Exemplo n.º 1
0
    def plot(self, fields_container=None, **kwargs):
        """Plot the meshes container with a specific result if
        fields_container is specified.

        Parameters
        ----------
        fields_container : FieldsContainer, optional
            Data to plot. The default is ``None``.

        Examples
        --------
        >>> from ansys.dpf import core as dpf
        >>> from ansys.dpf.core import examples
        >>> model = dpf.Model(examples.multishells_rst)
        >>> mesh = model.metadata.meshed_region
        >>> split_mesh_op = dpf.operators.mesh.split_mesh(mesh=mesh, property="mat")
        >>> meshes_cont = split_mesh_op.eval()
        >>> disp_op = dpf.operators.result.displacement(
        ...     data_sources = dpf.DataSources(examples.multishells_rst),
        ...     mesh = meshes_cont
        ... )
        >>> disp_fc = disp_op.outputs.fields_container()
        >>> meshes_cont.plot(disp_fc)

        """
        kwargs.setdefault("show_edges", True)
        notebook = kwargs.pop("notebook", None)
        pl = DpfPlotter(notebook=notebook)
        if fields_container is not None:
            for i in range(len(fields_container)):
                label_space = fields_container.get_label_space(i)
                mesh_to_send = self.get_mesh(label_space)
                if mesh_to_send is None:
                    raise dpf_errors.DpfValueError(
                        "Meshes container and result fields "
                        "container do not have the same scope. "
                        "Plotting can not proceed. ")
                field = fields_container[i]
                pl.add_field(field, mesh_to_send, **kwargs)
        else:
            from random import random
            random_color = "color" not in kwargs
            for mesh in self:
                if random_color:
                    kwargs["color"] = [random(), random(), random()]
                pl.add_mesh(mesh, **kwargs)
        pl.show_figure()
Exemplo n.º 2
0
    def get_imaginary_field(self, timeid=None):
        """Retrieve the complex field at a requested time.

        Parameters
        ----------
        timeid: int, optional
            Time ID, which is the one-based index of the result set.

        Returns
        -------
        fields : Field
            Field corresponding to the request.
        """
        if not self.has_label("complex") or not self.has_label("time"):
            raise dpf_errors.DpfValueError(
                "The fields container is not based on time and complex scoping."
            )

        label_space = self.__time_complex_label_space__(timeid, 1)

        return super()._get_entry(label_space)
Exemplo n.º 3
0
    def add_imaginary_field(self, field, timeid=1):
        """Add or update an imaginary field at a requested time ID.

        Parameters
        ----------
        field : Field
            DPF field to add or update.
        timeid: int, optional
            Time ID for the requested time set. The default is ``1``.
        """
        if not self.has_label("time") and (len(self.labels) == 0 or
                                           (len(self.labels) == 1
                                            and self.has_label("complex"))):
            self.add_label("time")
        if (not self.has_label("complex") and len(self.labels) == 1
                and self.has_label("time")):
            self.add_label("complex")
        if (self.has_label("time") and self.has_label("complex")
                and len(self.labels) == 2):
            super()._add_entry({"time": timeid, "complex": 1}, field)
        else:
            raise dpf_errors.DpfValueError(
                "The fields container is not only based on time scoping.")
Exemplo n.º 4
0
def over_time_freq_complex_fields_container(real_fields,
                                            imaginary_fields,
                                            time_freq_unit=None,
                                            server=None):
    """Create a fields container with two fields (real and imaginary) by time set.

    If the inputs for the fields are dictionaries, this method sets the time frequency
    support with the correct unit if needed.

    Parameters
    ----------
    real_fields : Dictionary(time_int_key : Field) or list of Field
        Dictionary or list of field entities to add to the fields container.
    imaginary_fields : Dictionary(time_int_key : Field) or list of Field
        Dictionary or list of field entities to add to the fields container.
    time_freq_unit : str , optional
        Unit of the time frequency support, which is taken into account if
        the field's attribute has a dictionary type.
    server : ansys.dpf.core.server, optional
        Server with the channel connected to the remote or local instance.
        The default is ``None``, in which case an attempt is made to use the
        global server.

    Returns
    -------
    fields_container : FieldsContainer
        Fields container containing two fields (real and imaginary) by time step.
    """
    if not isinstance(real_fields, dict) and not isinstance(real_fields, list):
        raise dpf_errors.InvalidTypeError("dictionary/list", "real_fields")
    if not isinstance(imaginary_fields, dict) and not isinstance(
            imaginary_fields, list):
        raise dpf_errors.InvalidTypeError("dictionary/list",
                                          "imaginary_fields")

    errorString = (
        "Both real_fields and imaginary_fields must have the same type (list or dict)"
    )
    if isinstance(real_fields, dict):
        if not isinstance(imaginary_fields, dict):
            raise dpf_errors.DpfValueError(errorString)
    elif isinstance(real_fields, list):
        if not isinstance(imaginary_fields, list):
            raise dpf_errors.DpfValueError(errorString)

    fc = FieldsContainer(server=server)
    fc.labels = ["time", "complex"]
    i = 0
    # dict case
    if isinstance(real_fields, dict):
        time_freq = []
        for field_key in real_fields:
            fc.add_field({"time": i + 1, "complex": 0}, real_fields[field_key])
            time_freq.append(field_key)
            i += 1
        i = 0
        im_time_freq = []
        for field_key in imaginary_fields:
            fc.add_field({
                "time": i + 1,
                "complex": 1
            }, imaginary_fields[field_key])
            im_time_freq.append(field_key)
            i += 1
        time_freq_field = fields_factory.create_scalar_field(
            len(real_fields), locations.time_freq, server=server)
        time_freq_field.append(time_freq, 1)
        time_freq_field.unit = time_freq_unit
        im_time_freq_field = fields_factory.create_scalar_field(
            len(imaginary_fields), locations.time_freq, server=server)
        im_time_freq_field.append(im_time_freq, 1)
        im_time_freq_field.unit = time_freq_unit
        time_freq_support = TimeFreqSupport(server=server)
        time_freq_support.time_frequencies = time_freq_field
        time_freq_support.complex_frequencies = im_time_freq_field
        fc.time_freq_support = time_freq_support
    # list case
    if isinstance(real_fields, list):
        for field in real_fields:
            fc.add_field({"time": i + 1, "complex": 0}, field)
            i += 1
        i = 0
        for field in imaginary_fields:
            fc.add_field({"time": i + 1, "complex": 1}, field)
            i += 1
    return fc