Exemplo n.º 1
0
def analysis():
	fres_desr,data_desr,udata_desr = sc.plot_dark_esr(sc.get_latest_data('dark',date='20130311'),d='20130311')
	fres_zero,data_zero,udata_zero = sc.plot_dark_esr(sc.get_latest_data('init_',date='20130311'),d='20130311')
	fres_min1,data_min1,udata_min1 = sc.plot_dark_esr(sc.get_latest_data('init_',date='20130305'),d='20130305')
	esr_data={}
	xfit=np.linspace(fres_desr['x'].min(),fres_desr['x'].max(),501)
	esr_data['xfit']=xfit
	esr_data['desrfit'] = fres_desr['fitfunc'](xfit)
	esr_data['zerofit'] = fres_zero['fitfunc'](xfit)
	esr_data['min1fit'] = fres_min1['fitfunc'](xfit)
	esr_data['xdesr'] = fres_desr['x']
	esr_data['xzero'] = fres_zero['x']
	esr_data['xmin1'] = fres_min1['x']

	esr_data['datadesr'] = data_desr
	esr_data['datazero'] = data_zero
	esr_data['datamin1'] =data_min1

	esr_data['udatadesr'] = udata_desr
	esr_data['udatazero'] = udata_zero
	esr_data['udatamin1'] = udata_min1

	print os.path.join(basepath,name)
	print type(esr_data)
	np.savez(os.path.join(basepath,name), **esr_data)
Exemplo n.º 2
0
def analysis():
    fres_desr, data_desr, udata_desr = sc.plot_dark_esr(sc.get_latest_data(
        'dark', date='20130311'),
                                                        d='20130311')
    fres_zero, data_zero, udata_zero = sc.plot_dark_esr(sc.get_latest_data(
        'init_', date='20130311'),
                                                        d='20130311')
    fres_min1, data_min1, udata_min1 = sc.plot_dark_esr(sc.get_latest_data(
        'init_', date='20130305'),
                                                        d='20130305')
    esr_data = {}
    xfit = np.linspace(fres_desr['x'].min(), fres_desr['x'].max(), 501)
    esr_data['xfit'] = xfit
    esr_data['desrfit'] = fres_desr['fitfunc'](xfit)
    esr_data['zerofit'] = fres_zero['fitfunc'](xfit)
    esr_data['min1fit'] = fres_min1['fitfunc'](xfit)
    esr_data['xdesr'] = fres_desr['x']
    esr_data['xzero'] = fres_zero['x']
    esr_data['xmin1'] = fres_min1['x']

    esr_data['datadesr'] = data_desr
    esr_data['datazero'] = data_zero
    esr_data['datamin1'] = data_min1

    esr_data['udatadesr'] = udata_desr
    esr_data['udatazero'] = udata_zero
    esr_data['udatamin1'] = udata_min1

    print os.path.join(basepath, name)
    print type(esr_data)
    np.savez(os.path.join(basepath, name), **esr_data)
Exemplo n.º 3
0
def main():
    if power_and_mw_ok():
        counter.set_is_running(False)
        if not SE:
            generate_sequence()
        else:
            generate_sequence_SE()
        awg.set_runmode('SEQ')
        awg.start()  
        while awg.get_state() != 'Waiting for trigger':
            qt.msleep(1)
        data = meas.Measurement(name,'rabi')
        microwaves.set_status('on')
        spin_control(name,data,par)
        end_measurement()
        sc.plot_rabi(sc.get_latest_data(name))
    else:
        print 'Measurement aborted.'
Exemplo n.º 4
0
zfoldernames=['154355']
zd='20130403'
th=''
dir='up'
'''
# 1 msmnt
d='20130405'
foldernames=['141755','144145','150814','153230','155539','161924','164248','171312']
zd=d
zfoldernames=['130443','173349']
th=''
'''
tau=50.
utau=1
for n in foldernames:
    datapath=sc.get_latest_data(n,date=d)
    
    files = os.listdir(datapath)
    f='Spin_RO'
    for k in files:
        if f in k:
            spin_ro_file = k

    data = np.load(datapath+'\\'+spin_ro_file)
    if (n==foldernames[0]):
        phase=np.zeros(len(data['FS']))
        rep=np.zeros(len(data['FS']))
    reps_array=data['SN']+data['FF']+data['FS']
    reps=reps_array[0]
    data_norm={}
    data_norm['sweep_par']=data['sweep_par']
from numpy import *
import pylab as plt
from analysis.lib.fitting import fit, common
from analysis.lib.tools import plot
from analysis.lib.spin import spin_control as sc

datafolders=['no_Ey','1u_Ey','2u_Ey','3u_Ey']
RO_time=[0,1,2,3]
for i in datafolders:
    result= sc.plot_rabi(sc.get_latest_data(i))
    amp.append(2*result[0]['params'][1])
    phase.append(result[0]['params'][3])
    

plt.figure(1)
plt.plot(RO_time,amp,'bo')
plt.xlabel ('RO time [us]', fontsize = 16)
plt.ylabel ('Contrast', fontsize = 16)   
plt.ylim ([0, 1])
plt.show()

plt.figure(2)
plt.plot(RO_time,phase,'bo')
plt.xlabel ('RO time [us]', fontsize = 16)
plt.ylabel ('Phase [degree]', fontsize = 16)   
plt.ylim ([0, 1])
plt.show()
Exemplo n.º 6
0
from numpy import *
import pylab as plt
from analysis.lib.fitting import fit, common
from analysis.lib.tools import plot
from analysis.lib.spin import spin_control as sc

#datafolders=['1154','1252','1258','1303','1310','1347','1351','1316','1326', '1453']
#RO_time=[0,1,2,3,4,5,6,7,9, 11]
datafolders=['144831','145714','150926','151701','152503','153402','154024']
RO_power=[0,12,5,20,30,25,8]
amp=[]
phase=[]
for i in datafolders:
    result= sc.plot_rabi(sc.get_latest_data(i))
    result= sc.plot_rabi(sc.get_latest_data(i))
    #qt.sleep(4)
    amp.append(abs(2*result[0]['params'][1]))
    phase.append(result[0]['params'][3])
'''
datafoldersCond=['1502','4us','6us','8us', '10us', '12us']
RO_timeCond=[2,4,6,8, 10, 12]
ampCond=[]
phaseCond=[]
for i in datafoldersCond:
    result= sc.plot_rabi(sc.get_latest_data(i,datapath=r'D:\measuring\data\20121219'))
    #qt.sleep(4)
    ampCond.append(abs(2*result[0]['params'][1]))
    phaseCond.append(result[0]['params'][3])
'''
result=fit.fit1d(np.array(RO_power), np.array(amp/amp[0]), common.fit_exp_decay_with_offset, 
Exemplo n.º 7
0
th=''
dir='up'

# 1 msmnt
d='20130405'
foldernames=['141755','144145','150814','153230','155539','161924','164248','171312']
zd=d
zfoldernames=['130443','173349']
th=''
'''
tau = 50.
utau = 1
p = r'D:\machielblok\Desktop\PhD\QTlab\data\output\multiple_msmnts'
t = 'uncollapse_crimson_50ns'
for n in foldernames:
    datapath = sc.get_latest_data(n, date=d)

    files = os.listdir(datapath)
    f = 'Spin_RO'
    for k in files:
        if f in k:
            spin_ro_file = k

    data = np.load(datapath + '\\' + spin_ro_file)
    if (n == foldernames[0]):
        phase = np.zeros(len(data['FS']))
        rep = np.zeros(len(data['FS']))
    reps_array = data['SN'] + data['FF'] + data['FS']
    reps = reps_array[0]
    data_norm = {}
    data_norm['sweep_par'] = data['sweep_par']