Exemplo n.º 1
0
def preprocessing_raw(fpath, subj):
    # load data and read event channels
    rawlist = []
    evelist = []
    # extracting bdf filenames into bdfs
    bdfs = fnmatch.filter(os.listdir(fpath), subj + '_ITD*.bdf') 
    
    if len(bdfs) >= 1:
        for k, bdf in enumerate(bdfs):
            rawtemp, evestemp = bs.importbdf(fpath + bdf)
            rawlist += [rawtemp,]
            evelist += [evestemp,]
    else:
        RuntimeError("No bdf files found!")
    raw, eves = mne.concatenate_raws(rawlist, events_list = evelist)
    # Things to try if data are too noisy
    # raw.info['bads'] += ['A20'] # if A7, A6, A24 have been rejected a lot, they can be added manually
    # raw.set_eeg_reference(ref_channels = ['Average']) # referencing to the average of all channels, do this if channels are too noisy  
    
    # the returned eves has three columns: sample number, value of onset, value of offset.     
    eves2 = eves.copy()
    eves2[:, 1] = np.mod(eves2[:, 1], 256) 
    eves2[:, 2] = np.mod(eves2[:, 2], 256)   
    
    # raw.plot(events=eves2)
    raw.filter(l_freq = 1, h_freq=50) # if channels are noisy, adjust the filter parameters, high-pass frequency is better set at 1 compared to 0.5 Hz, to get rid of low-frequency drift
    
    # SSP for blinks
    blinks = find_blinks(raw, ch_name = ['A1',], l_trans_bandwidth=0.5,
                         l_freq=1.0) # A1 is the closest electrode to eyebrow, raw.plot(events=blinks) shows the lines at eye blinks, 998 is default event_id
    epochs_blinks = mne.Epochs(raw, blinks, 998, tmin = -0.25, tmax = 0.25, 
                               proj = False, baseline = (-0.25, 0), 
                               reject=dict(eeg=500e-6)) 
    n_eeg = 4
    blink_projs = compute_proj_epochs(epochs_blinks, n_grad=0,
                                      n_mag=0, n_eeg=n_eeg,
                                      verbose='DEBUG')    
    if subj in ['S025', 'S031', 'S046', 'S117', 'S123', 'S127', 'S128', 'S132', 'S133', 'S143', 'S149', 'S051', 'S183', 'S185', 'S187', 'S189', 'S193', 'S195', 'S196', 'S043', 'S072', 'S078', 'S191', 'S129', 'S141', 'S190', 'S194']:
        #raw.add_proj(blink_projs) # adding all projections
        #raw.del_proj()
        #raw.plot_projs_topomap()
        raw.add_proj([blink_projs[0], blink_projs[2]])   
    elif subj in ['S135', 'S192', 'S197', 'S199', 'S216', 'S218']:
        raw.add_proj([blink_projs[0], blink_projs[1]])   
    elif subj in ['S084', 'S075']:
        raw.add_proj([blink_projs[0]])
    return raw, eves2
                'MEG2033', 'MEG0442', 'MEG2343', 'MEG1643', 'MEG1211',
                'MEG2522', 'MEG0731'
            ]
        if eeg:
            # raw.info['bads'] += ['EEG004', 'EEG038', 'EEG040', 'EEG067']
            raw.info['bads'] += ['EEG009', 'EEG027', 'EEG067']
        # Filter the data for SSRs
        raw.filter(l_freq=l_freq,
                   h_freq=h_freq,
                   l_trans_bandwidth=0.15,
                   picks=np.arange(0, 306, 1))

        if not SSSR:
            # raw.resample(sfreq=1000.0, n_jobs=4, verbose='DEBUG')
            # SSP for blinks
            blinks = find_blinks(raw, ch_name='EOG062')
            epochs_blinks = mne.Epochs(raw,
                                       blinks,
                                       998,
                                       tmin=-0.25,
                                       tmax=0.25,
                                       proj=True,
                                       baseline=(-0.25, 0),
                                       reject=dict(grad=8000e-13, mag=8e-12))
            blink_projs = compute_proj_epochs(epochs_blinks,
                                              n_grad=2,
                                              n_mag=2,
                                              n_eeg=0,
                                              verbose='DEBUG')
            raw.add_proj(blink_projs)
Exemplo n.º 3
0
#%% Load data
# with open(os.path.join(data_loc, Subject+'_DynBin.pickle'),'rb') as f:
#     IAC_epochs, ITD_epochs = pickle.load(f)

IAC_eeg, IAC_evnt = EEGconcatenateFolder(direct_IAC + Subject + '/', nchans,
                                         refchans, exclude)
ITD_eeg, ITD_evnt = EEGconcatenateFolder(direct_ITD + Subject + '/', nchans,
                                         refchans, exclude)

IAC_eeg.filter(1, 1000)
ITD_eeg.filter(1, 1000)

#%% Blink removal
blinks_IAC = find_blinks(IAC_eeg,
                         ch_name=['A1'],
                         thresh=100e-6,
                         l_trans_bandwidth=0.5,
                         l_freq=1.0)
blinks_ITD = find_blinks(ITD_eeg,
                         ch_name=['A1'],
                         thresh=100e-6,
                         l_trans_bandwidth=0.5,
                         l_freq=1.0)
scalings = dict(eeg=40e-6)

blinkIAC_epochs = mne.Epochs(IAC_eeg,
                             blinks_IAC,
                             998,
                             tmin=-0.25,
                             tmax=0.25,
                             proj=False,
Exemplo n.º 4
0
        fifs[k] = fpath + fifname
    # Load data and read event channel
    raw = mne.io.Raw(fifs, preload=True)
    eves = mne.find_events(raw, stim_channel='STI101', shortest_event=1)

    # Filter the data for ERPs
    raw.filter(l_freq=0.5,
               h_freq=144.0,
               l_trans_bandwidth=0.15,
               picks=np.arange(0, 306, 1))

    # raw.apply_proj()
    fs = raw.info['sfreq']

    # SSP for blinks
    blinks = find_blinks(raw, ch_name='EOG062')
    blinkname = fpath + subj + '_' + para + '_blinks' + ssstag + '-eve.fif'
    mne.write_events(blinkname, blinks)
    epochs_blinks = mne.Epochs(raw,
                               blinks,
                               998,
                               tmin=-0.25,
                               tmax=0.25,
                               proj=True,
                               baseline=(-0.25, 0),
                               reject=dict(grad=8000e-13, mag=8e-12))
    blink_projs = compute_proj_epochs(epochs_blinks,
                                      n_grad=2,
                                      n_mag=2,
                                      n_eeg=0,
                                      verbose='DEBUG')
Exemplo n.º 5
0
        print 'Viola! Data files found!'
        edfname = bdfs[0]

    # Load data and read event channel
    (raw, eves) = bs.importbdf(fpath + edfname)

    # Filter the data for ERPs
    raw.filter(l_freq=0.5,
               h_freq=200,
               l_trans_bandwidth=0.15,
               picks=np.arange(0, 32, 1))
    #raw.apply_function(detrend, picks=np.arange(0, 32, 1), dtype=None,
    #                  n_jobs=1, verbose=True)

    # SSP for blinks
    blinks = find_blinks(raw)
    epochs_blinks = mne.Epochs(raw,
                               blinks,
                               998,
                               tmin=-0.25,
                               tmax=0.25,
                               proj=True,
                               baseline=(-0.25, 0),
                               reject=dict(eeg=500e-6))
    blink_projs = compute_proj_epochs(epochs_blinks,
                                      n_grad=0,
                                      n_mag=0,
                                      n_eeg=2,
                                      verbose='DEBUG')
    raw.add_proj(blink_projs)
#don't need these extra external channels that are saved

for s in range(0, len(Subjects)):
    Subject = Subjects[s]
    print('\n\n\n\n' + Subject + '\n\n\n\n')
    IAC_eeg, IAC_evnt = EEGconcatenateFolder(direct_IAC + Subject + '/',
                                             nchans, refchans, exclude)
    ITD_eeg, ITD_evnt = EEGconcatenateFolder(direct_ITD + Subject + '/',
                                             nchans, refchans, exclude)

    IAC_eeg.filter(1, 40)
    ITD_eeg.filter(1, 40)

    ## blink removal
    blinks_IAC = find_blinks(IAC_eeg,
                             ch_name=['A1'],
                             l_freq=1,
                             l_trans_bandwidth=0.5)
    blinks_ITD = find_blinks(ITD_eeg,
                             ch_name=['A1'],
                             l_freq=1,
                             l_trans_bandwidth=0.5)

    scalings = dict(eeg=40e-6)

    blinkIAC_epochs = mne.Epochs(IAC_eeg,
                                 blinks_IAC,
                                 998,
                                 tmin=-0.25,
                                 tmax=0.25,
                                 proj=False,
                                 baseline=(-0.25, 0),
Exemplo n.º 7
0
            'MEG1013', 'MEG1623', 'MEG2342', 'MEG2513', 'MEG2542'
        ]
    # Filter the data for ERPs
    raw.filter(l_freq=0.5,
               h_freq=144,
               l_trans_bandwidth=0.15,
               picks=np.arange(0, 306, 1))

    # raw.apply_proj()
    fs = raw.info['sfreq']
    removeblinks = True

    if removeblinks:
        # SSP for blinks
        blinks = find_blinks(raw, ch_name=[
            'EOG062',
        ])
        blinkname = (fpath + subj + '_' + para + '_blinks_erp' + ssstag +
                     '-eve.fif')
        mne.write_events(blinkname, blinks)
        epochs_blinks = mne.Epochs(raw,
                                   blinks,
                                   998,
                                   tmin=-0.25,
                                   tmax=0.25,
                                   proj=True,
                                   baseline=(-0.25, 0),
                                   reject=dict(grad=8000e-13, mag=8e-12))
        blink_projs = compute_proj_epochs(epochs_blinks,
                                          n_grad=2,
                                          n_mag=2,
Exemplo n.º 8
0
data_loc = '/media/ravinderjit/Data_Drive/Data/EEGdata/Sentences/'
subject = 'S211'

refchans = ['EXG1', 'EXG2']
nchans = 34
exclude = ['EXG3', 'EXG4', 'EXG5', 'EXG6', 'EXG7', 'EXG8']

sentEEG, sent_evnt = EEGconcatenateFolder(data_loc + subject + '/', nchans,
                                          refchans, exclude)

sentEEG.filter(1, 75)

blinks = find_blinks(sentEEG,
                     ch_name=['A1'],
                     thresh=100e-6,
                     l_trans_bandwidth=0.5,
                     l_freq=1.0)

blink_epochs = mne.Epochs(sentEEG,
                          blinks,
                          998,
                          tmin=-0.25,
                          tmax=0.25,
                          proj=False,
                          baseline=(-0.25, 0),
                          reject=dict(eeg=500e-6))

_Projs = compute_proj_epochs(blink_epochs,
                             n_grad=0,
                             n_mag=0,
Exemplo n.º 9
0
        epochs = mne.read_epochs(fpath + save_raw_name, verbose='DEBUG')
        Fs = epochs.info['sfreq']
        x = epochs.get_data()
        times = epochs.times
    else:
        preEpoched = False
        fifs = fnmatch.filter(os.listdir(fpath), subj + '_CABR_raw.fif')
        print 'No pre-epoched data found, looking for raw files'
        print 'Viola!', len(fifs),  'files found!'
        for k, fif in enumerate(fifs):
            fifs[k] = fpath + fif
        # Load data and read event channel
        raw = mne.io.Raw(fifs, preload=True, add_eeg_ref=False)
        raw.set_channel_types({'EMG061': 'eeg'})
        raw.info['bads'] += ['MEG0223', 'MEG1623']

        # Filter the data for SSRs
        raw.filter(l_freq=70., h_freq=None, picks=None)
        eves = find_blinks(raw, event_id=1, thresh=0.1, l_freq=70.,
                           h_freq=2499., ch_name=['MISC001'])
        cond = 1

        # Epoching events of type
        epochs = mne.Epochs(raw, eves, cond, tmin=-0.005, proj=False,
                            tmax=0.050, baseline=(-0.005, 0.005),
                            reject=dict(grad=1000e-12, mag=10e-12),
                            verbose='WARNING')
abr = epochs.average()
avename = subj + '_ABR-ave.fif'
abr.save(fpath + avename)
Exemplo n.º 10
0
                                         refchans=None, exclude=exclude)
        rawlist += [rawtemp, ]
        evelist += [evestemp, ]
    raw, eves = mne.concatenate_raws(rawlist, events_list=evelist)

    # raw.set_channel_types({'EXG3': 'eeg', 'EXG4': 'eeg'})
    raw.info['bads'] += []

    # Filter the data
    raw.filter(l_freq=1.5, h_freq=40.)

    removeblinks = True

    if removeblinks:
        # SSP for blinks
        blinks = find_blinks(raw, ch_name=['A1', ],  l_trans_bandwidth=0.4)
        blinkname = (fpath + subj + '_inh_blinks_erp' + '-eve.fif')
        mne.write_events(blinkname, blinks)
        epochs_blinks = mne.Epochs(raw, blinks, 998, tmin=-0.25,
                                   tmax=0.25, proj=True,
                                   baseline=(-0.25, 0),
                                   reject=dict(eeg=500e-6))
        blink_projs = compute_proj_epochs(epochs_blinks, n_grad=0,
                                          n_mag=0, n_eeg=2,
                                          verbose='DEBUG')
        raw.add_proj(blink_projs)

    for c, cond in enumerate(condlist):

        condname = condnames[c]
        # Epoching events of type
Exemplo n.º 11
0
eventlistRS = [eventsRS_1, eventsRS_2, eventsRS_3]

rawHB, evesHB = mne.concatenate_raws(rawlistHB, events_list=eventlistHB)
rawHB.filter(1.0, 100)  #filter the eeg

rawRS, evesRS = mne.concatenate_raws(rawlistRS, events_list=eventlistRS)
rawRS.filter(1.0, 100)

rawHB._data[36, :] = rawHB._data[34, :] - rawHB._data[
    35, :]  #replacing an empty channel with the difference of the two eog channels to use for blink detection. This is gonna be channel EXG5
rawRS._data[36, :] = rawRS._data[34, :] - rawRS._data[
    35, :]  #replacing an empty channel with the difference of the two eog channels to use for blink detection. This is gonna be channel EXG5

from anlffr.preproc import find_blinks

blinksHB = find_blinks(rawHB, ch_name=['EXG5'], thresh=100e-6)
blinksRS = find_blinks(rawRS, ch_name=['EXG5'], thresh=100e-6)
scalings = dict(mag=1e-12,
                grad=4e-11,
                eeg=20e-6,
                eog=150e-6,
                ecg=5e-4,
                emg=1e-3,
                ref_meg=1e-12,
                misc=1e-3,
                stim=1,
                resp=1,
                chpi=1e-4)
scalings['eeg'] = 40e-6
scalings['misc'] = 150e-6
#raw.plot(events =blinks, scalings = scalings, proj = False)
Exemplo n.º 12
0
    # raw.info['bads'] += []
    # Filter the data for ERPs
    raw.filter(l_freq=0.5,
               h_freq=100,
               l_trans_bandwidth=0.15,
               picks=np.arange(0, 32, 1))

    # raw.apply_proj()
    fs = raw.info['sfreq']
    removeblinks = True

    if removeblinks:
        # SSP for blinks
        blinks = find_blinks(raw, ch_name=[
            'A1',
        ])
        blinkname = (fpath + subj + '_' + para + '_blinks_erp' + '-eve.fif')
        mne.write_events(blinkname, blinks)
        epochs_blinks = mne.Epochs(raw,
                                   blinks,
                                   998,
                                   tmin=-0.25,
                                   tmax=0.25,
                                   proj=True,
                                   baseline=(-0.25, 0),
                                   reject=dict(eeg=500e-6))
        blink_projs = compute_proj_epochs(epochs_blinks,
                                          n_grad=0,
                                          n_mag=0,
                                          n_eeg=2,
    '/media/ravinderjit/Data_Drive/EEGdata/Summer17/SubjRS_Binding+001.bdf')

rawlist = [raw1, raw2]
eventlist = [events1, events2]

raw, eves = mne.concatenate_raws(rawlist, events_list=eventlist)
raw.filter(1.0, 150)  #filter the eeg

raw._data[36, :] = raw._data[34, :] - raw._data[
    35, :]  #replacing an empty channel with the difference of the two eog channels to use for blink detection. This is gonna be channel EXG5

from anlffr.preproc import find_blinks
#The below line was blinks = find_blinks(raw, ch_name = ['EXG5'], thresh = 100e-6) ... changed to below on 06/12/18
blinks = find_blinks(raw,
                     ch_name=['EXG5'],
                     thresh=100e-6,
                     l_trans_bandwidth=0.5,
                     l_freq=1.0)
scalings = dict(mag=1e-12,
                grad=4e-11,
                eeg=20e-6,
                eog=150e-6,
                ecg=5e-4,
                emg=1e-3,
                ref_meg=1e-12,
                misc=1e-3,
                stim=1,
                resp=1,
                chpi=1e-4)
scalings['eeg'] = 40e-6
scalings['misc'] = 150e-6
Exemplo n.º 14
0
        raw.info['bads'] += [
            'MEG1013', 'MEG1623', 'MEG2342', 'MEG2513', 'MEG2542', 'MEG1031',
            'MEG1041', 'MEG2022'
        ]
    # Filter the data for ERPs
    raw.filter(l_freq=1.0, h_freq=90, picks=np.arange(0, 306, 1))

    # raw.apply_proj()
    fs = raw.info['sfreq']
    removeblinks = True

    if removeblinks:
        # SSP for blinks
        blinks = find_blinks(raw,
                             ch_name=[
                                 'EOG062',
                             ],
                             l_trans_bandwidth='auto')
        blinkname = (fpath + subj + '_' + para + '_blinks_erp' + ssstag +
                     '-eve.fif')
        mne.write_events(blinkname, blinks)
        epochs_blinks = mne.Epochs(raw,
                                   blinks,
                                   998,
                                   tmin=-0.25,
                                   tmax=0.25,
                                   proj=True,
                                   baseline=(-0.25, 0),
                                   reject=dict(grad=8000e-13, mag=8e-12))
        blink_projs = compute_proj_epochs(epochs_blinks,
                                          n_grad=2,
Exemplo n.º 15
0
def processing(stimulus, subj, fpath):
    # load data and read event channels
    rawlist = []
    evelist = []
    # extracting bdf filenames into bdfs
    if stimulus == 'ITD':
        bdfs = fnmatch.filter(os.listdir(fpath), subj + '_ITD*.bdf') 
    elif stimulus == 'Atten':
        bdfs = fnmatch.filter(os.listdir(fpath), subj + '_Atten*.bdf') 
    if len(bdfs) >= 1:
        for k, bdf in enumerate(bdfs):
            rawtemp, evestemp = bs.importbdf(fpath + bdf)
            rawlist += [rawtemp,]
            evelist += [evestemp,]
    else:
        RuntimeError("No bdf files found!")
    # the returned eves has three columns: sample number, value of onset, value of offset.     
    raw, eves = mne.concatenate_raws(rawlist, events_list = evelist)
    # Things to try if data are too noisy
    # raw.info['bads'] += ['A7', 'A6', 'A24'] # if A7, A6, A24 have been rejected a lot, they can be added manually
    # raw.set_eeg_reference(ref_channels=['Average']) # referencing to the average of all channels, do this if channels are too noisy  
    
    eves2 = eves.copy()
    # the eves are in 16 bits originally, so this operation only looks at the lower 8 bits. higher 8 bits are always 
    # high, representing button box condition. If interested in what's happening at button press, do np.floor(eves2[:,1]/256)
    eves2[:, 1] = np.mod(eves2[:, 1], 256) 
    eves2[:, 2] = np.mod(eves2[:, 2], 256)   
    if stimulus == 'ITD' or stimulus == 'Atten':
        raw.filter(l_freq = 1, h_freq=50) # if channels are noisy, adjust the filter parameters
    # raw.plot(events=eves2)
    # SSP for blinks
    blinks = find_blinks(raw, ch_name = ['A1',], l_trans_bandwidth=0.5,
                         l_freq=1.0) # A1 is the closest electrode to eyebrow
    # blink and eves2 triggers can be combined using np.concatenate((eves2, blinks), axis = 0)
    # raw.plot(events=blinks) shows the lines at eye blinks
    
    # the trigger for blinks can be chosen to be starting from 1000, just to make sure it doesn't collide with the triggers for conditions
    epochs_blinks = mne.Epochs(raw, blinks, 998, tmin = -0.25, tmax = 0.25, 
                               proj = False, baseline = (-0.25, 0), 
                               reject=dict(eeg=500e-6)) 
    # evoked_blinks = epochs_blinks.average()
    # evoked_blinks_data = evoked_blinks.data[np.arange(32),:]
    
    # PCA is only applied to the epochs around eye blinks. Since the eye blinks are 
    # contributing the most to the variance within this chunk of window, 
    # the first PCA (first eigenvector) is going to be due to the eye blink 
    # for sure and removed. If the PCA was performed on the whole samples, we wouldn't
    # know which vector is going to be linked to the eye blink
    # for "n_eeg", it's recommended to remove only the biggest projection, which is eye blinks in this case
    # greater n_eeg removes more nueral data, which is not favorable
    n_eeg = 4
    blink_projs = compute_proj_epochs(epochs_blinks, n_grad=0,
                                      n_mag=0, n_eeg=n_eeg,
                                      verbose='DEBUG')    
    projN = np.zeros(2)
    if subj in ['S025', 'S031', 'S046', 'S117', 'S123', 'S127', 'S128', 'S132', 'S133', 'S143', 'S149', 'S051', 'S183', 'S185', 'S187', 'S189', 'S193', 'S195', 'S196', 'S043', 'S072', 'S075', 'S078', 'S191', 'S129', 'S141', 'S190', 'S021', 'S024', 'S028', 'S083', 'S119', 'S121', 'S122', 'S139', 'S140', 'S142', 'S144', 'S145']:
        #raw.add_proj(blink_projs) # adding all projections
        raw.add_proj([blink_projs[0], blink_projs[2]]) # raw.del_proj()   
        projN = [1, 3]
    elif subj in ['S135', 'S192', 'S194', 'S197', 'S199', 'S216', 'S218']:
        raw.add_proj([blink_projs[0], blink_projs[1]]) # raw.del_proj()   
        projN = [1, 2]
    elif subj in ['S084']:
        raw.add_proj([blink_projs[0]]) # raw.del_proj()   
        projN = [1, 0]
    
    # raw.plot_projs_topomap() shows the 4 max PCAs (eigenvectors)
    # raw.plot(events = blinks, show_options = True) could show the options for applying different projections
    
    # if channels are too noisy, play with n_eeg, if the second variance is acting more than
    # the first, that means the channels are contaminated not just by the eye blinks, but also
    # from other sources

    # MANUALLY SELECT PROJECTIONS BY PLOTTING raw.plot_projs_topomap
    # REMOVE EXTRA PROJS USING raw.del_proj -- Remember index starts at 0 
    return raw, eves2, projN
Exemplo n.º 16
0
    #%% Load data and filter

    datapath = os.path.join(data_loc, subject)
    data_eeg, data_evnt = EEGconcatenateFolder(datapath + '/', nchans,
                                               refchans, exclude)
    data_eeg.filter(l_freq=1, h_freq=500)

    #%% Remove bad channels

    if subject == 'S207':
        data_eeg.info['bads'].append('A15')

    #%% Blink Removal
    blinks = find_blinks(data_eeg,
                         ch_name=['A1'],
                         thresh=100e-6,
                         l_trans_bandwidth=0.5,
                         l_freq=1.0)
    blink_epochs = mne.Epochs(data_eeg,
                              blinks,
                              998,
                              tmin=-0.25,
                              tmax=0.25,
                              proj=False,
                              baseline=(-0.25, 0),
                              reject=dict(eeg=500e-6))
    Projs = compute_proj_epochs(blink_epochs,
                                n_grad=0,
                                n_mag=0,
                                n_eeg=8,
                                verbose='DEBUG')
#if Mask is none: events 1:4 = 65281-84, button presses are 65280
#rawlist = [raw1, raw2]
#eventlist = [events1, events2]

rawlist = [raw1, raw2, raw3]
eventlist = [events1, events2, events3]

raw, eves = mne.concatenate_raws(rawlist, events_list=eventlist)
raw.filter(1.0, 40)  #filter the eeg

raw._data[36, :] = raw._data[34, :] - raw._data[
    35, :]  #replacing an empty channel with the difference of the two eog channels to use for blink detection. This is gonna be channel EXG5

from anlffr.preproc import find_blinks
blinks = find_blinks(raw, ch_name=['EXG5'], thresh=100e-6)
scalings = dict(mag=1e-12,
                grad=4e-11,
                eeg=20e-6,
                eog=150e-6,
                ecg=5e-4,
                emg=1e-3,
                ref_meg=1e-12,
                misc=1e-3,
                stim=1,
                resp=1,
                chpi=1e-4)
scalings['eeg'] = 40e-6
scalings['misc'] = 150e-6
#raw.plot(events =blinks, scalings = scalings, proj = False)