2')

    x_tot.append(x2)
    y_tot.append(y2)
    y_var_tot.append(y_var2)
    ############################################################## data at 10 mins

    x3, y3, y_var3 = electron_T1_mul_3_uncorrected(
        older_than='20161113_200000',
        newer_than='20161112_033700',
        return_x='2')

    x_tot.append(x3)
    y_tot.append(y3)
    y_var_tot.append(y_var3)
    #################################################################

    x_tot = np.array(x_tot) / 1e3
    y_tot = np.array(y_tot)
    y_var_tot = np.array(y_var_tot)
    #ax_tot=np.array(ax_tot)

    #print x_tot
    #print y_tot
    #print y_var_tot

    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(
        offset, Amplitude, T1)
    # fit_result = fit.fit1d(x_tot,y_tot, None, p0=p0, fitfunc=fitfunc, do_print=do_print, ret=True)
    # #plt.plot(x_tot,y_tot)
    # plot.plot_fit1d(fit_result, np.linspace(0,x_tot[-1],201), ax= None, plot_data=False)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.grid()
    ax.set_xlabel('Time (s)')
    ax.set_ylabel('Fidelity')
    ax.errorbar(x_tot, y_tot, fmt='o', yerr=y_var_tot)
    ax.set_ylim([0.3, 1.1])
    ax.set_xlim([0, 650])

    fit_result = fit.fit1d(x_tot,
                           y_tot,
                           None,
                           p0=p0,
                           fitfunc=fitfunc,
                           do_print=do_print,
                           ret=True)
    # plot.plot_fit1d(fit_result, np.linspace(0,x[-1],201), ax=ax, plot_data=False)

    plt.savefig(os.path.join(Folder, 'analyzed_result.pdf'), format='pdf')
    plt.savefig(os.path.join(Folder, 'analyzed_result.png'), format='png')

    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    ax1.grid()
    ax1.set_xlabel('Time (s)')
    ax1.set_ylabel('Fidelity')
    ax1.errorbar(x_tot, y_tot, fmt='o', yerr=y_var_tot)
    ax1.set_ylim([0.3, 1.1])
    ax1.set_xscale('log')

    plt.savefig(os.path.join(Folder, 'analyzed_result_log.pdf'), format='pdf')
    plt.savefig(os.path.join(Folder, 'analyzed_result_log.png'), format='png')

    print 'data saved in  ' + str(Folder)

    return x_tot, y_tot, y_var_tot
Exemplo n.º 13
0
def electron_T1_anal_mul(older_than='20150227_184920',newer_than='20150227_101541',mode='contrast', Amplitude=1, Offset=1, T1=1e7):
    ''' Function to analyze T1 measurements. Loads the results and fits them to a simple exponential.
    Inputs:
    older_than = older than timestamp
    newer_than = newer than timestamp
    mode = init_0 init_1 contrast
    '''

    Folder_list = toolbox.latest_data(contains='T1',older_than='20150227_184920',newer_than='20150227_101541',return_all=True)
    Directory = Folder_list[0]
    Date = Folder_list[1]
    init0 = [k for k in Folder_list[2] if 'init_0' in k]
    init1 = [k for k in Folder_list[2] if 'init_1' in k]


    def get_T1_data(folder): #Assures that the data is in the right order
        a = sequence.SequenceAnalysis(folder)
        a.get_sweep_pts()
        a.get_readout_results('ssro')
        a.get_electron_ROC()
        x = a.sweep_pts
        y = a.p0
        y_var = (a.u_p0)**2
        minloc = -np.where(x == min(x))[0][0]
        
        x = np.roll(x,minloc)
        y = np.roll(y,minloc)
        y_var = np.roll(y_var,minloc)

        return x,y,y_var

    if mode == 'init0' or mode == 'contrast':
        x0_tot = np.zeros((6,))
        y0_tot = np.zeros((6,))
        y0_var_tot = np.zeros((6,))

        for i in range(len(init0)):
            Folder = Directory + "\\" + Date + "\\" + init0[i]
            x,y,y_var = get_T1_data(Folder)
            y0_tot += y
            y0_var_tot += y_var

        y0_tot /= len(init0)
        y0_var_tot /= len(init0)


    if mode == 'init1' or mode == 'contrast':
        x1_tot = np.zeros((6,))
        y1_tot = np.zeros((6,))
        y1_var_tot = np.zeros((6),)

        for i in range(len(init1)):
            Folder = Directory + "\\" + Date + "\\" + init1[i]
            x,y,y_var = get_T1_data(Folder)
            y1_tot += y
            y1_var_tot += y_var
        
        y1_tot /= len(init0)
        y1_var_tot /= (len(init0)) 

    if mode == 'init1':
        y_tot = y1_tot
        y_var_tot = y1_var_tot
    elif mode == 'init0':
        y_tot = y1_tot
        y_var_tot = y1_var_tot
    elif mode == 'contrast':
        y_diff = y0_tot - y1_tot
        var_diff = (y0_var_tot + y1_var_tot) / 2
    else:
        raise Exception('Mode not specified')


    p0, fitfunc, fitfunc_str = common.fit_exp_decay_with_offset(Amplitude, Offset, T1)


    a = sequence.SequenceAnalysis(Directory + "\\" + Date + "\\" + init0[0])
    a.get_sweep_pts()
    a.sweep_pts = x / 1e6
    a.sweep_name = 'Times (sec)'
    a.get_readout_results('ssro')
    a.get_electron_ROC()

    a.p0 = y_diff
    a.u_p0 = var_diff**0.5
    ax = a.plot_result_vs_sweepparam(ret='ax')

    fit_result = fit.fit1d(x / 1e6,y_diff, None, p0=p0, fitfunc=fitfunc, do_print=False, ret=True)
    plot.plot_fit1d(fit_result, np.linspace(0,x[-1]/1e6,201), ax=ax, plot_data=False)