Exemplo n.º 1
0
 def logpxz(self, w, x, z):
     x, z = self.xz_to_theano(x, z)
     w, z, x = ndict.ordereddicts((w, z, x))
     A = self.get_A(x)
     allvars = w.values() + x.values() + z.values() + [A]
     logpx, logpz = self.f_logpxz(*allvars)
     if np.isnan(logpx).any() or np.isnan(logpz).any():
         print 'v: ', logpx, logpz
         print 'Values:'
         ndict.p(w)
         ndict.p(z)
         raise Exception("dlogpxz_dwz(): NaN found in gradients")
     
     return logpx, logpz
Exemplo n.º 2
0
    def logpxz(self, w, x, z):
        x, z = self.xz_to_theano(x, z)
        w, z, x = ndict.ordereddicts((w, z, x))
        A = self.get_A(x)
        allvars = list(w.values()) + list(x.values()) + list(z.values()) + [A]
        logpx, logpz = self.f_logpxz(*allvars)
        if np.isnan(logpx).any() or np.isnan(logpz).any():
            print('v: ', logpx, logpz)
            print('Values:')
            ndict.p(w)
            ndict.p(z)
            raise Exception("dlogpxz_dwz(): NaN found in gradients")

        return logpx, logpz
    def checknan(self, v, w, gv, gw):

        if ndict.hasNaN(gv) or ndict.hasNaN(gw):
            raise Exception("dL_dw(): NaN found in gradients")
            print('v:')
            ndict.p(v)
            print('w:')
            ndict.p(w)
            print('gv:')
            ndict.p(gv)
            print('gw:')
            ndict.p(gw)
            raise Exception("dL_dw(): NaN found in gradients")
Exemplo n.º 4
0
    def dfd_dw(self, w, x, z, gz2):
        x, z = self.xz_to_theano(x, z)
        w, z, x, gz2 = ndict.ordereddicts((w, z, x, gz2))
        A = self.get_A(x)
        r = self.f_dfd_dw(*(list(w.values()) + list(x.values()) +
                            list(z.values()) + [A] + list(gz2.values())))
        logpx, logpz, fd, gw = r[0], r[1], r[2], dict(
            list(zip(list(w.keys()), r[3:3 + len(w)])))

        if ndict.hasNaN(gw):
            if True:
                print('NaN detected in gradients')
                raise Exception()
                for i in gw:
                    gw[i][np.isnan(gw[i])] = 0
            else:

                print('fd: ', fd)
                print('Values:')
                ndict.p(w)
                ndict.p(z)
                print('Gradients:')
                ndict.p(gw)
                raise Exception("dfd_dw(): NaN found in gradients")

        gw, _ = self.gwgz_to_numpy(gw, {})
        return logpx, logpz, fd, gw
Exemplo n.º 5
0
 def checknan(self, v, w, gv, gw):
     
     if ndict.hasNaN(gv) or ndict.hasNaN(gw):
             raise Exception("dL_dw(): NaN found in gradients")
             #print 'logpx: ', logpx
             #print 'logpz: ', logpz
             #print 'logqz: ', logqz
             print 'v:'
             ndict.p(v)
             print 'w:'
             ndict.p(w)
             print 'gv:'
             ndict.p(gv)
             print 'gw:'
             ndict.p(gw)
             raise Exception("dL_dw(): NaN found in gradients")
Exemplo n.º 6
0
    def checknan(self, v, w, gv, gw):

        if ndict.hasNaN(gv) or ndict.hasNaN(gw):
            raise Exception("dL_dw(): NaN found in gradients")
            #print 'logpx: ', logpx
            #print 'logpz: ', logpz
            #print 'logqz: ', logqz
            print 'v:'
            ndict.p(v)
            print 'w:'
            ndict.p(w)
            print 'gv:'
            ndict.p(gv)
            print 'gw:'
            ndict.p(gw)
            raise Exception("dL_dw(): NaN found in gradients")
    def L(self, v, w, x, z):
        x, z = self.xz_to_theano(x, z)
        v, w, z, x = ndict.ordereddicts((v, w, z, x))
        A = self.get_A(x)
        allvars = list(v.values()) + list(w.values()) + list(x.values()) + list(z.values()) + [A]
        logpx, logpz, logqz = self.f_L(*allvars)

        if np.isnan(logpx).any() or np.isnan(logpz).any() or np.isnan(logqz).any():
            print('logp: ', logpx, logpz, logqz)
            print('Values:')
            ndict.p(v)
            ndict.p(w)
            ndict.p(x)
            ndict.p(z)
            raise Exception("delbo_dwz(): NaN found in gradients")

        return logpx, logpz, logqz
Exemplo n.º 8
0
 def L(self, v, w, x, z):
     x, z = self.xz_to_theano(x, z)
     v, w, z, x = ndict.ordereddicts((v, w, z, x))
     A = self.get_A(x)
     allvars = v.values() + w.values() + x.values() + z.values() + [A]
     logpx, logpz, logqz = self.f_L(*allvars)
     
     if np.isnan(logpx).any() or np.isnan(logpz).any() or np.isnan(logqz).any():
         print 'logp: ', logpx, logpz, logqz
         print 'Values:'
         ndict.p(v)
         ndict.p(w)
         ndict.p(x)
         ndict.p(z)
         raise Exception("delbo_dwz(): NaN found in gradients")
     
     return logpx, logpz, logqz
Exemplo n.º 9
0
    def dlogpxz_dwz(self, w, x, z):

        x, z = self.xz_to_theano(x, z)
        w, z, x = ndict.ordereddicts((w, z, x))
        A = self.get_A(x)
        allvars = list(w.values()) + list(x.values()) + list(z.values()) + [A]

        # Check if keys are correct
        keys = list(w.keys()) + list(x.keys()) + list(z.keys()) + ['A']
        for i in range(len(keys)):
            if keys[i] != self.allvars_keys[i]:
                "Input values are incorrect!"
                print('Input:', keys)
                print('Should be:', self.allvars_keys)
                raise Exception()

        r = self.f_dlogpxz_dwz(*allvars)
        logpx, logpz, gw, gz = r[0], r[1], dict(
            list(zip(list(w.keys()), r[2:2 + len(w)]))), dict(
                list(zip(list(z.keys()), r[2 + len(w):])))

        if ndict.hasNaN(gw) or ndict.hasNaN(gz):
            if True:
                print('NaN detected in gradients')
                raise Exception()
                for i in gw:
                    gw[i][np.isnan(gw[i])] = 0
                for i in gz:
                    gz[i][np.isnan(gz[i])] = 0
            else:
                print('logpx: ', logpx)
                print('logpz: ', logpz)
                print('Values:')
                ndict.p(w)
                ndict.p(z)
                print('Gradients:')
                ndict.p(gw)
                ndict.p(gz)
                raise Exception("dlogpxz_dwz(): NaN found in gradients")

        gw, gz = self.gwgz_to_numpy(gw, gz)
        return logpx, logpz, gw, gz
Exemplo n.º 10
0
 def dlogpxz_dwz(self, w, x, z):
     
     x, z = self.xz_to_theano(x, z)
     w, z, x = ndict.ordereddicts((w, z, x))
     A = self.get_A(x)
     allvars = w.values() + x.values() + z.values() + [A]
     
     # Check if keys are correct
     keys = w.keys() + x.keys() + z.keys() + ['A']
     for i in range(len(keys)):
         if keys[i] != self.allvars_keys[i]:
             "Input values are incorrect!"
             print 'Input:', keys
             print 'Should be:', self.allvars_keys
             raise Exception()
         
     r = self.f_dlogpxz_dwz(*allvars)
     logpx, logpz, gw, gz = r[0], r[1], dict(zip(w.keys(), r[2:2+len(w)])), dict(zip(z.keys(), r[2+len(w):]))
     
     if ndict.hasNaN(gw) or ndict.hasNaN(gz):
         if True:
             print 'NaN detected in gradients'
             raise Exception()
             for i in gw: gw[i][np.isnan(gw[i])] = 0
             for i in gz: gz[i][np.isnan(gz[i])] = 0
         else:
             print 'logpx: ', logpx
             print 'logpz: ', logpz
             print 'Values:'
             ndict.p(w)
             ndict.p(z)
             print 'Gradients:'
             ndict.p(gw)
             ndict.p(gz)
             raise Exception("dlogpxz_dwz(): NaN found in gradients")
     
     gw, gz = self.gwgz_to_numpy(gw, gz)
     return logpx, logpz, gw, gz
Exemplo n.º 11
0
 def dfd_dw(self, w, x, z, gz2):
     x, z = self.xz_to_theano(x, z)
     w, z, x, gz2 = ndict.ordereddicts((w, z, x, gz2))
     A = self.get_A(x)
     r = self.f_dfd_dw(*(w.values() + x.values() + z.values() + [A] + gz2.values()))
     logpx, logpz, fd, gw = r[0], r[1], r[2], dict(zip(w.keys(), r[3:3+len(w)]))
     
     if ndict.hasNaN(gw):
         if True:
             print 'NaN detected in gradients'
             raise Exception()
             for i in gw: gw[i][np.isnan(gw[i])] = 0
         else:
             
             print 'fd: ', fd
             print 'Values:'
             ndict.p(w)
             ndict.p(z)
             print 'Gradients:'
             ndict.p(gw)
             raise Exception("dfd_dw(): NaN found in gradients")
     
     gw, _ = self.gwgz_to_numpy(gw, {})
     return logpx, logpz, fd, gw