def __init__(self): self.udref0 = ConstService(tex_name=r'u_{dref0}', v_str='vd0 + ra*Id0 - xs*Iq0') self.uqref0 = ConstService( tex_name=r'u_{qref0}', v_str='vq0 + ra*Iq0 + xs*Id0', ) # PIvd_y, PIvq_y are Idref, Iqref self.PIId = PIController( u='Id - PIvd_y', kp=self.KpId, ki=self.KiId, ) self.PIIq = PIController( u='Iq - PIvq_y', kp=self.KpIq, ki=self.KiIq, ) # udLag_y, uqLag_y are ud, uq self.Id.e_str = 'vd + ra*Id - xs*Iq - udLag_y' self.Iq.e_str = 'vq + ra*Iq + xs*Id - uqLag_y' self.udref = Algeb( tex_name=r'u_{dref}', info='ud reference', v_str='udref0', e_str='PIId_y + vd - Iqref * xs - udref', ) self.uqref = Algeb( tex_name=r'u_{qref}', info='uq reference', v_str='uqref0', e_str='PIIq_y + vq + Idref * xs - uqref', ) self.udLag = Lag( u='udref', T=self.Tc, K=1, ) self.uqLag = Lag( u='uqref', T=self.Tc, K=1, ) self.ud = AliasState(self.udLag_y) self.uq = AliasState(self.uqLag_y)
def __init__(self, system, config): TGBase.__init__(self, system, config) self.F1 = Lag( u='ue * (omega - wref)', T=self.T1, K=self.K1, ) self.F2 = LeadLag( u=self.F1_y, T1=self.T2, T2=self.T3, K=1.0, ) self.HL = GainLimiter( u='ue * (paux + pref0 - F2_y)', K=1.0, R=1.0, lower=self.PMIN, upper=self.PMAX, ) self.F3 = Lag( u=self.HL_y, T=self.T4, K=1.0, ) self.F4 = Lag( u=self.F3_y, T=self.T5, K=self.K2, ) self.F5 = Lag( u=self.F4_y, T=self.T6, K=self.K3, ) self.pout.e_str = 'ue * ((1-K2)*F3_y + (1-K3)*F4_y + F5_y) - pout'
def __init__(self, system, config): TGBase.__init__(self, system, config, add_sn=False) # check if K1-K8 sums up to 1 self._sumK18 = ConstService(v_str='K1+K2+K3+K4+K5+K6+K7+K8', info='summation of K1-K8', tex_name=r"\sum_{i=1}^8 K_i") self._K18c1 = InitChecker( u=self._sumK18, info='summation of K1-K8 and 1.0', equal=1, ) # check if `tm0 * (K2 + k4 + K6 + K8) = tm02 *(K1 + K3 + K5 + K7) self._tm0K2 = PostInitService( info='mul of tm0 and (K2+K4+K6+K8)', v_str='zsyn2*tm0*(K2+K4+K6+K8)', ) self._tm02K1 = PostInitService( info='mul of tm02 and (K1+K3+K5+K6)', v_str='tm02*(K1+K3+K5+K7)', ) self._Pc = InitChecker( u=self._tm0K2, info='proportionality of tm0 and tm02', equal=self._tm02K1, ) self.Sg2 = ExtParam( src='Sn', model='SynGen', indexer=self.syn2, allow_none=True, default=0.0, tex_name='S_{n2}', info='Rated power of Syn2', unit='MVA', export=False, ) self.Sg12 = ParamCalc( self.Sg, self.Sg2, func=np.add, tex_name="S_{g12}", info='Sum of generator power ratings', ) self.Sn = NumSelect( self.Tn, fallback=self.Sg12, tex_name='S_n', info='Turbine or Gen rating', ) self.zsyn2 = FlagValue( self.syn2, value=None, tex_name='z_{syn2}', info='Exist flags for syn2', ) self.tm02 = ExtService( src='tm', model='SynGen', indexer=self.syn2, tex_name=r'\tau_{m02}', info='Initial mechanical input of syn2', allow_none=True, default=0.0, ) self.tm012 = ConstService( info='total turbine power', v_str='tm0 + tm02', ) self.tm2 = ExtAlgeb( src='tm', model='SynGen', indexer=self.syn2, allow_none=True, tex_name=r'\tau_{m2}', e_str='zsyn2 * u * (PLP - tm02)', info='Mechanical power to syn2', ) self.wd = Algeb( info='Generator under speed', unit='p.u.', tex_name=r'\omega_{dev}', v_str='0', e_str='(wref - omega) - wd', ) self.LL = LeadLag( u=self.wd, T1=self.T2, T2=self.T1, K=self.K, info='Signal conditioning for wd', ) # `P0` == `tm0` self.vs = Algeb( info='Valve speed', tex_name='V_s', v_str='0', e_str='(LL_y + tm012 + paux - IAW_y) / T3 - vs', ) self.HL = HardLimiter( u=self.vs, lower=self.UC, upper=self.UO, info='Limiter on valve acceleration', ) self.vsl = Algeb( info='Valve move speed after limiter', tex_name='V_{sl}', v_str='vs * HL_zi + UC * HL_zl + UO * HL_zu', e_str='vs * HL_zi + UC * HL_zl + UO * HL_zu - vsl', ) self.IAW = IntegratorAntiWindup( u=self.vsl, T=1, K=1, y0=self.tm012, lower=self.PMIN, upper=self.PMAX, info='Valve position integrator', ) self.L4 = Lag( u=self.IAW_y, T=self.T4, K=1, info='first process', ) self.L5 = Lag( u=self.L4_y, T=self.T5, K=1, info='second (reheat) process', ) self.L6 = Lag( u=self.L5_y, T=self.T6, K=1, info='third process', ) self.L7 = Lag( u=self.L6_y, T=self.T7, K=1, info='fourth (second reheat) process', ) self.PHP = Algeb( info='HP output', tex_name='P_{HP}', v_str='K1*L4_y + K3*L5_y + K5*L6_y + K7*L7_y', e_str='K1*L4_y + K3*L5_y + K5*L6_y + K7*L7_y - PHP', ) self.PLP = Algeb( info='LP output', tex_name='P_{LP}', v_str='K2*L4_y + K4*L5_y + K6*L6_y + K8*L7_y', e_str='K2*L4_y + K4*L5_y + K6*L6_y + K8*L7_y - PLP', ) self.pout.e_str = 'PHP - pout'
def __init__(self, system, config): Model.__init__(self, system, config) self.flags.tds = True self.group = 'RenExciter' self.config.add(OrderedDict((('kqs', 2), ('kvs', 2), ('tpfilt', 0.02), ))) self.config.add_extra('_help', kqs='Q PI controller tracking gain', kvs='Voltage PI controller tracking gain', tpfilt='Time const. for Pref filter', ) self.config.add_extra('_tex', kqs='K_{qs}', kvs='K_{vs}', tpfilt='T_{pfilt}', ) # --- Sanitize inputs --- self.Imaxr = Replace(self.Imax, flt=lambda x: np.less_equal(x, 0), new_val=1e8, tex_name='I_{maxr}') # --- Flag switchers --- self.SWPF = Switcher(u=self.PFFLAG, options=(0, 1), tex_name='SW_{PF}', cache=True) self.SWV = Switcher(u=self.VFLAG, options=(0, 1), tex_name='SW_{V}', cache=True) self.SWQ = Switcher(u=self.QFLAG, options=(0, 1), tex_name='SW_{V}', cache=True) self.SWP = Switcher(u=self.PFLAG, options=(0, 1), tex_name='SW_{P}', cache=True) self.SWPQ = Switcher(u=self.PQFLAG, options=(0, 1), tex_name='SW_{PQ}', cache=True) # --- External parameters --- self.bus = ExtParam(model='RenGen', src='bus', indexer=self.reg, export=False, info='Retrieved bus idx', vtype=str, default=None, ) self.buss = DataSelect(self.busr, self.bus, info='selected bus (bus or busr)') self.gen = ExtParam(model='RenGen', src='gen', indexer=self.reg, export=False, info='Retrieved StaticGen idx', vtype=str, default=None, ) self.Sn = ExtParam(model='RenGen', src='Sn', indexer=self.reg, tex_name='S_n', export=False, ) # --- External variables --- self.a = ExtAlgeb(model='Bus', src='a', indexer=self.bus, tex_name=r'\theta', info='Bus voltage angle', ) self.v = ExtAlgeb(model='Bus', src='v', indexer=self.bus, tex_name=r'V', info='Bus voltage magnitude', ) # check whether to use `bus` or `buss` self.Pe = ExtAlgeb(model='RenGen', src='Pe', indexer=self.reg, export=False, info='Retrieved Pe of RenGen') self.Qe = ExtAlgeb(model='RenGen', src='Qe', indexer=self.reg, export=False, info='Retrieved Qe of RenGen') self.Ipcmd = ExtAlgeb(model='RenGen', src='Ipcmd', indexer=self.reg, export=False, info='Retrieved Ipcmd of RenGen', e_str='-Ipcmd0 + IpHL_y', ) self.Iqcmd = ExtAlgeb(model='RenGen', src='Iqcmd', indexer=self.reg, export=False, info='Retrieved Iqcmd of RenGen', e_str='-Iqcmd0 - IqHL_y', ) self.p0 = ExtService(model='RenGen', src='p0', indexer=self.reg, tex_name='P_0', ) self.q0 = ExtService(model='RenGen', src='q0', indexer=self.reg, tex_name='Q_0', ) # Initial current commands self.Ipcmd0 = ConstService('p0 / v', info='initial Ipcmd') self.Iqcmd0 = ConstService('-q0 / v', info='initial Iqcmd') # --- Initial power factor angle --- # NOTE: if `p0` = 0, `pfaref0` = pi/2, `tan(pfaref0)` = inf self.pfaref0 = ConstService(v_str='atan2(q0, p0)', tex_name=r'\Phi_{ref0}', info='Initial power factor angle', ) # flag devices with `p0`=0, which causes `tan(PF) = +inf` self.zp0 = ConstService(v_str='Eq(p0, 0)', vtype=float, tex_name='z_{p0}', ) # --- Discrete components --- self.Vcmp = Limiter(u=self.v, lower=self.Vdip, upper=self.Vup, tex_name='V_{cmp}', info='Voltage dip comparator', equal=False, ) self.Volt_dip = VarService(v_str='1 - Vcmp_zi', info='Voltage dip flag; 1-dip, 0-normal', tex_name='z_{Vdip}', ) # --- Equations begin --- self.s0 = Lag(u=self.v, T=self.Trv, K=1, info='Voltage filter', ) self.VLower = Limiter(u=self.v, lower=0.01, upper=999, no_upper=True, info='Limiter for lower voltage cap', ) self.vp = Algeb(tex_name='V_p', info='Sensed lower-capped voltage', v_str='v * VLower_zi + 0.01 * VLower_zl', e_str='v * VLower_zi + 0.01 * VLower_zl - vp', ) self.pfaref = Algeb(tex_name=r'\Phi_{ref}', info='power factor angle ref', unit='rad', v_str='pfaref0', e_str='pfaref0 - pfaref', ) self.S1 = Lag(u='Pe', T=self.Tp, K=1, tex_name='S_1', info='Pe filter', ) # ignore `Qcpf` if `pfaref` is pi/2 by multiplying (1-zp0) self.Qcpf = Algeb(tex_name='Q_{cpf}', info='Q calculated from P and power factor', v_str='q0', e_str='(1-zp0) * (S1_y * tan(pfaref) - Qcpf)', diag_eps=True, unit='p.u.', ) self.Qref = Algeb(tex_name='Q_{ref}', info='external Q ref', v_str='q0', e_str='q0 - Qref', unit='p.u.', ) self.PFsel = Algeb(v_str='SWPF_s0*Qref + SWPF_s1*Qcpf', e_str='SWPF_s0*Qref + SWPF_s1*Qcpf - PFsel', info='Output of PFFLAG selector', ) self.PFlim = Limiter(u=self.PFsel, lower=self.QMin, upper=self.QMax) self.Qerr = Algeb(tex_name='Q_{err}', info='Reactive power error', v_str='(PFsel*PFlim_zi + QMin*PFlim_zl + QMax*PFlim_zu) - Qe', e_str='(PFsel*PFlim_zi + QMin*PFlim_zl + QMax*PFlim_zu) - Qe - Qerr', ) self.PIQ = PITrackAWFreeze(u=self.Qerr, kp=self.Kqp, ki=self.Kqi, ks=self.config.kqs, lower=self.VMIN, upper=self.VMAX, freeze=self.Volt_dip, ) # If `VFLAG=0`, set the input as `Vref1` (see the NREL report) self.Vsel = GainLimiter(u='SWV_s0 * Vref1 + SWV_s1 * PIQ_y', K=1, R=1, lower=self.VMIN, upper=self.VMAX, info='Selection output of VFLAG', ) # --- Placeholders for `Iqmin` and `Iqmax` --- self.s4 = LagFreeze(u='PFsel / vp', T=self.Tiq, K=1, freeze=self.Volt_dip, tex_name='s_4', info='Filter for calculated voltage with freeze', ) # --- Upper portion - Iqinj calculation --- self.Verr = Algeb(info='Voltage error (Vref0)', v_str='Vref0 - s0_y', e_str='Vref0 - s0_y - Verr', tex_name='V_{err}', ) self.dbV = DeadBand1(u=self.Verr, lower=self.dbd1, upper=self.dbd2, center=0.0, enable='DB_{V}', info='Deadband for voltage error (ref0)' ) self.pThld = ConstService(v_str='Indicator(Thld > 0)', tex_name='p_{Thld}') self.nThld = ConstService(v_str='Indicator(Thld < 0)', tex_name='n_{Thld}') self.Thld_abs = ConstService(v_str='abs(Thld)', tex_name='|Thld|') self.fThld = ExtendedEvent(self.Volt_dip, t_ext=self.Thld_abs, ) # Gain after dbB Iqv = "(dbV_y * Kqv)" Iqinj = f'{Iqv} * Volt_dip + ' \ f'(1 - Volt_dip) * fThld * ({Iqv} * nThld + Iqfrz * pThld)' # state transition, output of Iqinj self.Iqinj = Algeb(v_str=Iqinj, e_str=Iqinj + ' - Iqinj', tex_name='I_{qinj}', info='Additional Iq signal during under- or over-voltage', ) # --- Lower portion - active power --- self.wg = Algeb(tex_name=r'\omega_g', info='Drive train generator speed', v_str='1.0', e_str='1.0 - wg', ) self.Pref = Algeb(tex_name='P_{ref}', info='external P ref', v_str='p0 / wg', e_str='p0 / wg - Pref', unit='p.u.', ) self.pfilt = LagRate(u=self.Pref, T=self.config.tpfilt, K=1, rate_lower=self.dPmin, rate_upper=self.dPmax, info='Active power filter with rate limits', tex_name='P_{filt}', ) self.Psel = Algeb(tex_name='P_{sel}', info='Output selection of PFLAG', v_str='SWP_s1*wg*pfilt_y + SWP_s0*pfilt_y', e_str='SWP_s1*wg*pfilt_y + SWP_s0*pfilt_y - Psel', ) # `s5_y` is `Pord` self.s5 = LagAWFreeze(u=self.Psel, T=self.Tpord, K=1, lower=self.PMIN, upper=self.PMAX, freeze=self.Volt_dip, tex_name='s5', ) self.Pord = AliasState(self.s5_y) # --- Current limit logic --- self.kVq12 = ConstService(v_str='(Iq2 - Iq1) / (Vq2 - Vq1)', tex_name='k_{Vq12}', ) self.kVq23 = ConstService(v_str='(Iq3 - Iq2) / (Vq3 - Vq2)', tex_name='k_{Vq23}', ) self.kVq34 = ConstService(v_str='(Iq4 - Iq3) / (Vq4 - Vq3)', tex_name='k_{Vq34}', ) self.zVDL1 = ConstService(v_str='(Vq1 <= Vq2) & (Vq2 <= Vq3) & (Vq3 <= Vq4) & ' '(Iq1 <= Iq2) & (Iq2 <= Iq3) & (Iq3 <= Iq4)', tex_name='z_{VDL1}', info='True if VDL1 is in service', ) self.VDL1 = Piecewise(u=self.s0_y, points=('Vq1', 'Vq2', 'Vq3', 'Vq4'), funs=('Iq1', f'({self.s0_y.name} - Vq1) * kVq12 + Iq1', f'({self.s0_y.name} - Vq2) * kVq23 + Iq2', f'({self.s0_y.name} - Vq3) * kVq34 + Iq3', 'Iq4'), tex_name='V_{DL1}', info='Piecewise linear characteristics of Vq-Iq', ) self.kVp12 = ConstService(v_str='(Ip2 - Ip1) / (Vp2 - Vp1)', tex_name='k_{Vp12}', ) self.kVp23 = ConstService(v_str='(Ip3 - Ip2) / (Vp3 - Vp2)', tex_name='k_{Vp23}', ) self.kVp34 = ConstService(v_str='(Ip4 - Ip3) / (Vp4 - Vp3)', tex_name='k_{Vp34}', ) self.zVDL2 = ConstService(v_str='(Vp1 <= Vp2) & (Vp2 <= Vp3) & (Vp3 <= Vp4) & ' '(Ip1 <= Ip2) & (Ip2 <= Ip3) & (Ip3 <= Ip4)', tex_name='z_{VDL2}', info='True if VDL2 is in service', ) self.VDL2 = Piecewise(u=self.s0_y, points=('Vp1', 'Vp2', 'Vp3', 'Vp4'), funs=('Ip1', f'({self.s0_y.name} - Vp1) * kVp12 + Ip1', f'({self.s0_y.name} - Vp2) * kVp23 + Ip2', f'({self.s0_y.name} - Vp3) * kVp34 + Ip3', 'Ip4'), tex_name='V_{DL2}', info='Piecewise linear characteristics of Vp-Ip', ) self.fThld2 = ExtendedEvent(self.Volt_dip, t_ext=self.Thld2, extend_only=True, ) self.VDL1c = VarService(v_str='Lt(VDL1_y, Imaxr)') self.VDL2c = VarService(v_str='Lt(VDL2_y, Imaxr)') # `Iqmax` not considering mode or `Thld2` Iqmax1 = '(zVDL1*(VDL1c*VDL1_y + (1-VDL1c)*Imaxr) + 1e8*(1-zVDL1))' # `Ipmax` not considering mode or `Thld2` Ipmax1 = '(zVDL2*(VDL2c*VDL2_y + (1-VDL2c)*Imaxr) + 1e8*(1-zVDL2))' Ipmax2sq0 = '(Imax**2 - Iqcmd0**2)' Ipmax2sq = '(Imax**2 - IqHL_y**2)' # `Ipmax20`-squared (non-negative) self.Ipmax2sq0 = ConstService(v_str=f'Piecewise((0, Le({Ipmax2sq0}, 0.0)), ({Ipmax2sq0}, True), \ evaluate=False)', tex_name='I_{pmax20,nn}^2', ) self.Ipmax2sq = VarService(v_str=f'Piecewise((0, Le({Ipmax2sq}, 0.0)), ({Ipmax2sq}, True), \ evaluate=False)', tex_name='I_{pmax2}^2', ) Ipmax = f'((1-fThld2) * (SWPQ_s0*sqrt(Ipmax2sq) + SWPQ_s1*{Ipmax1}))' Ipmax0 = f'((1-fThld2) * (SWPQ_s0*sqrt(Ipmax2sq0) + SWPQ_s1*{Ipmax1}))' self.Ipmax = Algeb(v_str=f'{Ipmax0}', e_str=f'{Ipmax} + (fThld2 * Ipmaxh) - Ipmax', tex_name='I_{pmax}', diag_eps=True, info='Upper limit on Ipcmd', ) self.Ipmaxh = VarHold(self.Ipmax, hold=self.fThld2) Iqmax2sq = '(Imax**2 - IpHL_y**2)' Iqmax2sq0 = '(Imax**2 - Ipcmd0**2)' # initialization equation by using `Ipcmd0` self.Iqmax2sq0 = ConstService(v_str=f'Piecewise((0, Le({Iqmax2sq0}, 0.0)), ({Iqmax2sq0}, True), \ evaluate=False)', tex_name='I_{qmax,nn}^2', ) self.Iqmax2sq = VarService(v_str=f'Piecewise((0, Le({Iqmax2sq}, 0.0)), ({Iqmax2sq}, True), \ evaluate=False)', tex_name='I_{qmax2}^2') self.Iqmax = Algeb(v_str=f'(SWPQ_s0*{Iqmax1} + SWPQ_s1*sqrt(Iqmax2sq0))', e_str=f'(SWPQ_s0*{Iqmax1} + SWPQ_s1*sqrt(Iqmax2sq)) - Iqmax', tex_name='I_{qmax}', info='Upper limit on Iqcmd', ) self.Iqmin = ApplyFunc(self.Iqmax, lambda x: -x, cache=False, tex_name='I_{qmin}', info='Lower limit on Iqcmd', ) self.Ipmin = ConstService(v_str='0.0', tex_name='I_{pmin}', info='Lower limit on Ipcmd', ) self.PIV = PITrackAWFreeze(u='Vsel_y - s0_y * SWV_s0', x0='-SWQ_s1 * Iqcmd0', kp=self.Kvp, ki=self.Kvi, ks=self.config.kvs, lower=self.Iqmin, upper=self.Iqmax, freeze=self.Volt_dip, ) self.Qsel = Algeb(info='Selection output of QFLAG', v_str='SWQ_s1 * PIV_y + SWQ_s0 * s4_y', e_str='SWQ_s1 * PIV_y + SWQ_s0 * s4_y - Qsel', tex_name='Q_{sel}', ) # `IpHL_y` is `Ipcmd` self.IpHL = GainLimiter(u='s5_y / vp', K=1, R=1, lower=self.Ipmin, upper=self.Ipmax, ) # `IqHL_y` is `Iqcmd` self.IqHL = GainLimiter(u='Qsel + Iqinj', K=1, R=1, lower=self.Iqmin, upper=self.Iqmax)
def __init__(self, system, config): Model.__init__(self, system, config) self.flags.tds = True self.group = 'RenTorque' self.kp1 = ConstService(v_str='(sp2 - sp1) / (p2 - p1)', tex_name='k_{p1}', ) self.kp2 = ConstService(v_str='(sp3 - sp2) / (p3 - p2)', tex_name='k_{p2}', ) self.kp3 = ConstService(v_str='(sp4 - sp3) / (p4 - p3)', tex_name='k_{p3}', ) self.rea = ExtParam(model='RenPitch', src='rea', indexer=self.rep, export=False, ) self.rego = ExtParam(model='RenAerodynamics', src='rego', indexer=self.rea, export=False, ) self.ree = ExtParam(model='RenGovernor', src='ree', indexer=self.rego, export=False, ) self.reg = ExtParam(model='RenExciter', src='reg', indexer=self.ree, export=False,) self.Sngo = ExtParam(model='RenGovernor', src='Sn', indexer=self.rego, tex_name='S_{n,go}', export=False, ) self.Sn = NumSelect(self.Tn, fallback=self.Sngo, tex_name='S_n', info='Turbine or RenGovernor rating', ) self.Pe = ExtAlgeb(model='RenGen', src='Pe', indexer=self.reg, tex_name='P_e', export=False, ) self.s1 = Lag(u=self.Pe, T=self.Tp, K=1.0, tex_name='s_1', info='Pe filter', ) self.fPe = Piecewise(u=self.s1_y, points=('p1', 'p2', 'p3', 'p4'), funs=('sp1', f'sp1 + ({self.s1_y.name} - p1) * kp1', f'sp2 + ({self.s1_y.name} - p2) * kp2', f'sp3 + ({self.s1_y.name} - p3) * kp3', 'sp4'), tex_name='f_{Pe}', info='Piecewise Pe to wref mapping', ) # Overwrite `wg` and `wt` initial values in turbine governors self.wg = ExtState(model='RenGovernor', src='wg', indexer=self.rego, tex_name=r'\omega_g', export=False, v_str='fPe_y', v_setter=True, ) self.wt = ExtState(model='RenGovernor', src='wt', indexer=self.rego, tex_name=r'\omega_t', export=False, v_str='fPe_y', v_setter=True, ) self.s3_y = ExtState(model='RenGovernor', src='s3_y', indexer=self.rego, tex_name='y_{s3}', export=False, v_str='Pref0 / wg / Kshaft', v_setter=True, ) self.w0 = ExtParam(model='RenGovernor', src='w0', indexer=self.rego, tex_name=r'\omega_0', export=False, ) self.Kshaft = ExtService(model='RenGovernor', src='Kshaft', indexer=self.rego, tex_name='K_{shaft}', ) self.wr0 = ExtAlgeb(model='RenGovernor', src='wr0', indexer=self.rego, tex_name=r'\omega_{r0}', export=False, info='Retrieved initial w0 from RenGovernor', v_str='fPe_y', e_str='-w0 + fPe_y', v_setter=True, ename='dwr', tex_ename=r'\Delta \omega_r', ) self.s2 = Lag(u=self.fPe_y, T=self.Twref, K=1.0, tex_name='s_2', info='speed filter', ) self.SWT = Switcher(u=self.Tflag, options=(0, 1), tex_name='SW_{T}', cache=True, ) self.Tsel = Algeb(tex_name='T_{sel}', info='Output after Tflag selector', discrete=self.SWT ) self.Tsel.v_str = 'SWT_s1 * (Pe - Pref0) / wg +' \ 'SWT_s0 * (s2_y - wg)' self.Tsel.e_str = f'{self.Tsel.v_str} - Tsel' self.PI = PIAWHardLimit(u=self.Tsel, kp=self.Kpp, ki=self.Kip, aw_lower=self.Temin, aw_upper=self.Temax, lower=self.Temin, upper=self.Temax, tex_name='PI', info='PI controller', x0='Pref0 / fPe_y', ) # Note: # Reset `wg` of REECA1 to 1.0 becase `wg` has already been multiplied # in the toeque model. # This effectively sets `PFLAG` to 0 if the torque model is connected. self.wge = ExtAlgeb(model='RenExciter', src='wg', indexer=self.ree, tex_name=r'\omega_{ge}', export=False, v_str='1.0', e_str='-fPe_y + 1', v_setter=True, ename='dwg', tex_ename=r'\Delta \omega_g', ) self.Pref0 = ExtService(model='RenExciter', src='p0', indexer=self.ree, tex_name='P_{ref0}', ) self.Pref = ExtAlgeb(model='RenExciter', src='Pref', indexer=self.ree, tex_name='P_{ref}', export=False, e_str='-Pref0 / wge + PI_y * wg', v_str='PI_y * wg', v_setter=True, ename='Pref', tex_ename='P_{ref}', )
def __init__(self, system, config): Model.__init__(self, system, config) self.group = 'RenPlant' self.flags.tds = True self.config.add(OrderedDict(( ('kqs', 2), ('ksg', 2), ('freeze', 1), ))) self.config.add_extra( '_help', kqs='Tracking gain for reactive power PI controller', ksg='Tracking gain for active power PI controller', freeze='Voltage dip freeze flag; 1-enable, 0-disable', ) self.config.add_extra('_tex', kqs='K_{qs}', ksg='K_{sg}', freeze='f_{rz}') # --- from RenExciter --- self.reg = ExtParam( model='RenExciter', src='reg', indexer=self.ree, export=False, info='Retrieved RenGen idx', vtype=str, default=None, ) self.Pext = ExtAlgeb( model='RenExciter', src='Pref', indexer=self.ree, info='Pref from RenExciter renamed as Pext', tex_name='P_{ext}', ) self.Qext = ExtAlgeb( model='RenExciter', src='Qref', indexer=self.ree, info='Qref from RenExciter renamed as Qext', tex_name='Q_{ext}', ) # --- from RenGen --- self.bus = ExtParam( model='RenGen', src='bus', indexer=self.reg, export=False, info='Retrieved bus idx', vtype=str, default=None, ) self.buss = DataSelect(self.busr, self.bus, info='selected bus (bus or busr)') self.busfreq = DeviceFinder(self.busf, link=self.buss, idx_name='bus') # from Bus self.v = ExtAlgeb( model='Bus', src='v', indexer=self.buss, tex_name='V', info='Bus (or busr, if given) terminal voltage', ) self.a = ExtAlgeb( model='Bus', src='a', indexer=self.buss, tex_name=r'\theta', info='Bus (or busr, if given) phase angle', ) self.v0 = ExtService( model='Bus', src='v', indexer=self.buss, tex_name="V_0", info='Initial bus voltage', ) # from BusFreq self.f = ExtAlgeb(model='FreqMeasurement', src='f', indexer=self.busfreq, export=False, info='Bus frequency', unit='p.u.') # from Line self.bus1 = ExtParam( model='ACLine', src='bus1', indexer=self.line, export=False, info='Retrieved Line.bus1 idx', vtype=str, default=None, ) self.bus2 = ExtParam( model='ACLine', src='bus2', indexer=self.line, export=False, info='Retrieved Line.bus2 idx', vtype=str, default=None, ) self.r = ExtParam( model='ACLine', src='r', indexer=self.line, export=False, info='Retrieved Line.r', vtype=str, default=None, ) self.x = ExtParam( model='ACLine', src='x', indexer=self.line, export=False, info='Retrieved Line.x', vtype=str, default=None, ) self.v1 = ExtAlgeb( model='ACLine', src='v1', indexer=self.line, tex_name='V_1', info='Voltage at Line.bus1', ) self.v2 = ExtAlgeb( model='ACLine', src='v2', indexer=self.line, tex_name='V_2', info='Voltage at Line.bus2', ) self.a1 = ExtAlgeb( model='ACLine', src='a1', indexer=self.line, tex_name=r'\theta_1', info='Angle at Line.bus1', ) self.a2 = ExtAlgeb( model='ACLine', src='a2', indexer=self.line, tex_name=r'\theta_2', info='Angle at Line.bus2', ) # -- begin services --- self.Isign = CurrentSign(self.bus, self.bus1, self.bus2, tex_name='I_{sign}') Iline = '(Isign * (v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x))' self.Iline = VarService( v_str=Iline, vtype=complex, info='Complex current from bus1 to bus2', tex_name='I_{line}', ) self.Iline0 = ConstService( v_str='Iline', vtype=complex, info='Initial complex current from bus1 to bus2', tex_name='I_{line0}', ) Pline = 're(Isign * v1*exp(1j*a1) * conj((v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x)))' self.Pline = VarService( v_str=Pline, vtype=float, info='Complex power from bus1 to bus2', tex_name='P_{line}', ) self.Pline0 = ConstService( v_str='Pline', vtype=float, info='Initial vomplex power from bus1 to bus2', tex_name='P_{line0}', ) Qline = 'im(Isign * v1*exp(1j*a1) * conj((v1*exp(1j*a1) - v2*exp(1j*a2)) / (r + 1j*x)))' self.Qline = VarService( v_str=Qline, vtype=float, info='Complex power from bus1 to bus2', tex_name='Q_{line}', ) self.Qline0 = ConstService( v_str='Qline', vtype=float, info='Initial complex power from bus1 to bus2', tex_name='Q_{line0}', ) self.Rcs = NumSelect( self.Rc, self.r, info='Line R (Rc if provided, otherwise line.r)', tex_name='R_{cs}', ) self.Xcs = NumSelect( self.Xc, self.x, info='Line X (Xc if provided, otherwise line.x)', tex_name='X_{cs}', ) self.Vcomp = VarService( v_str='abs(v*exp(1j*a) - (Rcs + 1j * Xcs) * Iline)', info='Voltage after Rc/Xc compensation', tex_name='V_{comp}') self.SWVC = Switcher(u=self.VCFlag, options=(0, 1), tex_name='SW_{VC}', cache=True) self.SWRef = Switcher(u=self.RefFlag, options=(0, 1), tex_name='SW_{Ref}', cache=True) self.SWF = Switcher(u=self.Fflag, options=(0, 1), tex_name='SW_{F}', cache=True) self.SWPL = Switcher(u=self.PLflag, options=(0, 1), tex_name='SW_{PL}', cache=True) VCsel = '(SWVC_s1 * Vcomp + SWVC_s0 * (Qline * Kc + v))' self.Vref0 = ConstService( v_str='(SWVC_s1 * Vcomp + SWVC_s0 * (Qline0 * Kc + v))', tex_name='V_{ref0}', ) self.s0 = Lag( VCsel, T=self.Tfltr, K=1, tex_name='s_0', info='V filter', ) # s0_y is the filter output of voltage deviation self.s1 = Lag(self.Qline, T=self.Tfltr, K=1, tex_name='s_1') self.Vref = Algeb(v_str='Vref0', e_str='Vref0 - Vref', tex_name='Q_{ref}') self.Qlinef = Algeb(v_str='Qline0', e_str='Qline0 - Qlinef', tex_name='Q_{linef}') Refsel = '(SWRef_s0 * (Qlinef - s1_y) + SWRef_s1 * (Vref - s0_y))' self.Refsel = Algeb(v_str=Refsel, e_str=f'{Refsel} - Refsel', tex_name='R_{efsel}') self.dbd = DeadBand1( u=self.Refsel, lower=self.dbd1, upper=self.dbd2, center=0.0, tex_name='d^{bd}', ) # --- e Hardlimit and hold logic --- self.eHL = Limiter( u=self.dbd_y, lower=self.emin, upper=self.emax, tex_name='e_{HL}', info='Hardlimit on deadband output', ) self.zf = VarService( v_str='Indicator(v < Vfrz) * freeze', tex_name='z_f', info='PI Q input freeze signal', ) self.enf = Algeb( tex_name='e_{nf}', info='e Hardlimit output before freeze', v_str='dbd_y*eHL_zi + emax*eHL_zu + emin*eHL_zl', e_str='dbd_y*eHL_zi + emax*eHL_zu + emin*eHL_zl - enf', ) # --- hold of `enf` when v < vfrz self.eHld = VarHold( u=self.enf, hold=self.zf, tex_name='e_{hld}', info='e Hardlimit output after conditional hold', ) self.s2 = PITrackAW( u='eHld', kp=self.Kp, ki=self.Ki, ks=self.config.kqs, lower=self.Qmin, upper=self.Qmax, info='PI controller for eHL output', tex_name='s_2', ) self.s3 = LeadLag( u=self.s2_y, T1=self.Tft, T2=self.Tfv, K=1, tex_name='s_3', ) # s3_y == Qext # Active power part self.s4 = Lag( self.Pline, T=self.Tp, K=1, tex_name='s_4', info='Pline filter', ) self.Freq_ref = ConstService(v_str='1.0', tex_name='f_{ref}', info='Initial Freq_ref') self.ferr = Algeb( tex_name='f_{err}', info='Frequency deviation', unit='p.u. (Hz)', v_str='(Freq_ref - f)', e_str='(Freq_ref - f) - ferr', ) self.fdbd = DeadBand1( u=self.ferr, center=0.0, lower=self.fdbd1, upper=self.fdbd2, tex_name='f^{dbd}', info='frequency error deadband', ) self.fdlt0 = LessThan( self.fdbd_y, 0.0, tex_name='f_{dlt0}', info='frequency deadband output less than zero', ) fdroop = '(fdbd_y * Ddn * fdlt0_z1 + fdbd_y * Dup * fdlt0_z0)' self.Plant_pref = Algeb( tex_name='P_{ref}', info='Plant P ref', v_str='Pline0', e_str='Pline0 - Plant_pref', ) self.Plerr = Algeb( tex_name='P_{lerr}', info='Pline error', v_str='- s4_y + Plant_pref', e_str='- s4_y + Plant_pref - Plerr', ) self.Perr = Algeb( tex_name='P_{err}', info='Power error before fe limits', v_str=f'{fdroop} + Plerr * SWPL_s1', e_str=f'{fdroop} + Plerr * SWPL_s1 - Perr', ) self.feHL = Limiter( self.Perr, lower=self.femin, upper=self.femax, tex_name='f_{eHL}', info='Limiter for power (frequency) error', ) feout = '(Perr * feHL_zi + femin * feHL_zl + femax * feHL_zu)' self.s5 = PITrackAW( u=feout, kp=self.Kpg, ki=self.Kig, ks=self.config.ksg, lower=self.Pmin, upper=self.Pmax, tex_name='s_5', info='PI for fe limiter output', ) self.s6 = Lag( u=self.s5_y, T=self.Tg, K=1, tex_name='s_6', info='Output filter for Pext', ) Qext = '(s3_y)' Pext = '(SWF_s1 * s6_y)' self.Pext.e_str = Pext self.Qext.e_str = Qext
def __init__(self, system, config): Model.__init__(self, system, config) self.flags.tds = True self.group = 'RenGen' self.a = ExtAlgeb(model='Bus', src='a', indexer=self.bus, tex_name=r'\theta', info='Bus voltage angle', e_str='-Pe', ) self.v = ExtAlgeb(model='Bus', src='v', indexer=self.bus, tex_name=r'V', info='Bus voltage magnitude', e_str='-Qe', ) self.p0s = ExtService(model='StaticGen', src='p', indexer=self.gen, tex_name='P_{0s}', info='initial P of the static gen', ) self.q0s = ExtService(model='StaticGen', src='q', indexer=self.gen, tex_name='Q_{0s}', info='initial Q of the static gen', ) self.p0 = ConstService(v_str='p0s * gammap', tex_name='P_0', info='initial P of this gen', ) self.q0 = ConstService(v_str='q0s * gammaq', tex_name='Q_0', info='initial Q of this gen', ) self.ra = ExtParam(model='StaticGen', src='ra', indexer=self.gen, tex_name='r_a', export=False, ) self.xs = ExtParam(model='StaticGen', src='xs', indexer=self.gen, tex_name='x_s', export=False, ) # --- INITIALIZATION --- self.q0gt0 = ConstService('Indicator(q0> 0)', tex_name='z_{q0>0}', info='flags for q0 below zero', ) self.q0lt0 = ConstService('Indicator(q0< 0)', tex_name='z_{q0<0}', info='flags for q0 below zero', ) self.Ipcmd0 = ConstService('p0 / v', info='initial Ipcmd', tex_name='I_{pcmd0}', ) self.Iqcmd0 = ConstService('-q0 / v', info='initial Iqcmd', tex_name='I_{qcmd0}', ) self.Ipcmd = Algeb(tex_name='I_{pcmd}', info='current component for active power', e_str='Ipcmd0 - Ipcmd', v_str='Ipcmd0') self.Iqcmd = Algeb(tex_name='I_{qcmd}', info='current component for reactive power', e_str='Iqcmd0 - Iqcmd', v_str='Iqcmd0') # reactive power management # rate limiting logic (for fault recovery, although it does not detect any recovery) # - activate upper limit when q0 > 0 (self.q0gt0) # - activate lower limit when q0 < 0 (self.q0lt0) self.S1 = LagAntiWindupRate(u=self.Iqcmd, T=self.Tg, K=-1, lower=-9999, upper=9999, no_lower=True, no_upper=True, rate_lower=self.Iqrmin, rate_upper=self.Iqrmax, rate_lower_cond=self.q0lt0, rate_upper_cond=self.q0gt0, tex_name='S_1', info='Iqcmd delay', ) # output `S1_y` == `Iq` # piece-wise gain for low voltage active current mgnt. self.kLVG = ConstService(v_str='1 / (Lvpnt1 - Lvpnt0)', tex_name='k_{LVG}', ) self.LVG = Piecewise(u=self.v, points=('Lvpnt0', 'Lvpnt1'), funs=('0', '(v - Lvpnt0) * kLVG', '1'), info='Ip gain during low voltage', tex_name='L_{VG}', ) # piece-wise gain for LVPL self.kLVPL = ConstService(v_str='Lvplsw * Lvpl1 / (Brkpt - Zerox)', tex_name='k_{LVPL}', ) self.S2 = Lag(u=self.v, T=self.Tfltr, K=1.0, info='Voltage filter with no anti-windup', tex_name='S_2', ) self.LVPL = Piecewise(u=self.S2_y, points=('Zerox', 'Brkpt'), funs=('0 + 9999*(1-Lvplsw)', '(S2_y - Zerox) * kLVPL + 9999 * (1-Lvplsw)', '9999'), info='Low voltage Ipcmd upper limit', tex_name='L_{VPL}', ) self.S0 = LagAntiWindupRate(u=self.Ipcmd, T=self.Tg, K=1, upper=self.LVPL_y, rate_upper=self.Rrpwr, lower=-9999, rate_lower=-9999, no_lower=True, rate_no_lower=True, tex_name='S_0', ) # `S0_y` is the output `Ip` in the block diagram self.Ipout = Algeb(e_str='S0_y * LVG_y -Ipout', v_str='Ipcmd * LVG_y', info='Output Ip current', tex_name='I_{pout}', ) # high voltage part self.HVG = GainLimiter(u='v - Volim', K=self.Khv, info='High voltage gain block', lower=0, upper=999, no_upper=True, tex_name='H_{VG}' ) self.HVG.lim.no_warn = True self.Iqout = GainLimiter(u='S1_y- HVG_y', K=1, lower=self.Iolim, upper=9999, no_upper=True, info='Iq output block', tex_name='I^{qout}', ) # `Iqout_y` is the final Iq output self.Pe = Algeb(tex_name='P_e', info='Active power output', v_str='p0', e_str='Ipout * v - Pe') self.Qe = Algeb(tex_name='Q_e', info='Reactive power output', v_str='q0', e_str='Iqout_y * v - Qe')
def __init__(self, system, config): PSSBase.__init__(self, system, config) # ALL THE FOLLOWING IS FOR INPUT 2 # retrieve indices of bus and bus freq self.buss2 = DataSelect(self.busr2, self.bus, info='selected bus (bus or busr)') self.busfreq2 = DeviceFinder(self.busf2, link=self.buss2, idx_name='bus', default_model='BusFreq', info='bus frequency idx') # from Bus self.v2 = ExtAlgeb( model='Bus', src='v', indexer=self.buss2, tex_name=r'V', info='Bus (or busr2, if given) terminal voltage', ) # from BusFreq 2 self.f2 = ExtAlgeb(model='FreqMeasurement', src='f', indexer=self.busfreq2, export=False, info='Bus frequency 2') # Config self.config.add(OrderedDict([('freq_model', 'BusFreq')])) self.config.add_extra( '_help', {'freq_model': 'default freq. measurement model'}) self.config.add_extra('_alt', {'freq_model': ('BusFreq', )}) self.busf.model = self.config.freq_model self.busf2.model = self.config.freq_model # input signal switch self.dv = Derivative(self.v) self.dv2 = Derivative(self.v2) self.SnSb = ExtService( model='SynGen', src='M', indexer=self.syn, attr='pu_coeff', info='Machine base to sys base factor for power', tex_name='(Sb/Sn)') self.SW = Switcher( u=self.MODE, options=[0, 1, 2, 3, 4, 5, 6, np.nan], ) self.SW2 = Switcher( u=self.MODE2, options=[0, 1, 2, 3, 4, 5, 6, np.nan], ) # Input signals self.sig = Algeb( tex_name='S_{ig}', info='Input signal', ) self.sig.v_str = 'SW_s1*(omega-1) + SW_s2*0 + SW_s3*(tm0/SnSb) + ' \ 'SW_s4*(tm-tm0) + SW_s5*v + SW_s6*0' self.sig.e_str = 'SW_s1*(omega-1) + SW_s2*(f-1) + SW_s3*(te/SnSb) + ' \ 'SW_s4*(tm-tm0) + SW_s5*v + SW_s6*dv_v - sig' self.sig2 = Algeb( tex_name='S_{ig2}', info='Input signal 2', ) self.sig2.v_str = 'SW2_s1*(omega-1) + SW2_s2*0 + SW2_s3*(tm0/SnSb) + ' \ 'SW2_s4*(tm-tm0) + SW2_s5*v2 + SW2_s6*0' self.sig2.e_str = 'SW2_s1*(omega-1) + SW2_s2*(f2-1) + SW2_s3*(te/SnSb) + ' \ 'SW2_s4*(tm-tm0) + SW2_s5*v2 + SW2_s6*dv2_v - sig2' self.L1 = Lag( u=self.sig, K=self.K1, T=self.T1, info='Transducer 1', ) self.L2 = Lag( u=self.sig2, K=self.K2, T=self.T2, info='Transducer 2', ) self.IN = Algeb( tex_name='I_N', info='Sum of inputs', v_str='L1_y + L2_y', e_str='L1_y + L2_y - IN', ) self.WO = WashoutOrLag( u=self.IN, K=self.T3, T=self.T4, ) self.LL1 = LeadLag( u=self.WO_y, T1=self.T5, T2=self.T6, zero_out=True, ) self.LL2 = LeadLag( u=self.LL1_y, T1=self.T7, T2=self.T8, zero_out=True, ) self.LL3 = LeadLag( u=self.LL2_y, T1=self.T9, T2=self.T10, zero_out=True, ) self.VSS = GainLimiter(u=self.LL3_y, K=1, R=1, lower=self.LSMIN, upper=self.LSMAX) self.VOU = ConstService(v_str='VCUr + v0') self.VOL = ConstService(v_str='VCLr + v0') self.OLIM = Limiter(u=self.v, lower=self.VOL, upper=self.VOU, info='output limiter') self.vsout.e_str = 'OLIM_zi * VSS_y - vsout'