def __init__(self, instance):
		AnomalyProcessor.__init__(self, instance)

		# dimension_match -> anom vlaues 
		self._anom_values = {}
		
		# dimension_match -> norm_values
		self._norm_values = {}

		#params
		self.anom_threshold 	= self._instance_conf.anom_threshold 
		self.normal_threshold	= self._instance_conf.normal_threshold
		self.fault_ittr 	= self._instance_conf.fault_ittr
		self.normal_ittr 	= self._instance_conf.normal_ittr

		# what dimension to match the samples on - LIST
		self.dimension_match = self._instance_conf.dimension_match

		# what to name the sample when publishing back - log file!
		self.sample_name = self._instance_conf.sample_name

		#metric to aggregate - should put these in config and load in
		self.metrics = self._instance_conf.sample_metrics

		#normalize?
		self.normalized = self._instance_conf.normalized

		#implement the additional features in AD3?
		self.ad3 = self._instance_conf.ad3

		# dimension_match -> sample
		self._sample_buffer = {}
Exemplo n.º 2
0
 def __init__(self):
     AnomalyProcessor.__init__(self, cfg.CONF.ks.kafka_group)
     ks_config = cfg.CONF.ks
     self._reference_duration = ks_config.reference_duration
     self._probe_duration = ks_config.probe_duration
     self._ks_d = ks_config.ks_d
     self._min_samples = ks_config.min_samples
     self._timeseries = {}
 def __init__(self):
     AnomalyProcessor.__init__(self, cfg.CONF.ks.kafka_group)
     ks_config = cfg.CONF.ks
     self._reference_duration = ks_config.reference_duration
     self._probe_duration = ks_config.probe_duration
     self._ks_d = ks_config.ks_d
     self._min_samples = ks_config.min_samples
     self._timeseries = {}
    def __init__(self):
        AnomalyProcessor.__init__(self, cfg.CONF.nupic.kafka_group)
        self._models = {}
        self._shifters = {}
        self._anomaly_likelihood = {}

        # Load the model params JSON
        with open(cfg.CONF.nupic.model_params) as fp:
            self.model_params = json.load(fp)
Exemplo n.º 5
0
    def __init__(self):
        AnomalyProcessor.__init__(self, cfg.CONF.nupic.kafka_group)
        self._models = {}
        self._shifters = {}
        self._anomaly_likelihood = {}

        # Load the model params JSON
        with open(cfg.CONF.nupic.model_params) as fp:
            self.model_params = json.load(fp)