Exemplo n.º 1
0
def test_ann():

    reference = flex.double()

    for j in range(3 * 100):
        reference.append(random.random())

    query = flex.double()

    for j in range(3 * 10):
        query.append(random.random())

    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    # workout code - see how far separated on average they are - which should
    # in principle decrease as the number of positions in the reference set
    # increases

    offsets = []

    for j in range(10):
        q = matrix.col([query[3 * j + k] for k in range(3)])
        r = matrix.col([reference[3 * ann.nn[j] + k] for k in range(3)])
        offsets.append((q - r).length())

    return meansd(offsets)
Exemplo n.º 2
0
def compare(xyz_to_hkl, xyz_to_hkl_ref):
    # construct ann to perform search...

    from cctbx.array_family import flex
    from annlib_ext import AnnAdaptor as ann_adaptor

    reference = flex.double()

    xyzs = [xyz for xyz in xyz_to_hkl]

    for xyz in xyzs:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    ann = ann_adaptor(data = reference, dim = 3, k = 1)

    n_correct = 0
    n_wrong = 0

    for xyz in xyz_to_hkl_ref:
        query = flex.double(xyz)
        ann.query(query)
        nnxyz = xyzs[ann.nn[0]]
        if xyz_to_hkl_ref[xyz] == xyz_to_hkl[nnxyz]:
            n_correct += 1
        else:
            n_wrong += 1

    return n_correct, n_wrong
Exemplo n.º 3
0
def test_ann():

    reference = flex.double()

    for j in range(3 * 100):
        reference.append(random.random())

    query = flex.double()

    for j in range(3 * 10):
        query.append(random.random())

    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    # workout code - see how far separated on average they are - which should
    # in principle decrease as the number of positions in the reference set
    # increases

    offsets = []

    for j in range(10):
        q = matrix.col([query[3 * j + k] for k in range(3)])
        r = matrix.col([reference[3 * ann.nn[j] + k] for k in range(3)])
        offsets.append((q - r).length())

    return meansd(offsets)
Exemplo n.º 4
0
def matcher(reference, moving, params):
    from annlib_ext import AnnAdaptor as ann_adaptor
    from dials.array_family import flex

    rxyz = reference['xyzobs.px.value'].parts()
    mxyz = moving['xyzobs.px.value'].parts()

    rxy = flex.vec2_double(rxyz[0], rxyz[1])
    mxy = flex.vec2_double(mxyz[0], mxyz[1])

    ann = ann_adaptor(rxy.as_double().as_1d(), 2)
    ann.query(mxy.as_double().as_1d())
    distances = flex.sqrt(ann.distances)

    matches = (distances < params.far) & (distances >= params.close)

    xyr = flex.vec2_double()
    xym = flex.vec2_double()

    for j in range(matches.size()):
        if not matches[j]:
            continue
        xym.append(mxy[j])
        xyr.append(rxy[ann.nn[j]])

    # filter outliers - use IQR etc.
    dxy = xym - xyr

    dx, dy = dxy.parts()

    iqx = IQR(dx.select(flex.sort_permutation(dx)))
    iqy = IQR(dy.select(flex.sort_permutation(dy)))

    keep_x = (dx > (iqx[0] - iqx[3])) & (dx < (iqx[2] + iqx[3]))
    keep_y = (dy > (iqy[0] - iqy[3])) & (dy < (iqy[2] + iqy[3]))
    keep = keep_x & keep_y
    xyr = xyr.select(keep)
    xym = xym.select(keep)

    # compute Rt

    R, t, d, n = Rt(xyr, xym)

    # verify matches in original image coordinate system

    from scitbx import matrix
    import math
    _R = matrix.sqr(R)
    rmsd = 0.0
    for j, _xym in enumerate(xym):
        _xymm = _R * _xym + matrix.col(t)
        rmsd += (matrix.col(xyr[j]) - _xymm).length()**2
    assert abs(math.sqrt(rmsd / xym.size()) - d) < 1e-6

    return R, t, d, n
Exemplo n.º 5
0
def pair_up(reference, moving, params, R0, t0):
    from annlib_ext import AnnAdaptor as ann_adaptor
    from dials.array_family import flex

    rxyz = reference['xyzobs.px.value'].parts()
    mxyz = moving['xyzobs.px.value'].parts()

    # apply R0, t0 before performing matching - so should ideally be in almost
    # right position

    rxy = flex.vec2_double(rxyz[0], rxyz[1])
    _mxy = flex.vec2_double(mxyz[0], mxyz[1])
    mxy = flex.vec2_double()
    for __mxy in _mxy:
        mxy.append((R0 * __mxy + t0).elems)

    ann = ann_adaptor(rxy.as_double().as_1d(), 2)
    ann.query(mxy.as_double().as_1d())
    distances = flex.sqrt(ann.distances)

    matches = (distances < params.far)

    rsel = flex.size_t()
    msel = flex.size_t()

    xyr = flex.vec2_double()
    xym = flex.vec2_double()

    for j in range(matches.size()):
        if not matches[j]:
            continue
        msel.append(j)
        rsel.append(ann.nn[j])
        xym.append(mxy[j])
        xyr.append(rxy[ann.nn[j]])

    # filter outliers - use IQR etc.
    dxy = xym - xyr

    dx, dy = dxy.parts()

    iqx = IQR(dx.select(flex.sort_permutation(dx)))
    iqy = IQR(dy.select(flex.sort_permutation(dy)))

    keep_x = (dx > (iqx[0] - iqx[3])) & (dx < (iqx[2] + iqx[3]))
    keep_y = (dy > (iqy[0] - iqy[3])) & (dy < (iqy[2] + iqy[3]))
    keep = keep_x & keep_y

    return rsel.select(keep), msel.select(keep)
Exemplo n.º 6
0
def validate_predictions(integrate_hkl, uc1_2):

    observations = read_integrate_hkl(integrate_hkl)
    predictions = read_uc1_2(uc1_2)

    reference = flex.double()
    query = flex.double()

    for hkl, xyz, isigma in observations:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for hkl, xyz, isigma in predictions:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    dxs = []
    dys = []
    dzs = []
    ivalues_o = []
    ivalues_p = []

    for j in range(len(predictions)):
        c = ann.nn[j]
        if observations[c][0] == predictions[j][0]:
            xyz = observations[c][1]
            dx = observations[c][1][0] - predictions[j][1][0]
            dy = observations[c][1][1] - predictions[j][1][1]
            dz = observations[c][1][2] - predictions[j][1][2]

            dxs.append(dx)
            dys.append(dy)
            dzs.append(dz)
            ivalues_o.append(observations[c][2][0])
            ivalues_p.append(predictions[j][2][0])
            print(observations[c][2][0], predictions[j][2][0])

    return meansd(dxs), meansd(dys), meansd(dzs), cc(ivalues_o, ivalues_p)
Exemplo n.º 7
0
def validate_predictions(integrate_hkl, uc1_2):

    observations = read_integrate_hkl(integrate_hkl)
    predictions = read_uc1_2(uc1_2)

    reference = flex.double()
    query = flex.double()

    for hkl, xyz, isigma in observations:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for hkl, xyz, isigma in predictions:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    dxs = []
    dys = []
    dzs = []
    ivalues_o = []
    ivalues_p = []

    for j in range(len(predictions)):
        c = ann.nn[j]
        if observations[c][0] == predictions[j][0]:
            xyz = observations[c][1]
            dx = observations[c][1][0] - predictions[j][1][0]
            dy = observations[c][1][1] - predictions[j][1][1]
            dz = observations[c][1][2] - predictions[j][1][2]

            dxs.append(dx)
            dys.append(dy)
            dzs.append(dz)
            ivalues_o.append(observations[c][2][0])
            ivalues_p.append(predictions[j][2][0])
            print observations[c][2][0], predictions[j][2][0]

    return meansd(dxs), meansd(dys), meansd(dzs), cc(ivalues_o, ivalues_p)
Exemplo n.º 8
0
def validate_predictions(spot_xds, uc1_2):

    observations = read_spot_xds(spot_xds)
    predictions = read_uc1_2(uc1_2)

    reference = flex.double()
    query = flex.double()

    for hkl, xyz in observations:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for hkl, xyz in predictions:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    ann = ann_adaptor(data = reference, dim = 3, k = 1)
    ann.query(query)

    dxs = []
    dys = []
    dzs = []

    for j in range(len(predictions)):
        c = ann.nn[j]
        if observations[c][0] == predictions[j][0]:
            xyz = observations[c][1]
            x, y, z = predictions[j][1]
            dx = observations[c][1][0] - predictions[j][1][0]
            dy = observations[c][1][1] - predictions[j][1][1]
            dz = observations[c][1][2] - predictions[j][1][2]

            dxs.append(dx)
            dys.append(dy)
            dzs.append(dz)

            print x, y, z, dx, dy, dz

    return meansd(dxs), meansd(dys), meansd(dzs)
Exemplo n.º 9
0
def validate_predictions(spot_xds, uc1_2):

    observations = read_spot_xds(spot_xds)
    predictions = read_uc1_2(uc1_2)

    reference = flex.double()
    query = flex.double()

    for hkl, xyz in observations:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for hkl, xyz in predictions:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    ann = ann_adaptor(data = reference, dim = 3, k = 1)
    ann.query(query)

    dxs = []
    dys = []
    dzs = []

    for j in range(len(predictions)):
        c = ann.nn[j]
        if observations[c][0] == predictions[j][0]:
            xyz = observations[c][1]
            x, y, z = predictions[j][1]
            dx = observations[c][1][0] - predictions[j][1][0]
            dy = observations[c][1][1] - predictions[j][1][1]
            dz = observations[c][1][2] - predictions[j][1][2]

            dxs.append(dx)
            dys.append(dy)
            dzs.append(dz)

            print(x, y, z, dx, dy, dz)

    return meansd(dxs), meansd(dys), meansd(dzs)
Exemplo n.º 10
0
def main(mtz_file, xds_integrate_file):
    mos_hkl_xyz_isigi = get_hkl_xyz_isigi(mtz_file)

    print 'Read %d observations from %s' % (len(mos_hkl_xyz_isigi), mtz_file)

    xds_hkl_xyz_isigi = read_xds_integrate(xds_integrate_file)

    print 'Read %d observations from %s' % \
          (len(xds_hkl_xyz_isigi), xds_integrate_file)

    # treat XDS as reference, mosflm as query (arbitrary)

    reference = flex.double()
    query = flex.double()

    for hkl, xyz, isigi in xds_hkl_xyz_isigi:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for hkl, xyz, isigi in mos_hkl_xyz_isigi:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    ann = ann_adaptor(data = reference, dim = 3, k = 1)
    ann.query(query)

    i_s_mos = []
    i_s_xds = []

    for j in range(len(mos_hkl_xyz_isigi)):
        c = ann.nn[j]
        if xds_hkl_xyz_isigi[c][0] == mos_hkl_xyz_isigi[j][0]:
            i_s_mos.append(mos_hkl_xyz_isigi[j][2][0])
            i_s_xds.append(xds_hkl_xyz_isigi[c][2][0])

    print 'Matched %d observations' % len(i_s_mos)

    print cc(i_s_mos, i_s_xds)
Exemplo n.º 11
0
def main(mtz_file, xds_integrate_file):
    mos_hkl_xyz_isigi = get_hkl_xyz_isigi(mtz_file)

    print('Read %d observations from %s' % (len(mos_hkl_xyz_isigi), mtz_file))

    xds_hkl_xyz_isigi = read_xds_integrate(xds_integrate_file)

    print('Read %d observations from %s' % \
          (len(xds_hkl_xyz_isigi), xds_integrate_file))

    # treat XDS as reference, mosflm as query (arbitrary)

    reference = flex.double()
    query = flex.double()

    for hkl, xyz, isigi in xds_hkl_xyz_isigi:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for hkl, xyz, isigi in mos_hkl_xyz_isigi:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    i_s_mos = []
    i_s_xds = []

    for j in range(len(mos_hkl_xyz_isigi)):
        c = ann.nn[j]
        if xds_hkl_xyz_isigi[c][0] == mos_hkl_xyz_isigi[j][0]:
            i_s_mos.append(mos_hkl_xyz_isigi[j][2][0])
            i_s_xds.append(xds_hkl_xyz_isigi[c][2][0])

    print('Matched %d observations' % len(i_s_mos))

    print(cc(i_s_mos, i_s_xds))
Exemplo n.º 12
0
def run(args):
    import libtbx.load_env

    usage = "%s [options]" % libtbx.env.dispatcher_name

    parser = OptionParser(
        usage=usage, phil=phil_scope, check_format=False, epilog=help_message
    )

    params, options, args = parser.parse_args(
        show_diff_phil=True, return_unhandled=True
    )

    assert len(args) == 2
    from iotbx.reflection_file_reader import any_reflection_file

    xyz = []
    intensities = []
    lp_corrections = []

    for f in args:
        xdet = None
        ydet = None
        rot = None
        i_sigi = None
        lp = None
        arrays = any_reflection_file(f).as_miller_arrays(merge_equivalents=False)
        for ma in arrays:
            print(ma.info().labels)
            if ma.info().labels[0] == "XDET":
                xdet = ma
            elif ma.info().labels[0] == "YDET":
                ydet = ma
            elif ma.info().labels[0] == "ROT":
                rot = ma
            elif ma.info().labels == ["I", "SIGI"]:
                i_sigi = ma
            elif ma.info().labels[0] == "LP":
                lp = ma

        assert [xdet, ydet, rot, i_sigi, lp].count(None) == 0

        xyz.append(flex.vec3_double(xdet.data(), ydet.data(), rot.data()))
        intensities.append(i_sigi)
        lp_corrections.append(lp)

    xyz1, xyz2 = xyz
    xyz2 += (1e-3, 1e-3, 1e-3)
    intensities1, intensities2 = intensities
    lp1, lp2 = lp_corrections

    # Do the nn match
    from annlib_ext import AnnAdaptor as ann_adaptor

    ann = ann_adaptor(xyz1.as_double().as_1d(), 3)
    ann.query(xyz2.as_double().as_1d())

    distances = flex.sqrt(ann.distances)
    matches = distances < 2  # pixels
    index1 = flex.size_t(list(ann.nn.select(matches)))
    index2 = flex.size_t(list(matches.iselection()))

    intensities1 = intensities1.select(index1)
    intensities2 = intensities2.select(index2)
    isigi1 = intensities1.data() / intensities1.sigmas()
    isigi2 = intensities2.data() / intensities2.sigmas()
    lp1 = lp1.select(index1)
    lp2 = lp2.select(index2)
    ##differences = intensities1.data() - intensities2.data()
    ##sums = intensities1.data() + intensities2.data()
    # differences = isigi1 - isigi2
    # sums = isigi1 + isigi2
    # assert sums.all_ne(0)
    # dos = differences/sums

    # mean_dos = []
    # binner = intensities1.setup_binner_d_star_sq_step(d_star_sq_step=0.01)
    # d_spacings = intensities1.d_spacings().data()
    # for i in range(binner.n_bins_used()):
    # d_max, d_min = binner.bin_d_range(i+1)
    # bin_sel = (d_spacings > d_min) & (d_spacings <= d_max)
    # mean_dos.append(flex.mean(dos.select(bin_sel)))

    # set backend before importing pyplot
    import matplotlib

    matplotlib.use("Agg")

    from matplotlib import pyplot

    pyplot.scatter(intensities1.data(), intensities2.data(), marker="+", alpha=0.5)
    m = max(pyplot.xlim()[1], pyplot.ylim()[1])
    pyplot.plot((0, m), (0, m), c="black")
    pyplot.savefig("scatter_intensities.png")
    pyplot.clf()

    pyplot.scatter(intensities1.sigmas(), intensities2.sigmas(), marker="+", alpha=0.5)
    m = max(pyplot.xlim()[1], pyplot.ylim()[1])
    pyplot.plot((0, m), (0, m), c="black")
    pyplot.savefig("scatter_sigmas.png")
    pyplot.clf()

    pyplot.scatter(
        flex.pow2(intensities1.sigmas()),
        flex.pow2(intensities2.sigmas()),
        marker="+",
        alpha=0.5,
    )
    m = max(pyplot.xlim()[1], pyplot.ylim()[1])
    pyplot.plot((0, m), (0, m), c="black")
    pyplot.savefig("scatter_variances.png")
    pyplot.clf()

    pyplot.scatter(isigi1, isigi2, marker="+", alpha=0.5)
    m = max(pyplot.xlim()[1], pyplot.ylim()[1])
    pyplot.plot((0, m), (0, m), c="black")
    pyplot.savefig("scatter_i_sig_i.png")
    pyplot.clf()

    pyplot.scatter(lp1.data(), lp2.data(), marker="+", alpha=0.5)
    m = max(pyplot.xlim()[1], pyplot.ylim()[1])
    pyplot.plot((0, m), (0, m))
    pyplot.savefig("scatter_LP.png")
    pyplot.clf()

    # from cctbx import uctbx
    # pyplot.scatter(uctbx.d_star_sq_as_d(binner.bin_centers(2)), mean_dos)
    # pyplot.savefig('mean_dos.png')
    # pyplot.clf()

    return
Exemplo n.º 13
0
def main(args):
    reflections = load_data(args[0])
    aimless_scaled_file = args[1]

    dials_hkl_xyz_isigi = read_dials_scaled(reflections)

    print("Read %d observations from %s" % (len(dials_hkl_xyz_isigi), args[0]))

    aimless_hkl_xyz_isigi = read_aimless(aimless_scaled_file)

    print("Read %d observations from %s" %
          (len(aimless_hkl_xyz_isigi), aimless_scaled_file))

    # treat aimless as reference, dials as query
    reference = flex.double()
    query = flex.double()

    for hkl, xyz, isigi, scale in dials_hkl_xyz_isigi:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])
    # print hkl, xyz, isigi

    # extract xyz positions
    for hkl, xyz, isigi, scale in aimless_hkl_xyz_isigi:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])
    # print hkl, xyz, isigi

    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    i_s_dials = []
    i_s_aimless = []

    # go through matching the reflections, then appending the (scaled) I's to a list
    for j in range(len(dials_hkl_xyz_isigi)):
        c = ann.nn[j]
        if aimless_hkl_xyz_isigi[c][0] == dials_hkl_xyz_isigi[j][0]:
            # print aimless_hkl_xyz_isigi[c][0], dials_hkl_xyz_isigi[j][0]
            i_s_dials.append(dials_hkl_xyz_isigi[j][3])
            i_s_aimless.append(aimless_hkl_xyz_isigi[c][3])
        # else:
        # print aimless_hkl_xyz_isigi[c][0], dials_hkl_xyz_isigi[j][0]

    # calculate correlation between I's
    print("Matched %d observations" % len(i_s_dials))
    correlation_coefficient = cc(i_s_dials, i_s_aimless)
    R_factor = R(i_s_dials, i_s_aimless)
    print("CC: %.6f" % correlation_coefficient)
    print("R:  %.3f" % R_factor)
    import matplotlib.pyplot as plt

    y_ideal = [x for x in i_s_dials]

    plt.figure(figsize=(10, 7))
    plt.scatter(i_s_dials, i_s_aimless, s=0.1)
    plt.plot(i_s_dials, y_ideal, color="r")
    plt.xlabel("Inverse scale factor in DIALS")
    plt.ylabel("Inverse scale factor in aimless")
    plt.axes().set_aspect("equal")
    plt.title("""Comparison inverse scale factors from aimless and
    dials.aimless_scaling, CC = %.5f, R = %.3f""" %
              (correlation_coefficient, R_factor))
    plt.savefig("Aimless_DIALS_comparison.png")
    plt.show()
    return correlation_coefficient, R_factor
Exemplo n.º 14
0
def reconstruct_rogues(params):
  assert os.path.exists('xia2.json')
  from xia2.Schema.XProject import XProject
  xinfo = XProject.from_json(filename='xia2.json')

  from dxtbx.model.experiment.experiment_list import ExperimentListFactory
  import cPickle as pickle
  import dials # because WARNING:root:No profile class gaussian_rs registered
  crystals = xinfo.get_crystals()
  assert len(crystals) == 1

  for xname in crystals:
    crystal = crystals[xname]

  scaler = crystal._get_scaler()

  epochs = scaler._sweep_handler.get_epochs()

  rogues = os.path.join(scaler.get_working_directory(),
                        xname, 'scale', 'ROGUES')

  rogue_reflections = munch_rogues(rogues)

  batched_reflections = { }

  for epoch in epochs:
    si = scaler._sweep_handler.get_sweep_information(epoch)
    intgr = si.get_integrater()
    experiments = ExperimentListFactory.from_json_file(
      intgr.get_integrated_experiments())
    reflections = pickle.load(open(intgr.get_integrated_reflections()))
    batched_reflections[si.get_batch_range()] = (experiments, reflections,
                                                 si.get_sweep_name())

  # - look up reflection in reflection list, get bounding box
  # - pull pixels given from image set, flatten these, write out

  from dials.array_family import flex
  from annlib_ext import AnnAdaptor as ann_adaptor

  reflections_run = { }
  for run in batched_reflections:
    reflections_run[run] = []

  for rogue in rogue_reflections:
    b = rogue[0]
    for run in batched_reflections:
      if b >= run[0] and b <= run[1]:
        reflections_run[run].append(rogue)
        break

  for run_no, run in enumerate(reflections_run):
    experiment = batched_reflections[run][0]
    reflections = batched_reflections[run][1]
    name = batched_reflections[run][2]
    rogues = reflections_run[run]
    reference = flex.double()
    scan = experiment.scans()[0]
    images = experiment.imagesets()[0]
    for xyz in reflections['xyzcal.px']:
      reference.append(xyz[0])
      reference.append(xyz[1])
      reference.append(xyz[2])

    search = flex.double()
    for rogue in rogues:
      search.append(rogue[1])
      search.append(rogue[2])
      search.append(scan.get_array_index_from_angle(rogue[3]))

    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(search)

    keep = flex.bool(len(reflections), False)

    for j, rogue in enumerate(rogues):
      keep[ann.nn[j]] = True

    reflections = reflections.select(keep==True)

    if params.extract:
      reflections["shoebox"] = flex.shoebox(
        reflections["panel"],
        reflections["bbox"],
        allocate=True)
      reflections.extract_shoeboxes(images, verbose=False)

    if len(reflections_run) > 1:
      output = params.output.reflections.replace(
          '.pickle', '-%s.pickle' % name)
      print 'Extracted %d rogue reflections for %s to %s' % \
        (len(reflections), name, output)
      reflections.as_pickle(output)
    else:
      output = params.output.reflections
      print 'Extracted %d rogue reflections to %s' % \
        (len(reflections), output)
      reflections.as_pickle(output)
Exemplo n.º 15
0
def run(args):
    table_1 = data_from_mtz(args[0])
    table_2 = data_from_mtz(args[1])

    zr1 = max(table_1["z"]) - min(table_1["z"])
    zr2 = max(table_2["z"]) - min(table_2["z"])
    if zr1 / zr2 > 1.2:
        table_2["z"] *= int(zr1 / zr2)
        print(
            "scaled ROT values of dataset 2 by %s to match dataset 1" % int(zr1 / zr2)
        )
    elif zr2 / zr1 > 1.2:
        table_1["z"] *= int(zr2 / zr1)
        print(
            "scaled ROT values of dataset 1 by %s to match dataset 2" % int(zr2 / zr1)
        )

    # print(br1, br2)
    # print(max(br1/br2, br2/br1))

    table_1["match_idx"] = flex.int(table_1.size(), -1)

    xy0 = flex.vec2_double(table_1["x"], table_1["y"])
    # add 1e-6 as if the values are exactly the same then not found as nearest
    # neighbour! e.g. trying to compare dials vs aimless
    xy1 = flex.vec2_double(table_2["x"] + 1e-2, table_2["y"])

    z0 = table_1["z"]
    z1 = table_2["z"]

    zs = range(int(flex.min(z0)), int(flex.max(z0)) + 1)
    matches = 0
    for z in zs:
        sel = (z0 < z + max_z_diff) & (z0 > z - max_z_diff)
        xy = xy0.select(sel)
        table1_indices = sel.iselection()
        ann = ann_adaptor(xy.as_double().as_1d(), 2)
        sel2 = (z1 < z + max_z_diff) & (z1 > z - max_z_diff)
        xy = xy1.select(sel2)
        table2_indices = sel2.iselection()
        xy1d = xy.as_double().as_1d()
        ann.query(xy1d)
        for i, nn_idx in enumerate(
            ann.nn
        ):  # nn_idx is index of table1, i index of table 2
            if math.sqrt(ann.distances[i]) < max_allowable_distance:
                table_1["match_idx"][table1_indices[nn_idx]] = table2_indices[i]
                matches += 1

    print("Table 1 size:%s" % table_1.size())
    print("Table 2 size:%s" % table_2.size())
    print(
        "Found %s matches (searching for matches to table1 in table2)"
        % str((table_1["match_idx"] != -1).count(True))
    )
    indices = set(table_1["match_idx"])
    n_unique = len(indices)
    if -1 in indices:
        n_unique -= 1
    print("%s unique matches" % str(n_unique))

    correctly_matched = 0
    incorrectly_matched = 0
    for i in range(len(table_1)):
        if table_1["match_idx"][i] != -1:
            if (
                table_1["miller_index"][i]
                == table_2["miller_index"][table_1["match_idx"][i]]
            ):
                correctly_matched += 1
            else:
                # pass
                incorrectly_matched += 1
                # print("Incorrectly matched %s, %s" % (table_1["miller_index"][i], table_2["miller_index"][table_1["match_idx"][i]]))
                table_1["match_idx"][i] = -1
    print("N correctly matched %s" % correctly_matched)
    print("N incorrectly matched %s" % incorrectly_matched)
    report_on_non_matches(table_1, table_2, dmin)
    plot_scales(table_1, table_2)
Exemplo n.º 16
0
def saturation_analysis(data_files, value_column):
    import six.moves.cPickle as pickle
    from dials.array_family import flex
    from annlib_ext import AnnAdaptor as ann_adaptor

    reference = data_files[0]
    rest = data_files[1:]

    with open(reference, "rb") as fh:
        reference_data = pickle.load(fh)

    assert value_column in reference_data
    variance_column = None
    for column in [
            "%s.variance" % value_column,
            value_column.replace("value", "variance"),
    ]:
        if column in reference_data:
            variance_column = column
            break

    assert variance_column

    # construct XYZ pixel position search target

    reference_data = strip_not_integrated(reference_data)

    # keep only data with I/sig(I) > 3 for reference
    strong = reference_data[value_column] > 3 * flex.sqrt(
        reference_data[variance_column])

    print("Keeping %d strong reflections of %d" %
          (strong.count(True), len(reference_data)))

    reference_data = reference_data.select(strong)

    xyz = reference_data["xyzcal.px"].as_double()
    ann = ann_adaptor(data=xyz, dim=3, k=1)

    for qpno, query_pickle in enumerate(rest):
        x = flex.double()
        y = flex.double()
        fout = open("matches%02d.dat" % qpno, "w")
        with open(query_pickle, "rb") as fh:
            query_data = strip_not_integrated(pickle.load(fh))
        qxyz = query_data["xyzcal.px"].as_double()
        ann.query(qxyz)
        matches = 0
        for j, refl in enumerate(query_data):
            rrefl = reference_data[ann.nn[j]]
            if refl["miller_index"] == rrefl["miller_index"]:
                fout.write("%d %d %d " % refl["miller_index"] + "%f %f " %
                           (rrefl[value_column], rrefl[variance_column]) +
                           "%f %f " %
                           (refl[value_column], refl[variance_column]) +
                           "%f %f %f\n" % refl["xyzcal.px"])
                matches += 1
                x.append(rrefl[value_column])
                y.append(refl[value_column])
        print("For %s matched %d/%d" %
              (query_pickle, matches, len(query_data)))
        fout.close()
        from matplotlib import pyplot

        pyplot.scatter(x.as_numpy_array(), y.as_numpy_array())
        pyplot.show()
Exemplo n.º 17
0
def compare_chunks(integrate_hkl, integrate_pkl, crystal_json, sweep_json, d_min=0.0):

    from cctbx.array_family import flex
    from annlib_ext import AnnAdaptor as ann_adaptor
    from dials.model.serialize import load

    sweep = load.sweep(sweep_json)

    rdx = derive_reindex_matrix(crystal_json, sweep_json, integrate_hkl)

    print "Reindex matrix:\n%d %d %d\n%d %d %d\n%d %d %d" % (rdx.elems)

    uc = integrate_hkl_to_unit_cell(integrate_hkl)

    xhkl, xi, xsigi, xxyz, xlp = pull_reference(integrate_hkl, d_min=d_min)
    dhkl, di, dsigi, dxyz, dlp = pull_calculated(integrate_pkl)

    reference = flex.double()
    query = flex.double()

    for xyz in xxyz:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for xyz in dxyz:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    # perform the match
    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    XDS = []
    DIALS = []
    HKL = []
    XYZ = []
    SIGMA_XDS = []
    SIGMA_DIALS = []
    XLP = []
    DLP = []

    # perform the analysis
    for j, hkl in enumerate(dhkl):
        c = ann.nn[j]
        if hkl == tuple(rdx * xhkl[c]):
            XDS.append(xi[c])
            DIALS.append(di[j])
            HKL.append(hkl)
            XYZ.append(dxyz[j])
            SIGMA_XDS.append(xsigi[c])
            SIGMA_DIALS.append(dsigi[j])
            XLP.append(xlp[c])
            DLP.append(dlp[j])

    print "Found %d matches" % len(XDS)

    compare = CompareIntensity(sweep, uc, HKL, XYZ, XDS, DIALS, SIGMA_XDS, SIGMA_DIALS, XLP, DLP)
    #  compare.plot_scale_factor_vs_resolution()
    #  compare.plot_scale_factor_vs_frame_number()
    compare.plot_chunked_statistics_vs_resolution()
    compare.plot_chunked_statistics_vs_frame_number()
    compare.plot_chunked_statistics_vs_i_over_sigma()
    compare.plot_chunked_i_over_sigma_vs_frame_number()
    compare.plot_chunked_resolution_vs_frame_number()
    compare.plot_chunked_lp_vs_frame_number()
    compare.plot_scale_vs_x_y()
    compare.plot_scale_vs_i_over_sigma()
Exemplo n.º 18
0
zs = range(int(flex.min(z)), int(flex.max(z)) + 1)
n = len(zs)

sij = flex.double(n * n, 0.0)
sij.reshape(flex.grid(n, n))

for z0 in zs:
    s0 = z == (z0 + 0.5)
    xy0 = xy.select(s0)
    n0 = xy0.size()
    if n0 < 5:
        continue
    from annlib_ext import AnnAdaptor as ann_adaptor

    ann = ann_adaptor(xy0.as_double().as_1d(), 2)
    for z1 in zs:
        if z1 >= z0:
            break
        s1 = z == (z1 + 0.5)
        xy1 = xy.select(s1)
        n1 = xy1.size()
        if n1 < 5:
            continue
        ann.query(xy1.as_double().as_1d())
        d1 = flex.sqrt(ann.distances)
        m01 = (d1 < 5.0).count(True)
        s = m01 / (0.5 * (n0 + n1))
        sij[z0, z1] = s
        sij[z1, z0] = s
Exemplo n.º 19
0
def compare_chunks(integrate_mtz, integrate_hkl):
    from annlib_ext import AnnAdaptor as ann_adaptor

    uc = integrate_mtz_to_unit_cell(integrate_mtz)

    rdx = derive_reindex_matrix(integrate_hkl, integrate_mtz)

    print(rdx)

    xhkl, xi, xsigi, xxyz = pull_reference(integrate_mtz)
    dhkl, di, dsigi, dxyz = pull_reference_xds(integrate_hkl)

    reference = flex.double()
    query = flex.double()

    for xyz in xxyz:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for xyz in dxyz:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    # perform the match
    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    MOS = []
    XDS = []
    HKL = []

    # perform the analysis
    for j, hkl in enumerate(dhkl):
        c = ann.nn[j]
        if hkl == tuple(rdx * xhkl[c]):
            MOS.append(xi[c])
            XDS.append(di[j])
            HKL.append(hkl)

    # now compute resolution for every reflection - or at least each unique
    # Miller index...

    unique = set(HKL)

    resolutions = {}

    for hkl in unique:
        resolutions[hkl] = uc.d(hkl)

    # then resort the list in terms of resolution, then reverse it

    sort_me = []
    for hkl, mos, xds in zip(HKL, MOS, XDS):
        sort_me.append((resolutions[hkl], mos, xds))

    sort_me.sort()
    sort_me.reverse()

    resolutions = [sm[0] for sm in sort_me]
    MOS = [sm[1] for sm in sort_me]
    XDS = [sm[2] for sm in sort_me]

    # then extract the original observation structure

    print("Paired %d observations" % len(MOS))

    chunks = [(i, i + 1000) for i in range(0, len(MOS), 1000)]

    ccs = []
    rs = []
    ss = []

    for chunk in chunks:
        mos = MOS[chunk[0]:chunk[1]]
        xds = XDS[chunk[0]:chunk[1]]
        resols = resolutions[chunk[0]:chunk[1]]

        if len(mos) < 100:
            break

        c = cc(xds, mos)
        r, s = R(xds, mos)
        print("%7d %4d %.3f %.3f %.3f %.3f %.3f" %
              (chunk[0], len(mos), min(resols), max(resols), c, r, s))
        ccs.append(c)
        rs.append(r)
        ss.append(s)

    chunks = [j for j in range(len(chunks))]

    # kludge - if we fall off

    chunks = chunks[:len(rs)]

    from matplotlib import pyplot

    pyplot.xlabel("Chunk")
    pyplot.ylabel("Statistic")
    pyplot.title("Statistics for 1000 reflection-pair chunks")
    pyplot.plot(chunks, ccs, label="CC")
    pyplot.plot(chunks, rs, label="R")
    pyplot.plot(chunks, ss, label="K")
    pyplot.legend()
    pyplot.savefig("plot-xds-vs-mosflm.png")
    pyplot.close()

    return
Exemplo n.º 20
0
def run(args):

    from cctbx.array_family import flex
    from dials.util.options import OptionParser
    from dials.util.options import flatten_reflections
    import libtbx.load_env

    usage = "%s [options] reflections_1.pickle reflections_2.pickle" % (
        libtbx.env.dispatcher_name)

    parser = OptionParser(usage=usage,
                          phil=phil_scope,
                          read_reflections=True,
                          epilog=help_message)

    params, options, args = parser.parse_args(show_diff_phil=True,
                                              return_unhandled=True)
    reflections = flatten_reflections(params.input.reflections)

    if flex.max(reflections[0]["id"]) > 0:
        reflections = list(reversed(reflections))
    assert flex.max(reflections[0]["id"]) == 0

    assert len(reflections) == 2
    partialities = []
    intensities = []
    sigmas = []
    ids = []
    xyz = []

    # only want fully-recorded reflections in full dataset
    # reflections[0] = reflections[0].select(reflections[0]['partiality'] > 0.99)
    print(reflections[0].size())
    # only want partial reflections in sliced dataset
    # reflections[1] = reflections[1].select(reflections[1]['partiality'] < 0.99)
    print(reflections[1].size())

    for refl in reflections:
        # sel = refl.get_flags(refl.flags.integrated_sum)
        sel = refl.get_flags(refl.flags.integrated)
        sel &= refl["intensity.sum.value"] > 0
        sel &= refl["intensity.sum.variance"] > 0
        refl = refl.select(sel)
        hkl = refl["miller_index"]
        partiality = refl["partiality"]
        intensity = refl["intensity.sum.value"]
        vari = refl["intensity.sum.variance"]
        assert vari.all_gt(0)
        sigi = flex.sqrt(vari)
        intensities.append(intensity)
        partialities.append(partiality)
        sigmas.append(sigi)
        ids.append(refl["id"])
        xyz.append(refl["xyzcal.px"])

    from annlib_ext import AnnAdaptor as ann_adaptor

    ann = ann_adaptor(xyz[0].as_double().as_1d(), 3)
    ann.query(xyz[1].as_double().as_1d())
    distances = flex.sqrt(ann.distances)
    matches = distances < 2  # pixels
    isel0 = flex.size_t(list(ann.nn.select(matches)))
    isel1 = flex.size_t(list(matches.iselection()))

    p0 = partialities[0].select(isel0)
    p1 = partialities[1].select(isel1)
    i0 = intensities[0].select(isel0)
    i1 = intensities[1].select(isel1)

    print((p0 > p1).count(True), (p0 < p1).count(True))

    h0 = flex.histogram(p0, data_min=0, data_max=1, n_slots=20)
    h1 = flex.histogram(p1, data_min=0, data_max=1, n_slots=20)
    h0.show()
    h1.show()

    from matplotlib import pyplot

    perm0 = flex.sort_permutation(p0)
    perm1 = flex.sort_permutation(p1)
    fig, axes = pyplot.subplots(nrows=2, sharex=True)
    axes[0].plot(p0.select(perm0), flex.int_range(p0.size()))
    axes[1].plot(p1.select(perm1), flex.int_range(p1.size()))
    axes[1].set_xlabel("Partiality")
    for ax in axes:
        ax.set_ylabel("Cumulative frequency")
    for ax in axes:
        ax.set_yscale("log")
    pyplot.savefig("sorted_partialities.png")
    pyplot.clf()

    blue = "#3498db"
    fig, axes = pyplot.subplots(nrows=2, sharex=True)
    axes[0].bar(
        h0.slot_centers(),
        h0.slots(),
        width=h0.slot_width(),
        align="center",
        color=blue,
        edgecolor=blue,
    )
    axes[1].bar(
        h1.slot_centers(),
        h1.slots(),
        width=h1.slot_width(),
        align="center",
        color=blue,
        edgecolor=blue,
    )
    axes[1].set_xlabel("Partiality")
    for ax in axes:
        ax.set_ylabel("Frequency")
    for ax in axes:
        ax.set_yscale("log")
    pyplot.savefig("partiality_histogram.png")
    # pyplot.show()
    pyplot.clf()

    pyplot.scatter(p0, p1, s=5, alpha=0.3, marker="+")
    pyplot.xlabel("Partiality (full)")
    pyplot.ylabel("Partiality (sliced)")
    pyplot.savefig("partiality_full_vs_sliced.png")
    pyplot.clf()

    pyplot.scatter(i0, i1, s=5, alpha=0.3, marker="+")
    pyplot.xlim(flex.min(i0), flex.max(i0))
    pyplot.ylim(flex.min(i1), flex.max(i1))
    pyplot.xlabel("Intensity (full)")
    pyplot.ylabel("Intensity (sliced)")
    pyplot.xscale("log")
    pyplot.yscale("log")
    pyplot.savefig("intensity_full_vs_sliced.png")
    pyplot.clf()

    i_ratio = i1 / i0
    p_ratio = p1 / p0
    pyplot.scatter(p_ratio, i_ratio, s=5, alpha=0.3, marker="+")
    pyplot.ylim(flex.min(i_ratio), flex.max(i_ratio))
    pyplot.yscale("log")
    pyplot.xlabel("P(full)/P(sliced)")
    pyplot.ylabel("I(full)/I(sliced)")
    pyplot.savefig("partiality_ratio_vs_intensity_ratio.png")
    pyplot.clf()
Exemplo n.º 21
0
def run(args):
  import libtbx.load_env
  usage = "%s [options]" %libtbx.env.dispatcher_name

  parser = OptionParser(
    usage=usage,
    phil=phil_scope,
    check_format=False,
    epilog=help_message)

  params, options, args = parser.parse_args(show_diff_phil=True,
                                            return_unhandled=True)

  assert len(args) == 2
  from iotbx.reflection_file_reader import any_reflection_file

  xyz = []
  intensities = []
  lp_corrections = []

  for f in args:
    xdet = None
    ydet = None
    rot = None
    i_sigi = None
    lp = None
    arrays = any_reflection_file(f).as_miller_arrays(merge_equivalents=False)
    for ma in arrays:
      print ma.info().labels
      if ma.info().labels[0] == 'XDET':
        xdet = ma
      elif ma.info().labels[0] == 'YDET':
        ydet = ma
      elif ma.info().labels[0] == 'ROT':
        rot = ma
      elif ma.info().labels == ['I', 'SIGI']:
        i_sigi = ma
      elif ma.info().labels[0] == 'LP':
        lp = ma

    assert [xdet, ydet, rot, i_sigi, lp].count(None) == 0

    xyz.append(flex.vec3_double(xdet.data(), ydet.data(), rot.data()))
    intensities.append(i_sigi)
    lp_corrections.append(lp)

  xyz1, xyz2 = xyz
  xyz2 += (1e-3,1e-3,1e-3)
  intensities1, intensities2 = intensities
  lp1, lp2 = lp_corrections

  # Do the nn match
  from annlib_ext import AnnAdaptor as ann_adaptor
  ann = ann_adaptor(xyz1.as_double().as_1d(), 3)
  ann.query(xyz2.as_double().as_1d())

  distances = flex.sqrt(ann.distances)
  matches = distances < 2 #pixels
  index1 = flex.size_t(list(ann.nn.select(matches)))
  index2 = flex.size_t(list(matches.iselection()))

  intensities1 = intensities1.select(index1)
  intensities2 = intensities2.select(index2)
  isigi1 = intensities1.data()/intensities1.sigmas()
  isigi2 = intensities2.data()/intensities2.sigmas()
  lp1 = lp1.select(index1)
  lp2 = lp2.select(index2)
  ##differences = intensities1.data() - intensities2.data()
  ##sums = intensities1.data() + intensities2.data()
  #differences = isigi1 - isigi2
  #sums = isigi1 + isigi2
  #assert sums.all_ne(0)
  #dos = differences/sums

  #mean_dos = []
  #binner = intensities1.setup_binner_d_star_sq_step(d_star_sq_step=0.01)
  #d_spacings = intensities1.d_spacings().data()
  #for i in range(binner.n_bins_used()):
    #d_max, d_min = binner.bin_d_range(i+1)
    #bin_sel = (d_spacings > d_min) & (d_spacings <= d_max)
    #mean_dos.append(flex.mean(dos.select(bin_sel)))

  # set backend before importing pyplot
  import matplotlib
  matplotlib.use('Agg')

  from matplotlib import pyplot
  pyplot.scatter(intensities1.data(), intensities2.data(), marker='+', alpha=0.5)
  m = max(pyplot.xlim()[1], pyplot.ylim()[1])
  pyplot.plot((0,m), (0, m), c='black')
  pyplot.savefig('scatter_intensities.png')
  pyplot.clf()

  pyplot.scatter(intensities1.sigmas(), intensities2.sigmas(), marker='+', alpha=0.5)
  m = max(pyplot.xlim()[1], pyplot.ylim()[1])
  pyplot.plot((0,m), (0, m), c='black')
  pyplot.savefig('scatter_sigmas.png')
  pyplot.clf()

  pyplot.scatter(
    flex.pow2(intensities1.sigmas()), flex.pow2(intensities2.sigmas()),
    marker='+', alpha=0.5)
  m = max(pyplot.xlim()[1], pyplot.ylim()[1])
  pyplot.plot((0,m), (0, m), c='black')
  pyplot.savefig('scatter_variances.png')
  pyplot.clf()

  pyplot.scatter(isigi1, isigi2, marker='+', alpha=0.5)
  m = max(pyplot.xlim()[1], pyplot.ylim()[1])
  pyplot.plot((0,m), (0, m), c='black')
  pyplot.savefig('scatter_i_sig_i.png')
  pyplot.clf()

  pyplot.scatter(lp1.data(), lp2.data(), marker='+', alpha=0.5)
  m = max(pyplot.xlim()[1], pyplot.ylim()[1])
  pyplot.plot((0,m), (0, m))
  pyplot.savefig('scatter_LP.png')
  pyplot.clf()

  #from cctbx import uctbx
  #pyplot.scatter(uctbx.d_star_sq_as_d(binner.bin_centers(2)), mean_dos)
  #pyplot.savefig('mean_dos.png')
  #pyplot.clf()


  return
Exemplo n.º 22
0
    refl2 = flex.reflection_table.from_pickle(args[1])
    mask = refl2['intensity.sum.value'] <= 0.0
    refl2.del_selected(mask)
    mask = refl2['intensity.sum.value']**2 < refl2['intensity.sum.variance']
    refl2.del_selected(mask)
    Command.end('Read %d reflections from %s' % (len(refl2), args[1]))

    # perform the match
    Command.start('Find matching reflections')
    hkl1 = refl1['miller_index']
    hkl2 = refl2['miller_index']
    xyz1 = refl1['xyzcal.px']
    xyz2 = refl2['xyzcal.px']

    # Do the nn match
    ann = ann_adaptor(xyz1.as_double().as_1d(), 3)
    ann.query(xyz2.as_double().as_1d())

    # Select only those with matching hkl
    index = flex.size_t(i for i in ann.nn)
    hkl11 = hkl1.select(index)
    flags = hkl11 == hkl2
    index = index.select(flags)
    refl1 = refl1.select(index)
    refl2 = refl2.select(flags)
    Command.end('Found %d matching reflections' % len(refl1))

    # Do the comparison
    compare = CompareReflections(refl1, refl2)
    compare.intensities()
def reconstruct_rogues(params):
    assert os.path.exists("xia2.json")
    from xia2.Schema.XProject import XProject

    xinfo = XProject.from_json(filename="xia2.json")

    from dxtbx.model.experiment_list import ExperimentListFactory
    import six.moves.cPickle as pickle
    import dials  # because WARNING:root:No profile class gaussian_rs registered

    crystals = xinfo.get_crystals()
    assert len(crystals) == 1

    for xname in crystals:
        crystal = crystals[xname]

    scaler = crystal._get_scaler()

    epochs = scaler._sweep_handler.get_epochs()

    rogues = os.path.join(scaler.get_working_directory(), xname, "scale",
                          "ROGUES")

    rogue_reflections = munch_rogues(rogues)

    batched_reflections = {}

    for epoch in epochs:
        si = scaler._sweep_handler.get_sweep_information(epoch)
        intgr = si.get_integrater()
        experiments = ExperimentListFactory.from_json_file(
            intgr.get_integrated_experiments())
        with open(intgr.get_integrated_reflections(), "rb") as fh:
            reflections = pickle.load(fh)
        batched_reflections[si.get_batch_range()] = (
            experiments,
            reflections,
            si.get_sweep_name(),
        )

    # - look up reflection in reflection list, get bounding box
    # - pull pixels given from image set, flatten these, write out

    from dials.array_family import flex
    from annlib_ext import AnnAdaptor as ann_adaptor

    reflections_run = {}
    for run in batched_reflections:
        reflections_run[run] = []

    for rogue in rogue_reflections:
        b = rogue[0]
        for run in batched_reflections:
            if b >= run[0] and b <= run[1]:
                reflections_run[run].append(rogue)
                break

    for run_no, run in enumerate(reflections_run):
        experiment = batched_reflections[run][0]
        reflections = batched_reflections[run][1]
        name = batched_reflections[run][2]
        rogues = reflections_run[run]
        reference = flex.double()
        scan = experiment.scans()[0]
        images = experiment.imagesets()[0]
        for xyz in reflections["xyzcal.px"]:
            reference.append(xyz[0])
            reference.append(xyz[1])
            reference.append(xyz[2])

        search = flex.double()
        for rogue in rogues:
            search.append(rogue[1])
            search.append(rogue[2])
            search.append(scan.get_array_index_from_angle(rogue[3]))

        ann = ann_adaptor(data=reference, dim=3, k=1)
        ann.query(search)

        keep = flex.bool(len(reflections), False)

        for j, rogue in enumerate(rogues):
            keep[ann.nn[j]] = True

        reflections = reflections.select(keep == True)

        if params.extract:
            reflections["shoebox"] = flex.shoebox(reflections["panel"],
                                                  reflections["bbox"],
                                                  allocate=True)
            reflections.extract_shoeboxes(images, verbose=False)

        if len(reflections_run) > 1:
            output = params.output.reflections.replace(".refl",
                                                       "-%s.refl" % name)
            print("Extracted %d rogue reflections for %s to %s" %
                  (len(reflections), name, output))
            reflections.as_pickle(output)
        else:
            output = params.output.reflections
            print("Extracted %d rogue reflections to %s" %
                  (len(reflections), output))
            reflections.as_pickle(output)
Exemplo n.º 24
0
def compare_chunks(integrate_mtz, integrate_hkl):

  from cctbx.array_family import flex
  from annlib_ext import AnnAdaptor as ann_adaptor

  uc = integrate_mtz_to_unit_cell(integrate_mtz)

  rdx = derive_reindex_matrix(integrate_hkl, integrate_mtz)

  print rdx

  xhkl, xi, xsigi, xxyz = pull_reference(integrate_mtz)
  dhkl, di, dsigi, dxyz = pull_reference_xds(integrate_hkl)

  reference = flex.double()
  query = flex.double()

  for xyz in xxyz:
    reference.append(xyz[0])
    reference.append(xyz[1])
    reference.append(xyz[2])

  for xyz in dxyz:
    query.append(xyz[0])
    query.append(xyz[1])
    query.append(xyz[2])

  # perform the match
  ann = ann_adaptor(data = reference, dim = 3, k = 1)
  ann.query(query)

  MOS = []
  XDS = []
  HKL = []

  # perform the analysis
  for j, hkl in enumerate(dhkl):
    c = ann.nn[j]
    if hkl == tuple(rdx * xhkl[c]):
      MOS.append(xi[c])
      XDS.append(di[j])
      HKL.append(hkl)

  # now compute resolution for every reflection - or at least each unique
  # Miller index...

  unique = set(HKL)

  resolutions = { }

  for hkl in unique:
    resolutions[hkl] = uc.d(hkl)

  # then resort the list in terms of resolution, then reverse it

  sort_me = []
  for hkl, mos, xds in zip(HKL, MOS, XDS):
    sort_me.append((resolutions[hkl], mos, xds))

  sort_me.sort()
  sort_me.reverse()

  resolutions = [sm[0] for sm in sort_me]
  MOS = [sm[1] for sm in sort_me]
  XDS = [sm[2] for sm in sort_me]

  # then extract the original observation structure

  print 'Paired %d observations' % len(MOS)

  scale = sum(MOS) / sum(XDS)

  chunks = [(i, i + 1000) for i in range(0, len(MOS), 1000)]

  ccs = []
  rs = []
  ss = []

  for chunk in chunks:
    mos = MOS[chunk[0]:chunk[1]]
    xds = XDS[chunk[0]:chunk[1]]
    resols = resolutions[chunk[0]:chunk[1]]

    if len(mos) < 100:
      break

    c = cc(xds, mos)
    r, s = R(xds, mos)
    print '%7d %4d %.3f %.3f %.3f %.3f %.3f' % (chunk[0], len(mos),
                                                min(resols), max(resols),
                                                c, r, s)
    ccs.append(c)
    rs.append(r)
    ss.append(s)

  chunks = [j for j in range(len(chunks))]

  # kludge - if we fall off

  chunks = chunks[:len(rs)]

  from matplotlib import pyplot
  pyplot.xlabel('Chunk')
  pyplot.ylabel('Statistic')
  pyplot.title('Statistics for 1000 reflection-pair chunks')
  pyplot.plot(chunks, ccs, label = 'CC')
  pyplot.plot(chunks, rs, label = 'R')
  pyplot.plot(chunks, ss, label = 'K')
  pyplot.legend()
  pyplot.savefig('plot-xds-vs-mosflm.png')
  pyplot.close()

  return
Exemplo n.º 25
0
def compare_chunks(integrate_hkl, integrate_pkl, experiments_json, d_min=0.0):

    from cctbx.array_family import flex
    from annlib_ext import AnnAdaptor as ann_adaptor

    rdx = derive_reindex_matrix(experiments_json, integrate_hkl)

    print "Reindex matrix:\n%d %d %d\n%d %d %d\n%d %d %d" % (rdx.elems)

    uc = integrate_hkl_to_unit_cell(integrate_hkl)

    xhkl, xi, xsigi, xxyz, xlp = pull_reference(integrate_hkl, d_min=d_min)
    dhkl, di, dsigi, dxyz, dlp = pull_calculated(integrate_pkl)

    reference = flex.double()
    query = flex.double()

    for xyz in xxyz:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for xyz in dxyz:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    # perform the match
    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    XDS = []
    DIALS = []
    HKL = []

    # perform the analysis
    for j, hkl in enumerate(dhkl):
        c = ann.nn[j]
        if hkl == tuple(rdx * xhkl[c]):
            XDS.append(xi[c])
            DIALS.append(di[j])
            HKL.append(hkl)

    # now compute resolution for every reflection - or at least each unique
    # Miller index...

    unique = set(HKL)

    resolutions = {}

    for hkl in unique:
        resolutions[hkl] = uc.d(hkl)

    # then resort the list in terms of resolution, then reverse it

    sort_me = []
    for hkl, xds, dials in zip(HKL, XDS, DIALS):
        sort_me.append((resolutions[hkl], xds, dials))

    sort_me.sort()
    sort_me.reverse()

    resolutions = [sm[0] for sm in sort_me]
    XDS = [sm[1] for sm in sort_me]
    DIALS = [sm[2] for sm in sort_me]

    # then extract the original observation structure

    print "Paired %d observations" % len(XDS)

    scale = sum(XDS) / sum(DIALS)

    chunks = [(i, i + 1000) for i in range(0, len(XDS), 1000)]

    ccs = []
    rs = []
    ss = []

    for chunk in chunks:
        xds = XDS[chunk[0] : chunk[1]]
        dials = DIALS[chunk[0] : chunk[1]]
        resols = resolutions[chunk[0] : chunk[1]]

        if len(xds) < 100:
            break

        c = cc(dials, xds)
        r, s = R(dials, xds)
        print "%7d %4d %.3f %.3f %.3f %.3f %.3f" % (chunk[0], len(xds), min(resols), max(resols), c, r, s)
        ccs.append(c)
        rs.append(r)
        ss.append(s)

    chunks = [j for j in range(len(chunks))]

    # kludge - if we fall off

    chunks = chunks[: len(rs)]

    from matplotlib import pyplot

    pyplot.xlabel("Chunk")
    pyplot.ylabel("Statistic")
    pyplot.title("Statistics for 1000 reflection-pair chunks")
    pyplot.plot(chunks, ccs, label="CC")
    pyplot.plot(chunks, rs, label="R")
    pyplot.plot(chunks, ss, label="K")
    pyplot.legend()
    pyplot.savefig("plot-vs-xds.png")
    pyplot.close()

    return
Exemplo n.º 26
0
def compare_chunks(integrate_hkl,
                   integrate_pkl,
                   crystal_json,
                   sweep_json,
                   d_min=0.0):

    from cctbx.array_family import flex
    from annlib_ext import AnnAdaptor as ann_adaptor
    from dials.model.serialize import load
    sweep = load.sweep(sweep_json)

    rdx = derive_reindex_matrix(crystal_json, sweep_json, integrate_hkl)

    print 'Reindex matrix:\n%d %d %d\n%d %d %d\n%d %d %d' % (rdx.elems)

    uc = integrate_hkl_to_unit_cell(integrate_hkl)

    xhkl, xi, xsigi, xxyz, xlp = pull_reference(integrate_hkl, d_min=d_min)
    dhkl, di, dsigi, dxyz, dlp = pull_calculated(integrate_pkl)

    reference = flex.double()
    query = flex.double()

    for xyz in xxyz:
        reference.append(xyz[0])
        reference.append(xyz[1])
        reference.append(xyz[2])

    for xyz in dxyz:
        query.append(xyz[0])
        query.append(xyz[1])
        query.append(xyz[2])

    # perform the match
    ann = ann_adaptor(data=reference, dim=3, k=1)
    ann.query(query)

    XDS = []
    DIALS = []
    HKL = []
    XYZ = []
    SIGMA_XDS = []
    SIGMA_DIALS = []
    XLP = []
    DLP = []

    # perform the analysis
    for j, hkl in enumerate(dhkl):
        c = ann.nn[j]
        if hkl == tuple(rdx * xhkl[c]):
            XDS.append(xi[c])
            DIALS.append(di[j])
            HKL.append(hkl)
            XYZ.append(dxyz[j])
            SIGMA_XDS.append(xsigi[c])
            SIGMA_DIALS.append(dsigi[j])
            XLP.append(xlp[c])
            DLP.append(dlp[j])

    print "Found %d matches" % len(XDS)

    compare = CompareIntensity(sweep, uc, HKL, XYZ, XDS, DIALS, SIGMA_XDS,
                               SIGMA_DIALS, XLP, DLP)
    #  compare.plot_scale_factor_vs_resolution()
    #  compare.plot_scale_factor_vs_frame_number()
    compare.plot_chunked_statistics_vs_resolution()
    compare.plot_chunked_statistics_vs_frame_number()
    compare.plot_chunked_statistics_vs_i_over_sigma()
    compare.plot_chunked_i_over_sigma_vs_frame_number()
    compare.plot_chunked_resolution_vs_frame_number()
    compare.plot_chunked_lp_vs_frame_number()
    compare.plot_scale_vs_x_y()
    compare.plot_scale_vs_i_over_sigma()
Exemplo n.º 27
0
  refl2 = flex.reflection_table.from_pickle(args[1])
  mask = refl2['intensity.sum.value'] <= 0.0
  refl2.del_selected(mask)
  mask = refl2['intensity.sum.value']**2 < refl2['intensity.sum.variance']
  refl2.del_selected(mask)
  Command.end('Read %d reflections from %s' % (len(refl2), args[1]))

  # perform the match
  Command.start('Find matching reflections')
  hkl1 = refl1['miller_index']
  hkl2 = refl2['miller_index']
  xyz1 = refl1['xyzcal.px']
  xyz2 = refl2['xyzcal.px']

  # Do the nn match
  ann = ann_adaptor(xyz1.as_double().as_1d(), 3)
  ann.query(xyz2.as_double().as_1d())

  # Select only those with matching hkl
  index = flex.size_t(i for i in ann.nn)
  hkl11 = hkl1.select(index)
  flags = hkl11 == hkl2
  index = index.select(flags)
  refl1 = refl1.select(index)
  refl2 = refl2.select(flags)
  Command.end('Found %d matching reflections' % len(refl1))

  # Do the comparison
  compare = CompareReflections(refl1, refl2)
  compare.intensities()
Exemplo n.º 28
0
def compare_chunks(integrate_hkl, integrate_pkl, experiments_json, d_min = 0.0):

  from cctbx.array_family import flex
  from annlib_ext import AnnAdaptor as ann_adaptor

  rdx = derive_reindex_matrix(experiments_json, integrate_hkl)

  print 'Reindex matrix:\n%d %d %d\n%d %d %d\n%d %d %d' % (rdx.elems)

  uc = integrate_hkl_to_unit_cell(integrate_hkl)

  xhkl, xi, xsigi, xxyz, xlp = pull_reference(integrate_hkl, d_min=d_min)
  dhkl, di, dsigi, dxyz, dlp = pull_calculated(integrate_pkl)

  reference = flex.double()
  query = flex.double()

  for xyz in xxyz:
    reference.append(xyz[0])
    reference.append(xyz[1])
    reference.append(xyz[2])

  for xyz in dxyz:
    query.append(xyz[0])
    query.append(xyz[1])
    query.append(xyz[2])

  # perform the match
  ann = ann_adaptor(data = reference, dim = 3, k = 1)
  ann.query(query)

  XDS = []
  DIALS = []
  HKL = []

  # perform the analysis
  for j, hkl in enumerate(dhkl):
    c = ann.nn[j]
    if hkl == tuple(rdx * xhkl[c]):
      XDS.append(xi[c])
      DIALS.append(di[j])
      HKL.append(hkl)

  # now compute resolution for every reflection - or at least each unique
  # Miller index...

  unique = set(HKL)

  resolutions = { }

  for hkl in unique:
    resolutions[hkl] = uc.d(hkl)

  # then resort the list in terms of resolution, then reverse it

  sort_me = []
  for hkl, xds, dials in zip(HKL, XDS, DIALS):
    sort_me.append((resolutions[hkl], xds, dials))

  sort_me.sort()
  sort_me.reverse()

  resolutions = [sm[0] for sm in sort_me]
  XDS = [sm[1] for sm in sort_me]
  DIALS = [sm[2] for sm in sort_me]

  # then extract the original observation structure

  print 'Paired %d observations' % len(XDS)

  scale = sum(XDS) / sum(DIALS)

  chunks = [(i, i + 1000) for i in range(0, len(XDS), 1000)]

  ccs = []
  rs = []
  ss = []

  for chunk in chunks:
    xds = XDS[chunk[0]:chunk[1]]
    dials = DIALS[chunk[0]:chunk[1]]
    resols = resolutions[chunk[0]:chunk[1]]

    if len(xds) < 100:
      break

    c = cc(dials, xds)
    r, s = R(dials, xds)
    print '%7d %4d %.3f %.3f %.3f %.3f %.3f' % \
      (chunk[0], len(xds), min(resols), max(resols), c, r, s)
    ccs.append(c)
    rs.append(r)
    ss.append(s)

  chunks = [j for j in range(len(chunks))]

  # kludge - if we fall off

  chunks = chunks[:len(rs)]

  from matplotlib import pyplot
  pyplot.xlabel('Chunk')
  pyplot.ylabel('Statistic')
  pyplot.title('Statistics for 1000 reflection-pair chunks')
  pyplot.plot(chunks, ccs, label = 'CC')
  pyplot.plot(chunks, rs, label = 'R')
  pyplot.plot(chunks, ss, label = 'K')
  pyplot.legend()
  pyplot.savefig('plot-vs-xds.png')
  pyplot.close()
Exemplo n.º 29
0
def saturation_analysis(data_files, value_column):
    import six.moves.cPickle as pickle
    import math
    from dials.array_family import flex
    from dials.util.add_hash import add_hash, dehash
    from annlib_ext import AnnAdaptor as ann_adaptor

    reference = data_files[0]
    rest = data_files[1:]

    with open(reference, 'rb') as fh:
        reference_data = pickle.load(fh)

    assert value_column in reference_data
    variance_column = None
    for column in [
            '%s.variance' % value_column,
            value_column.replace('value', 'variance')
    ]:
        if column in reference_data:
            variance_column = column
            break

    assert (variance_column)

    # construct XYZ pixel position search target

    reference_data = strip_not_integrated(reference_data)

    # keep only data with I/sig(I) > 3 for reference
    strong = (reference_data[value_column] >
              3 * flex.sqrt(reference_data[variance_column]))

    print('Keeping %d strong reflections of %d' %
          (strong.count(True), len(reference_data)))

    reference_data = reference_data.select(strong)

    xyz = reference_data['xyzcal.px'].as_double()
    ann = ann_adaptor(data=xyz, dim=3, k=1)

    for qpno, query_pickle in enumerate(rest):
        x = flex.double()
        y = flex.double()
        fout = open('matches%02d.dat' % qpno, 'w')
        with open(query_pickle, 'rb') as fh:
            query_data = strip_not_integrated(pickle.load(fh))
        qxyz = query_data['xyzcal.px'].as_double()
        ann.query(qxyz)
        matches = 0
        for j, refl in enumerate(query_data):
            rrefl = reference_data[ann.nn[j]]
            if refl['miller_index'] == rrefl['miller_index']:
                fout.write('%d %d %d ' % refl['miller_index'] + '%f %f ' %
                           (rrefl[value_column], rrefl[variance_column]) +
                           '%f %f ' %
                           (refl[value_column], refl[variance_column]) +
                           '%f %f %f\n' % refl['xyzcal.px'])
                matches += 1
                x.append(rrefl[value_column])
                y.append(refl[value_column])
        print('For %s matched %d/%d' %
              (query_pickle, matches, len(query_data)))
        fout.close()
        from matplotlib import pyplot
        pyplot.scatter(x.as_numpy_array(), y.as_numpy_array())
        pyplot.show()