Exemplo n.º 1
0
def read_result(fn,
                save_pl,
                matrix_A,
                ele,
                quantity_names,
                case_num,
                time_thinning=1):
    fid = NetCDFFile(fn, netcdf_mode_r)
    time = fid.variables['time'][:]
    upper_time_index = len(time)
    quantities = {}
    for i, name in enumerate(quantity_names):
        quantities[name] = fid.variables[name][:]
        quantities[name] = np.array(quantities[name][::time_thinning, :])
    fid.close()
    for i, t in enumerate(time):
        for name in quantity_names:
            Q = quantities[name][i, :]  # Quantities at timestep i
            result = matrix_A * Q
            result = np.asarray(result)
            result = result.reshape((100, 100))
            if name == 'stage':
                result = result - ele
                save_name = save_pl + case_num + '_' + 'depth' + '_{0}.csv'.format(
                    i)
            else:
                save_name = save_pl + case_num + '_' + name + '_{0}.csv'.format(
                    i)
            np.savetxt(save_name, result, delimiter=",")
Exemplo n.º 2
0
 def __init__(self, *args, **kwargs):
     Visualiser.__init__(self, *args, **kwargs)
     fin = NetCDFFile(self.vis_source, 'r')
     self.xPoints = array(fin.variables['x'], Float)
     self.yPoints = array(fin.variables['y'], Float)
     self.quantityCache = {}
     fin.close()
Exemplo n.º 3
0
    def test_boundary_timeII(self):
        """
        test_boundary_timeII(self):
        Test that starttime can be set in the middle of a boundary condition
        """

        boundary_starttime = 0
        boundary_filename = self.create_sww_boundary(boundary_starttime)
        #print "boundary_filename",boundary_filename

        filename = tempfile.mktemp(".sww")
        #print "filename",filename
        dir, base = os.path.split(filename)
        senario_name = base[:-4]

        mesh = Mesh()
        mesh.add_region_from_polygon([[10, 10], [90, 10], [90, 90], [10, 90]])
        mesh.generate_mesh(verbose=False)

        domain = pmesh_to_domain_instance(mesh, anuga.Domain)
        domain.set_name(senario_name)
        domain.set_datadir(dir)
        new_starttime = 0.
        domain.set_starttime(new_starttime)

        # Setup initial conditions
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 0.0)
        Bf = anuga.File_boundary(boundary_filename,
                                 domain,
                                 use_cache=False,
                                 verbose=False)

        # Setup boundary conditions
        domain.set_boundary({'exterior': Bf})
        for t in domain.evolve(yieldstep=5, finaltime=9.0):
            pass
            #print domain.boundary_statistics()
            #domain.write_time()
            #print "domain.time", domain.time

        # do an assertion on the time of the produced sww file
        fid = NetCDFFile(filename, netcdf_mode_r)  #Open existing file for read
        times = fid.variables['time'][:]
        stage = fid.variables['stage'][:]
        #print stage
        #print "times", times
        #print "fid.starttime", fid.starttime
        assert num.allclose(fid.starttime, new_starttime)
        fid.close()

        #print "stage[2,0]", stage[2,0]
        msg = "This test is a bit hand crafted, based on the output file. "
        msg += "Not logic. "
        msg += "It's testing that starttime is working"
        assert num.allclose(stage[2, 0], 4.85825), msg

        # clean up
        os.remove(boundary_filename)
        os.remove(filename)
Exemplo n.º 4
0
    def test_triangulation_points_georeference(self):
        # 
        #  
        
        filename = tempfile.mktemp("_data_manager.sww")
        outfile = NetCDFFile(filename, netcdf_mode_w)
        points_utm = num.array([[0.,0.],[1.,1.], [0.,1.]])
        volumes = [[0,1,2]]
        elevation = [0,1,2]
        new_origin = None
        points_georeference = Geo_reference(56, 1, 554354)
        points_utm = points_georeference.change_points_geo_ref(points_utm)
        times = [0, 10]
        number_of_volumes = len(volumes)
        number_of_points = len(points_utm)
        sww = Write_sww(['elevation'], ['stage', 'xmomentum', 'ymomentum'])        
        sww.store_header(outfile, times, number_of_volumes,
                         number_of_points, description='fully sick testing',
                         verbose=self.verbose,sww_precision=netcdf_float)
        sww.store_triangulation(outfile, points_utm, volumes,
                                elevation,  new_origin=new_origin,
                                points_georeference=points_georeference,
                                verbose=self.verbose)       
        outfile.close()
        fid = NetCDFFile(filename)

        x = fid.variables['x'][:]
        y = fid.variables['y'][:]
        results_georef = Geo_reference()
        results_georef.read_NetCDF(fid)
        assert results_georef == points_georeference
        fid.close()

        assert num.allclose(num.array(map(None, x,y)), points_utm)
        os.remove(filename)
Exemplo n.º 5
0
    def __init__(self, source, frameDelay=100, frameStep=1):
        """The source parameter is assumed to be a NetCDF sww file.
        The frameDelay parameter is the number of milliseconds waited between frames.
        """
        Visualiser.__init__(self, source)

        self.frameNumber = 0
        fin = NetCDFFile(self.source, 'r')
        self.maxFrameNumber = fin.variables['time'].shape[0] - 1
        fin.close()

        #self.frameNumberTkVariable = StringVar()
        #self.frameNumberTkVariable.set('Frame - %05g'%self.framNumber)

        self.frameDelay = frameDelay

        self.xmin = None
        self.xmax = None
        self.ymin = None
        self.ymax = None
        self.zmin = None
        self.zmax = None

        self.frameStep = frameStep

        self.vtk_heightQuantityCache = []
        for i in range(self.maxFrameNumber +
                       1):  # maxFrameNumber is zero indexed.
            self.vtk_heightQuantityCache.append({})

        self.paused = False
        self.movie = False
Exemplo n.º 6
0
    def test_sww_variable2(self):
        """Test that sww information can be written correctly
        multiple timesteps. Use average as reduction operator
        """

        import time, os

        self.domain.set_name('datatest' + str(id(self)))
        self.domain.format = 'sww'
        self.domain.smooth = True

        self.domain.reduction = mean

        sww = SWW_file(self.domain)
        sww.store_connectivity()
        sww.store_timestep()
        #self.domain.tight_slope_limiters = 1
        self.domain.evolve_to_end(finaltime=0.01)
        sww.store_timestep()

        # Check contents
        # Get NetCDF
        fid = NetCDFFile(sww.filename, netcdf_mode_r)

        # Get the variables
        x = fid.variables['x']
        y = fid.variables['y']
        z = fid.variables['elevation']
        time = fid.variables['time']
        stage = fid.variables['stage']

        #Check values
        Q = self.domain.quantities['stage']
        Q0 = Q.vertex_values[:, 0]
        Q1 = Q.vertex_values[:, 1]
        Q2 = Q.vertex_values[:, 2]

        A = stage[1, :]
        assert num.allclose(A[0],
                            old_div((Q2[0] + Q1[1]), 2),
                            rtol=1.0e-5,
                            atol=1.0e-5)
        assert num.allclose(A[1],
                            old_div((Q0[1] + Q1[3] + Q2[2]), 3),
                            rtol=1.0e-5,
                            atol=1.0e-5)
        assert num.allclose(A[2], Q0[3], rtol=1.0e-5, atol=1.0e-5)
        assert num.allclose(A[3],
                            old_div((Q0[0] + Q1[5] + Q2[4]), 3),
                            rtol=1.0e-5,
                            atol=1.0e-5)

        #Center point
        assert num.allclose(A[4], old_div((Q1[0] + Q2[1] + Q0[2] +\
                                   Q0[5] + Q2[6] + Q1[7]),6), rtol=1.0e-5, atol=1.0e-5)

        fid.close()

        #Cleanup
        os.remove(sww.filename)
    def test_ferret2sww_lat_longII(self):
        # Test that min lat long works

        #The test file has
        # LON = 150.66667, 150.83334, 151, 151.16667
        # LAT = -34.5, -34.33333, -34.16667, -34 ;
        
        #Read
        from anuga.coordinate_transforms.redfearn import redfearn
        fid = NetCDFFile(self.test_MOST_file + '_ha.nc')
        first_value = fid.variables['HA'][:][0,0,0]
        fourth_value = fid.variables['HA'][:][0,0,3]
        fid.close()


        #Call conversion (with zero origin)
        #ferret2sww('small', verbose=self.verbose,
        #           origin = (56, 0, 0))
        try:
            ferret2sww(self.test_MOST_file, verbose=self.verbose,
                   origin = (56, 0, 0), minlat=-34.5, maxlat=-35)
        except AssertionError:
            pass
        else:
            self.assertTrue(0 ==1,  'Bad input did not throw exception error!')
Exemplo n.º 8
0
    def __init__(self, source, frameDelay=100, frameStep=1):
        """The source parameter is assumed to be a NetCDF sww file.
        The frameDelay parameter is the number of milliseconds waited between frames.
        """
        Visualiser.__init__(self, source)

        self.frameNumber = 0
        fin = NetCDFFile(self.source, 'r')
        self.maxFrameNumber = fin.variables['time'].shape[0] - 1
        fin.close()
        
        #self.frameNumberTkVariable = StringVar()
        #self.frameNumberTkVariable.set('Frame - %05g'%self.framNumber)

        self.frameDelay = frameDelay

        self.xmin = None
        self.xmax = None
        self.ymin = None
        self.ymax = None
        self.zmin = None
        self.zmax = None

        self.frameStep= frameStep 

        self.vtk_heightQuantityCache = []
        for i in range(self.maxFrameNumber + 1): # maxFrameNumber is zero indexed.
            self.vtk_heightQuantityCache.append({})

        self.paused = False
        self.movie = False
Exemplo n.º 9
0
 def __init__(self, *args, **kwargs):
     Visualiser.__init__(self, *args, **kwargs)
     fin = NetCDFFile(self.vis_source, 'r')
     self.xPoints = array(fin.variables['x'], Float)
     self.yPoints = array(fin.variables['y'], Float)
     self.quantityCache = {}
     fin.close()
Exemplo n.º 10
0
    def test_ferret2sww_lat_longII(self):
        # Test that min lat long works

        #The test file has
        # LON = 150.66667, 150.83334, 151, 151.16667
        # LAT = -34.5, -34.33333, -34.16667, -34 ;

        #Read
        from anuga.coordinate_transforms.redfearn import redfearn
        fid = NetCDFFile(self.test_MOST_file + '_ha.nc')
        first_value = fid.variables['HA'][:][0, 0, 0]
        fourth_value = fid.variables['HA'][:][0, 0, 3]
        fid.close()

        #Call conversion (with zero origin)
        #ferret2sww('small', verbose=self.verbose,
        #           origin = (56, 0, 0))
        try:
            ferret2sww(self.test_MOST_file,
                       verbose=self.verbose,
                       origin=(56, 0, 0),
                       minlat=-34.5,
                       maxlat=-35)
        except AssertionError:
            pass
        else:
            self.assertTrue(0 == 1, 'Bad input did not throw exception error!')
    def test_ferret2sww_2(self):
        """Test that georeferencing etc works when converting from
        ferret format (lat/lon) to sww format (UTM)
        """

        #The test file has
        # LON = 150.66667, 150.83334, 151, 151.16667
        # LAT = -34.5, -34.33333, -34.16667, -34 ;
        # TIME = 0, 0.1, 0.6, 1.1, 1.6, 2.1 ;
        #
        # First value (index=0) in small_ha.nc is 0.3400644 cm,
        # Fourth value (index==3) is -6.50198 cm


        from anuga.coordinate_transforms.redfearn import redfearn
        #fid = NetCDFFile('small_ha.nc')
        fid = NetCDFFile(self.test_MOST_file + '_ha.nc')

        #Pick a coordinate and a value

        time_index = 1
        lat_index = 0
        lon_index = 2

        test_value = fid.variables['HA'][:][time_index, lat_index, lon_index]
        test_time = fid.variables['TIME'][:][time_index]
        test_lat = fid.variables['LAT'][:][lat_index]
        test_lon = fid.variables['LON'][:][lon_index]

        linear_point_index = lat_index*4 + lon_index
        fid.close()

        #Call conversion (with zero origin)
        ferret2sww(self.test_MOST_file, verbose=self.verbose,
                   origin = (56, 0, 0))


        #Work out the UTM coordinates for test point
        zone, e, n = redfearn(test_lat, test_lon)

        #Read output file 'small.sww'
        fid = NetCDFFile(self.test_MOST_file + '.sww')

        x = fid.variables['x'][:]
        y = fid.variables['y'][:]

        #Check that test coordinate is correctly represented
        assert num.allclose(x[linear_point_index], e)
        assert num.allclose(y[linear_point_index], n)

        #Check test value
        stage = fid.variables['stage'][:]

        assert num.allclose(stage[time_index, linear_point_index], test_value/100)

        fid.close()

        #Cleanup
        import os
        os.remove(self.test_MOST_file + '.sww')
Exemplo n.º 12
0
    def test_ferret2sww_2(self):
        """Test that georeferencing etc works when converting from
        ferret format (lat/lon) to sww format (UTM)
        """

        #The test file has
        # LON = 150.66667, 150.83334, 151, 151.16667
        # LAT = -34.5, -34.33333, -34.16667, -34 ;
        # TIME = 0, 0.1, 0.6, 1.1, 1.6, 2.1 ;
        #
        # First value (index=0) in small_ha.nc is 0.3400644 cm,
        # Fourth value (index==3) is -6.50198 cm

        from anuga.coordinate_transforms.redfearn import redfearn
        #fid = NetCDFFile('small_ha.nc')
        fid = NetCDFFile(self.test_MOST_file + '_ha.nc')

        #Pick a coordinate and a value

        time_index = 1
        lat_index = 0
        lon_index = 2

        test_value = fid.variables['HA'][:][time_index, lat_index, lon_index]
        test_time = fid.variables['TIME'][:][time_index]
        test_lat = fid.variables['LAT'][:][lat_index]
        test_lon = fid.variables['LON'][:][lon_index]

        linear_point_index = lat_index * 4 + lon_index
        fid.close()

        #Call conversion (with zero origin)
        ferret2sww(self.test_MOST_file,
                   verbose=self.verbose,
                   origin=(56, 0, 0))

        #Work out the UTM coordinates for test point
        zone, e, n = redfearn(test_lat, test_lon)

        #Read output file 'small.sww'
        fid = NetCDFFile(self.test_MOST_file + '.sww')

        x = fid.variables['x'][:]
        y = fid.variables['y'][:]

        #Check that test coordinate is correctly represented
        assert num.allclose(x[linear_point_index], e)
        assert num.allclose(y[linear_point_index], n)

        #Check test value
        stage = fid.variables['stage'][:]

        assert num.allclose(stage[time_index, linear_point_index],
                            old_div(test_value, 100))

        fid.close()

        #Cleanup
        import os
        os.remove(self.test_MOST_file + '.sww')
    def test_ferret2sww_nz_origin(self):
        from anuga.coordinate_transforms.redfearn import redfearn

        #Call conversion (with nonzero origin)
        ferret2sww(self.test_MOST_file, verbose=self.verbose,
                   origin = (56, 100000, 200000))


        #Work out the UTM coordinates for first point
        zone, e, n = redfearn(-34.5, 150.66667)

        #Read output file 'small.sww'
        #fid = NetCDFFile('small.sww', netcdf_mode_r)
        fid = NetCDFFile(self.test_MOST_file + '.sww')

        x = fid.variables['x'][:]
        y = fid.variables['y'][:]

        #Check that first coordinate is correctly represented
        assert num.allclose(x[0], e-100000)
        assert num.allclose(y[0], n-200000)

        fid.close()

        #Cleanup
        os.remove(self.test_MOST_file + '.sww')
Exemplo n.º 14
0
    def test_ferret2sww_nz_origin(self):
        from anuga.coordinate_transforms.redfearn import redfearn

        #Call conversion (with nonzero origin)
        ferret2sww(self.test_MOST_file,
                   verbose=self.verbose,
                   origin=(56, 100000, 200000))

        #Work out the UTM coordinates for first point
        zone, e, n = redfearn(-34.5, 150.66667)

        #Read output file 'small.sww'
        #fid = NetCDFFile('small.sww', netcdf_mode_r)
        fid = NetCDFFile(self.test_MOST_file + '.sww')

        x = fid.variables['x'][:]
        y = fid.variables['y'][:]

        #Check that first coordinate is correctly represented
        assert num.allclose(x[0], e - 100000)
        assert num.allclose(y[0], n - 200000)

        fid.close()

        #Cleanup
        os.remove(self.test_MOST_file + '.sww')
Exemplo n.º 15
0
    def test_sww_header(self):
        """Test that constant sww information can be written correctly
        (non smooth)
        """
        self.domain.set_name('datatest' + str(id(self)))
        self.domain.format = 'sww' #Remove??
        self.domain.smooth = False

        sww = SWW_file(self.domain)
        sww.store_connectivity()

        # Check contents
        # Get NetCDF
        fid = NetCDFFile(sww.filename, netcdf_mode_r)  # Open existing file for append

        # Get the variables
        sww_revision = fid.revision_number
        try:
            revision_number = get_revision_number()
        except:
            revision_number = None
            
        assert str(revision_number) == sww_revision
        fid.close()

        #print "sww.filename", sww.filename
        os.remove(sww.filename)
Exemplo n.º 16
0
    def test_sww_constant(self):
        """Test that constant sww information can be written correctly
        (non smooth)
        """
        self.domain.set_name('datatest' + str(id(self)))
        self.domain.format = 'sww' #Remove??
        self.domain.smooth = False
        
        sww = SWW_file(self.domain)
        sww.store_connectivity()

        fid = NetCDFFile(sww.filename, netcdf_mode_r)  # Open existing file for append

        # Get the variables
        x = fid.variables['x']
        y = fid.variables['y']
        z = fid.variables['elevation']
        V = fid.variables['volumes']

        assert num.allclose (x[:], self.X.flatten())
        assert num.allclose (y[:], self.Y.flatten())
        assert num.allclose (z[:], self.F.flatten())

        P = len(self.domain)
        for k in range(P):
            assert V[k, 0] == 3*k
            assert V[k, 1] == 3*k+1
            assert V[k, 2] == 3*k+2

        fid.close()
        os.remove(sww.filename)
Exemplo n.º 17
0
def sww_merge_parallel(domain_global_name,
                       np,
                       verbose=False,
                       delete_old=False):

    output = domain_global_name + ".sww"
    swwfiles = [
        domain_global_name + "_P" + str(np) + "_" + str(v) + ".sww"
        for v in range(np)
    ]

    fid = NetCDFFile(swwfiles[0], netcdf_mode_r)

    try:  # works with netcdf4
        number_of_volumes = len(fid.dimensions['number_of_volumes'])
        number_of_points = len(fid.dimensions['number_of_points'])
    except:  # works with scientific.io.netcdf
        number_of_volumes = int(fid.dimensions['number_of_volumes'])
        number_of_points = int(fid.dimensions['number_of_points'])

    fid.close()

    if 3 * number_of_volumes == number_of_points:
        _sww_merge_parallel_non_smooth(swwfiles, output, verbose, delete_old)
    else:
        _sww_merge_parallel_smooth(swwfiles, output, verbose, delete_old)
Exemplo n.º 18
0
    def test_boundary_timeII_1_5(self):
        """
        test_boundary_timeII(self):
        Test that starttime can be set in the middle of a boundary condition
        """

        boundary_starttime = 0
        boundary_filename = self.create_sww_boundary(boundary_starttime)
        # print "boundary_filename",boundary_filename

        filename = tempfile.mktemp(".sww")
        # print "filename",filename
        dir, base = os.path.split(filename)
        senario_name = base[:-4]

        mesh = Mesh()
        mesh.add_region_from_polygon([[10, 10], [90, 10], [90, 90], [10, 90]])
        mesh.generate_mesh(verbose=False)

        domain = pmesh_to_domain_instance(mesh, anuga.Domain)
        domain.set_name(senario_name)
        domain.set_datadir(dir)
        domain.set_flow_algorithm("1_5")
        new_starttime = 0.0
        domain.set_starttime(new_starttime)

        # Setup initial conditions
        domain.set_quantity("elevation", 0.0)
        domain.set_quantity("stage", 0.0)
        Bf = anuga.File_boundary(boundary_filename, domain, use_cache=False, verbose=False)

        # Setup boundary conditions
        domain.set_boundary({"exterior": Bf})
        for t in domain.evolve(yieldstep=5, finaltime=9.0):
            pass
            # print domain.boundary_statistics()
            # domain.write_time()
            # print "domain.time", domain.time

        # do an assertion on the time of the produced sww file
        fid = NetCDFFile(filename, netcdf_mode_r)  # Open existing file for read
        times = fid.variables["time"][:]
        stage = fid.variables["stage"][:]
        # print stage
        # print "times", times
        # print "fid.starttime", fid.starttime
        assert num.allclose(fid.starttime, new_starttime)
        fid.close()

        # print "stage[2,0]", stage[2,0]
        msg = "This test is a bit hand crafted, based on the output file. "
        msg += "Not logic. "
        msg += "It's testing that starttime is working"
        assert num.allclose(stage[2, 0], 4.88601), msg

        # clean up
        os.remove(boundary_filename)
        os.remove(filename)
Exemplo n.º 19
0
 def setup_grid(self):
     fin = NetCDFFile(self.source, 'r')
     self.vtk_cells = vtkCellArray()
     N_tri = fin.variables['volumes'].shape[0]
     for v in range(N_tri):
         self.vtk_cells.InsertNextCell(3)
         for i in range(3):
             self.vtk_cells.InsertCellPoint(fin.variables['volumes'][v][i])
     fin.close()
Exemplo n.º 20
0
 def setup_grid(self):
     fin = NetCDFFile(self.source, 'r')
     self.vtk_cells = vtkCellArray()
     N_tri = fin.variables['volumes'].shape[0]
     for v in range(N_tri):
         self.vtk_cells.InsertNextCell(3)
         for i in range(3):
             self.vtk_cells.InsertCellPoint(fin.variables['volumes'][v][i])
     fin.close()
    def test_georef_types(self):
        '''Ensure that attributes of a georeference are of correct type.
        
        zone            int
        false_easting   int
        false_northing  int
        xllcorner       float
        yllcorner       float
        '''

        from anuga.file.netcdf import NetCDFFile

        # ensure that basic instance attributes are correct
        g = Geo_reference(56, 1.8, 1.8)
        self.assertTrue(isinstance(g.zone, int),
                        "geo_ref .zone should be 'int' type, "
                        "was '%s' type" % type(g.zone))  
        self.assertTrue(isinstance(g.false_easting, int),
                        "geo_ref .false_easting should be int type, "
                        "was '%s' type" % type(g.false_easting))  
        self.assertTrue(isinstance(g.false_northing, int),
                        "geo_ref .false_northing should be int type, "
                        "was '%s' type" % type(g.false_northing))
        self.assertTrue(isinstance(g.xllcorner, float),
                        "geo_ref .xllcorner should be float type, "
                        "was '%s' type" % type(g.xllcorner))
        self.assertTrue(isinstance(g.yllcorner, float),
                        "geo_ref .yllcorner should be float type, "
                        "was '%s' type" % type(g.yllcorner))

        # now write fikle, read back and check types again
        file_name = tempfile.mktemp(".geo_referenceTest")
        
        out_file = NetCDFFile(file_name, netcdf_mode_w)
        g.write_NetCDF(out_file)
        out_file.close()
        
        in_file = NetCDFFile(file_name, netcdf_mode_r)
        new_g = Geo_reference(NetCDFObject=in_file)
        in_file.close()
        os.remove(file_name)

        self.assertTrue(isinstance(new_g.zone, int),
                        "geo_ref .zone should be 'int' type, "
                        "was '%s' type" % type(new_g.zone))  
        self.assertTrue(isinstance(new_g.false_easting, int),
                        "geo_ref .false_easting should be int type, "
                        "was '%s' type" % type(new_g.false_easting))  
        self.assertTrue(isinstance(new_g.false_northing, int),
                        "geo_ref .false_northing should be int type, "
                        "was '%s' type" % type(new_g.false_northing))
        self.assertTrue(isinstance(new_g.xllcorner, float),
                        "geo_ref .xllcorner should be float type, "
                        "was '%s' type" % type(new_g.xllcorner))
        self.assertTrue(isinstance(new_g.yllcorner, float),
                        "geo_ref .yllcorner should be float type, "
                        "was '%s' type" % type(new_g.yllcorner))
Exemplo n.º 22
0
    def helper_read_msh_file(self, filename):
        fid = NetCDFFile(filename, netcdf_mode_r)
        mesh = {}

        # Get the 'strings' variable
        strings = fid.variables['strings'][:]

        fid.close()

        return char_to_string(strings)
Exemplo n.º 23
0
    def helper_read_msh_file(self, filename):
        fid = NetCDFFile(filename, netcdf_mode_r)
        mesh = {}

        # Get the 'strings' variable
        strings = fid.variables['strings'][:]

        fid.close()

        return char_to_string(strings)
Exemplo n.º 24
0
 def build_quantity_dict(self):
     quantities = {}
     fin = NetCDFFile(self.source, 'r')
     for q in filter(lambda n:n != 'x' and n != 'y' and n != 'z' and n != 'time' and n != 'volumes', fin.variables.keys()):
         if len(fin.variables[q].shape) == 1: # Not a time-varying quantity
             quantities[q] = num.ravel(num.array(fin.variables[q], num.float))
         else: # Time-varying, get the current timestep data
             quantities[q] = num.array(fin.variables[q][self.frameNumber], num.float)
     fin.close()
     return quantities
Exemplo n.º 25
0
def get_matrix_A(fn, gauge_name):
    # points to read information from
    point_reader = reader(file(gauge_name))
    points = []
    point_name = []
    for i, row in enumerate(point_reader):
        if i == 0:
            for j, value in enumerate(row):
                if value.strip() == 'easting': easting = j
                if value.strip() == 'northing': northing = j
                if value.strip() == 'name': name = j
                if value.strip() == 'elevation': elevation = j
        else:
            #points.append([float(row[easting]),float(row[northing])])
            points.append([float(row[easting]), float(row[northing])])
            point_name.append(row[name])
    points_array = np.array(points, np.float)
    dim_gauge = int(np.sqrt(points_array.shape[0]))
    interpolation_points = ensure_absolute(points_array)

    # read the sww file to extract something
    fid = NetCDFFile(fn, netcdf_mode_r)
    xllcorner = fid.xllcorner
    yllcorner = fid.yllcorner
    zone = fid.zone
    x = fid.variables['x'][:]
    y = fid.variables['y'][:]

    triangles = fid.variables['volumes'][:]

    x = np.reshape(x, (len(x), 1))
    y = np.reshape(y, (len(y), 1))
    vertex_coordinates = np.concatenate((x, y), axis=1)
    ele = fid.variables['elevation'][:]
    fid.close()

    vertex_coordinates = ensure_absolute(vertex_coordinates)
    triangles = ensure_numeric(triangles)

    interpolation_points = ensure_numeric(interpolation_points)
    interpolation_points[:, 0] -= xllcorner
    interpolation_points[:, 1] -= yllcorner

    mesh = Mesh(vertex_coordinates, triangles)
    mesh_boundary_polygon = mesh.get_boundary_polygon()
    indices = outside_polygon(interpolation_points, mesh_boundary_polygon)
    interp = Interpolate(vertex_coordinates, triangles)
    matrix_A, inside_poly_indices, outside_poly_indices, centroids = interp._build_interpolation_matrix_A(
        interpolation_points, output_centroids=False, verbose=False)

    ele = matrix_A * ele
    ele = np.asarray(ele)
    ele = ele.reshape((100, 100))

    return ele, matrix_A
Exemplo n.º 26
0
    def test_sww_variable(self):
        """Test that sww information can be written correctly
        """
        self.domain.set_name('datatest' + str(id(self)))
        self.domain.format = 'sww'
        self.domain.smooth = True
        self.domain.reduction = mean

        sww = SWW_file(self.domain)
        sww.store_connectivity()
        sww.store_timestep()

        # Check contents
        # Get NetCDF
        fid = NetCDFFile(sww.filename,
                         netcdf_mode_r)  # Open existing file for append

        # Get the variables
        time = fid.variables['time']
        stage = fid.variables['stage']

        Q = self.domain.quantities['stage']
        Q0 = Q.vertex_values[:, 0]
        Q1 = Q.vertex_values[:, 1]
        Q2 = Q.vertex_values[:, 2]

        A = stage[0, :]

        #         print stage[0,:]
        #         print A[0], (Q2[0] + Q1[1])/2
        #         print A[1], (Q0[1] + Q1[3] + Q2[2])/3
        #         print A[2], Q0[3]
        #         print A[3], (Q0[0] + Q1[5] + Q2[4])/3
        assert num.allclose(A[0],
                            old_div((Q2[0] + Q1[1]), 2),
                            rtol=1.0e-5,
                            atol=1.0e-5)

        assert num.allclose(A[1],
                            old_div((Q0[1] + Q1[3] + Q2[2]), 3),
                            rtol=1.0e-5,
                            atol=1.0e-5)
        assert num.allclose(A[2], Q0[3])
        assert num.allclose(A[3],
                            old_div((Q0[0] + Q1[5] + Q2[4]), 3),
                            rtol=1.0e-5,
                            atol=1.0e-5)

        #Center point
        assert num.allclose(A[4], old_div((Q1[0] + Q2[1] + Q0[2] +\
                                   Q0[5] + Q2[6] + Q1[7]),6), rtol=1.0e-5, atol=1.0e-5)

        fid.close()
        os.remove(sww.filename)
Exemplo n.º 27
0
 def getQuantityDict(self):
     quantities = {}
     fin = NetCDFFile(self.vis_source, 'r')
     names = [
         k for k in fin.variables.keys() if k != 'x' and k != 'y'
         and k != 'z' and k != 'time' and k != 'volumes'
     ]
     argss = [(name, len(fin.variables[name].shape) != 1) for name in names]
     fin.close()
     for args in argss:
         quantities[name] = self.getQuantityPoints(*args)
     return quantities
Exemplo n.º 28
0
    def test_sww_range(self):
        """Test that constant sww information can be written correctly
        Use non-smooth to be able to compare to quantity values.
        """

        self.domain.set_name('datatest' + str(id(self)))
        self.domain.format = 'sww'
        self.domain.set_store_vertices_uniquely(True)
        
        sww = SWW_file(self.domain)        

        dqs = self.domain.get_quantity('stage')
        dqx = self.domain.get_quantity('xmomentum')
        dqy = self.domain.get_quantity('ymomentum')        
        xmom_min = ymom_min = stage_min = sys.maxint 
        xmom_max = ymom_max = stage_max = -stage_min        
        for t in self.domain.evolve(yieldstep = 1, finaltime = 1):
            wmax = max(dqs.get_values().flatten())
            if wmax > stage_max: stage_max = wmax
            wmin = min(dqs.get_values().flatten())
            if wmin < stage_min: stage_min = wmin            
            
            uhmax = max(dqx.get_values().flatten())
            if uhmax > xmom_max: xmom_max = uhmax
            uhmin = min(dqx.get_values().flatten())
            if uhmin < xmom_min: xmom_min = uhmin                        
            
            vhmax = max(dqy.get_values().flatten())
            if vhmax > ymom_max: ymom_max = vhmax
            vhmin = min(dqy.get_values().flatten())
            if vhmin < ymom_min: ymom_min = vhmin                                    
            
            
            
        # Get NetCDF
        fid = NetCDFFile(sww.filename, netcdf_mode_r) # Open existing file for append

        # Get the variables
        range = fid.variables['stage_range'][:]
        assert num.allclose(range,[stage_min, stage_max])

        range = fid.variables['xmomentum_range'][:]
        #print range
        assert num.allclose(range, [xmom_min, xmom_max])
        
        range = fid.variables['ymomentum_range'][:]
        #print range
        assert num.allclose(range, [ymom_min, ymom_max])        


        
        fid.close()
        os.remove(sww.filename)
Exemplo n.º 29
0
    def setupGrid(self):
        fin = NetCDFFile(self.vis_source, 'r')
        nTri = fin.variables['volumes'].shape[0]
        insertNextCell = vtkCellArray.InsertNextCell
        insertCellPoint = vtkCellArray.InsertCellPoint
        
        for v in range(nTri):
            insertNextCell(self.vtk_cells, 3)
            for i in range(3):
                insertCellPoint(self.vtk_cells, fin.variables['volumes'][v][i])

        fin.close()
Exemplo n.º 30
0
    def setupGrid(self):
        fin = NetCDFFile(self.vis_source, 'r')
        nTri = fin.variables['volumes'].shape[0]
        insertNextCell = vtkCellArray.InsertNextCell
        insertCellPoint = vtkCellArray.InsertCellPoint
        
        for v in range(nTri):
            insertNextCell(self.vtk_cells, 3)
            for i in range(3):
                insertCellPoint(self.vtk_cells, fin.variables['volumes'][v][i])

        fin.close()
Exemplo n.º 31
0
def prepare_timeboundary(filename, verbose = False):
    """Convert benchmark 2 time series to NetCDF tms file.
    This is a 'throw-away' code taylor made for files like
    'Benchmark_2_input.txt' from the LWRU2 benchmark
    """

    from anuga.file.netcdf import NetCDFFile

    if verbose: print 'Creating', filename

    # Read the ascii (.txt) version of this file
    fid = open(filename[:-4] + '.txt')

    # Skip first line
    line = fid.readline()

    # Read remaining lines
    lines = fid.readlines()
    fid.close()


    N = len(lines)
    T = num.zeros(N, num.float)  #Time
    Q = num.zeros(N, num.float)  #Values

    for i, line in enumerate(lines):
        fields = line.split()

        T[i] = float(fields[0])
        Q[i] = float(fields[1])


    # Create tms NetCDF file

    fid = NetCDFFile(filename, 'w')
    fid.institution = 'Geoscience Australia'
    fid.description = 'Input wave for Benchmark 2'
    fid.starttime = 0.0
    fid.createDimension('number_of_timesteps', len(T))
    fid.createVariable('time', netcdf_float, ('number_of_timesteps',))
    fid.variables['time'][:] = T

    fid.createVariable('stage', netcdf_float, ('number_of_timesteps',))
    fid.variables['stage'][:] = Q[:]

    fid.createVariable('xmomentum', netcdf_float, ('number_of_timesteps',))
    fid.variables['xmomentum'][:] = 0.0

    fid.createVariable('ymomentum', netcdf_float, ('number_of_timesteps',))
    fid.variables['ymomentum'][:] = 0.0

    fid.close()
Exemplo n.º 32
0
    def test_sww_variable2(self):
        """Test that sww information can be written correctly
        multiple timesteps. Use average as reduction operator
        """

        import time, os

        self.domain.set_name('datatest' + str(id(self)))
        self.domain.format = 'sww'
        self.domain.smooth = True

        self.domain.reduction = mean

        sww = SWW_file(self.domain)
        sww.store_connectivity()
        sww.store_timestep()
        #self.domain.tight_slope_limiters = 1
        self.domain.evolve_to_end(finaltime = 0.01)
        sww.store_timestep()

        # Check contents
        # Get NetCDF
        fid = NetCDFFile(sww.filename, netcdf_mode_r)

        # Get the variables
        x = fid.variables['x']
        y = fid.variables['y']
        z = fid.variables['elevation']
        time = fid.variables['time']
        stage = fid.variables['stage']

        #Check values
        Q = self.domain.quantities['stage']
        Q0 = Q.vertex_values[:,0]
        Q1 = Q.vertex_values[:,1]
        Q2 = Q.vertex_values[:,2]

        A = stage[1,:]
        assert num.allclose(A[0], (Q2[0] + Q1[1])/2, rtol=1.0e-5, atol=1.0e-5)
        assert num.allclose(A[1], (Q0[1] + Q1[3] + Q2[2])/3, rtol=1.0e-5, atol=1.0e-5)
        assert num.allclose(A[2], Q0[3], rtol=1.0e-5, atol=1.0e-5)
        assert num.allclose(A[3], (Q0[0] + Q1[5] + Q2[4])/3, rtol=1.0e-5, atol=1.0e-5)

        #Center point
        assert num.allclose(A[4], (Q1[0] + Q2[1] + Q0[2] +\
                                   Q0[5] + Q2[6] + Q1[7])/6, rtol=1.0e-5, atol=1.0e-5)


        fid.close()

        #Cleanup
        os.remove(sww.filename)
Exemplo n.º 33
0
    def test_sww_minimum_storable_height(self):
        """Test that sww information can be written correctly
        multiple timesteps using a different reduction operator (min)
        """

        import time, os

        self.domain.set_name('datatest' + str(id(self)))
        self.domain.format = 'sww'
        self.domain.smooth = True
        self.domain.reduction = min
        self.domain.minimum_storable_height = 100

        sww = SWW_file(self.domain)
        sww.store_connectivity()
        sww.store_timestep()

        #self.domain.tight_slope_limiters = 1
        self.domain.evolve_to_end(finaltime = 0.01)
        sww.store_timestep()

        #Check contents
        #Get NetCDF
        fid = NetCDFFile(sww.filename, netcdf_mode_r)

        # Get the variables
        x = fid.variables['x']
        y = fid.variables['y']
        z = fid.variables['elevation']
        time = fid.variables['time']
        stage = fid.variables['stage']
        xmomentum = fid.variables['xmomentum']
        ymomentum = fid.variables['ymomentum']        

        #Check values
        Q = self.domain.quantities['stage']
        Q0 = Q.vertex_values[:,0]
        Q1 = Q.vertex_values[:,1]
        Q2 = Q.vertex_values[:,2]

        A = stage[1,:]
        assert num.allclose(stage[1,:], z[:])


        assert num.allclose(xmomentum, 0.0)
        assert num.allclose(ymomentum, 0.0)        
        
        fid.close()

        #Cleanup
        os.remove(sww.filename)
Exemplo n.º 34
0
    def test_sync(self):
        """test_sync - Test info stored at each timestep is as expected (incl initial condition)
        """

        import time, os

        self.domain.set_name('synctest')
        self.domain.format = 'sww'
        self.domain.smooth = False
        self.domain.store = True

        self.domain.tight_slope_limiters = True
        self.domain.use_centroid_velocities = True

        # In this case tight_slope_limiters as default
        # in conjunction with protection
        # against isolated degenerate timesteps works.
        #self.domain.tight_slope_limiters = 1
        #self.domain.protect_against_isolated_degenerate_timesteps = True

        #print 'tight_sl', self.domain.tight_slope_limiters

        #Evolution
        for t in self.domain.evolve(yieldstep=1.0, finaltime=4.0):

            #########self.domain.write_time(track_speeds=True)
            stage = self.domain.quantities['stage'].vertex_values

            #Get NetCDF
            fid = NetCDFFile(self.domain.writer.filename, netcdf_mode_r)
            stage_file = fid.variables['stage']

            if t == 0.0:
                assert num.allclose(stage,
                                    self.initial_stage,
                                    rtol=1.0e-5,
                                    atol=1.0e-5)
                assert num.allclose(stage_file[:],
                                    stage.flatten(),
                                    rtol=1.0e-5,
                                    atol=1.0e-5)
            else:
                assert not num.allclose(
                    stage, self.initial_stage, rtol=1.0e-5, atol=1.0e-5)
                assert not num.allclose(
                    stage_file[:], stage.flatten(), rtol=1.0e-5, atol=1.0e-5)

            fid.close()

        os.remove(self.domain.writer.filename)
Exemplo n.º 35
0
def prepare_timeboundary(filename, verbose=False):
    """Convert benchmark 2 time series to NetCDF tms file.
    This is a 'throw-away' code taylor made for files like
    'Benchmark_2_input.txt' from the LWRU2 benchmark
    """

    from anuga.file.netcdf import NetCDFFile

    if verbose: print 'Creating', filename

    # Read the ascii (.txt) version of this file
    fid = open(filename[:-4] + '.txt')

    # Skip first line
    line = fid.readline()

    # Read remaining lines
    lines = fid.readlines()
    fid.close()

    N = len(lines)
    T = num.zeros(N, num.float)  #Time
    Q = num.zeros(N, num.float)  #Values

    for i, line in enumerate(lines):
        fields = line.split()

        T[i] = float(fields[0])
        Q[i] = float(fields[1])

    # Create tms NetCDF file

    fid = NetCDFFile(filename, 'w')
    fid.institution = 'Geoscience Australia'
    fid.description = 'Input wave for Benchmark 2'
    fid.starttime = 0.0
    fid.createDimension('number_of_timesteps', len(T))
    fid.createVariable('time', netcdf_float, ('number_of_timesteps', ))
    fid.variables['time'][:] = T

    fid.createVariable('stage', netcdf_float, ('number_of_timesteps', ))
    fid.variables['stage'][:] = Q[:]

    fid.createVariable('xmomentum', netcdf_float, ('number_of_timesteps', ))
    fid.variables['xmomentum'][:] = 0.0

    fid.createVariable('ymomentum', netcdf_float, ('number_of_timesteps', ))
    fid.variables['ymomentum'][:] = 0.0

    fid.close()
Exemplo n.º 36
0
    def test_urs_ungridded_hole (self):
        
        #Zone:   50    
        #Easting:  240992.578  Northing: 7620442.472 
        #Latitude:   -21  30 ' 0.00000 ''  Longitude: 114  30 ' 0.00000 '' 
        lat_long = [[-20.5, 114.5],
                    [-20.6, 114.6],
                    [-20.5, 115.],
                    [-20.6, 115.],
                    [-20.5, 115.5],
                    [-20.6, 115.4],
                    
                    [-21., 114.5],
                    [-21., 114.6],
                    [-21., 115.5],
                    [-21., 115.4],
                    
                    [-21.5, 114.5],
                    [-21.4, 114.6],
                    [-21.5, 115.],
                    [-21.4, 115.],
                    [-21.5, 115.5],
                    [-21.4, 115.4]
                    ]
        time_step_count = 6
        time_step = 100
        tide = 9000000
        base_name, files = self.write_mux(lat_long,
                                          time_step_count, time_step)
        #Easting:  292110.784  Northing: 7676551.710 
        #Latitude:   -21  0 ' 0.00000 ''  Longitude: 115  0 ' 0.00000 '' 

        urs_ungridded2sww(base_name, mean_stage=-240992.0,
                          hole_points_UTM=[ 292110.784, 7676551.710 ])
        
        # now I want to check the sww file ...
        sww_file = base_name + '.sww'
        
        #Let's interigate the sww file
        # Note, the sww info is not gridded.  It is point data.
        fid = NetCDFFile(sww_file)
        
        number_of_volumes = fid.variables['volumes']
        #print "number_of_volumes",len(number_of_volumes) 
        assert num.allclose(16, len(number_of_volumes))
        
        fid.close()
        self.delete_mux(files)
        #print "sww_file", sww_file 
        os.remove(sww_file)
Exemplo n.º 37
0
    def test_boundary_time(self):
        """
        test_boundary_time(self):
        test that the starttime of a boundary condition is carried thru
        to the output sww file.
        
        """

        boundary_starttime = 0
        boundary_filename = self.create_sww_boundary(boundary_starttime)
        filename = tempfile.mktemp(".sww")
        dir, base = os.path.split(filename)
        senario_name = base[:-4]

        mesh = Mesh()
        ###mesh.add_region_from_polygon([[10,10], [90,10], [90,90], [10,90]])
        mesh.add_region_from_polygon([[0, 0], [100, 0], [100, 100], [0, 100]])
        mesh.generate_mesh(verbose=False)

        domain = pmesh_to_domain_instance(mesh, anuga.Domain)
        domain.set_name(senario_name)
        domain.set_datadir(dir)

        # Setup initial conditions
        domain.set_quantity('elevation', 0.0)
        domain.set_quantity('stage', 0.0)
        Bf = anuga.File_boundary(boundary_filename,
                                 domain,
                                 use_cache=False,
                                 verbose=False)

        # Setup boundary conditions
        domain.set_boundary({'exterior': Bf})

        for t in domain.evolve(yieldstep=5.0, finaltime=10.0):
            pass
            #print domain.write_time()
            #print "domain.time", domain.time

        # do an assertion on the time of the produced sww file
        fid = NetCDFFile(filename, netcdf_mode_r)  #Open existing file for read
        times = fid.variables['time'][:]
        #print "times", times
        #print "fid.starttime", fid.starttime
        assert num.allclose(fid.starttime, boundary_starttime)
        fid.close()

        # clean up
        os.remove(boundary_filename)
        os.remove(filename)
Exemplo n.º 38
0
 def getQuantityDict(self):
     quantities = {}
     fin = NetCDFFile(self.vis_source, 'r')
     names = [ k for k in fin.variables.keys()
               if k != 'x'
               and k != 'y'
               and k != 'z'
               and k != 'time'
               and k != 'volumes' ]
     argss = [ (name, len(fin.variables[name].shape) != 1) for name in names ]
     fin.close()
     for args in argss:
         quantities[name] = self.getQuantityPoints(*args)
     return quantities
Exemplo n.º 39
0
 def build_quantity_dict(self):
     quantities = {}
     fin = NetCDFFile(self.source, 'r')
     for q in filter(
             lambda n: n != 'x' and n != 'y' and n != 'z' and n != 'time'
             and n != 'volumes', fin.variables.keys()):
         if len(fin.variables[q].shape) == 1:  # Not a time-varying quantity
             quantities[q] = num.ravel(
                 num.array(fin.variables[q], num.float))
         else:  # Time-varying, get the current timestep data
             quantities[q] = num.array(fin.variables[q][self.frameNumber],
                                       num.float)
     fin.close()
     return quantities
    def test_read_write_NetCDF(self):
        from anuga.file.netcdf import NetCDFFile
        g = Geo_reference(56, 1.9, 1.9)
        file_name = tempfile.mktemp(".geo_referenceTest")

        out_file = NetCDFFile(file_name, netcdf_mode_w)
        g.write_NetCDF(out_file)
        out_file.close()

        in_file = NetCDFFile(file_name, netcdf_mode_r)
        new_g = Geo_reference(NetCDFObject=in_file)
        in_file.close()
        os.remove(file_name)

        self.assertTrue(g == new_g, 'test_read_write_NetCDF failed')
    def test_read_write_NetCDF(self):
        from anuga.file.netcdf import NetCDFFile
        g = Geo_reference(56,1.9,1.9)
        file_name = tempfile.mktemp(".geo_referenceTest")
        
        out_file = NetCDFFile(file_name, netcdf_mode_w)
        g.write_NetCDF(out_file)
        out_file.close()
        
        in_file = NetCDFFile(file_name, netcdf_mode_r)
        new_g = Geo_reference(NetCDFObject=in_file)
        in_file.close()
        os.remove(file_name)

        self.assertTrue(g == new_g, 'test_read_write_NetCDF failed')  
Exemplo n.º 42
0
    def test_urs_ungridded_holeII(self):

        # Check that if using a hole that returns no triangles,
        # urs_ungridded2sww removes the hole label.
        
        lat_long = [[-20.5, 114.5],
                    [-20.6, 114.6],
                    [-20.5, 115.5],
                    [-20.6, 115.4],
                    [-21.5, 114.5],
                    [-21.4, 114.6],
                    [-21.5, 115.5],
                    [-21.4, 115.4]
                    ]
        time_step_count = 6
        time_step = 100
        tide = 9000000
        base_name, files = self.write_mux(lat_long,
                                          time_step_count, time_step)
        #Easting:  292110.784  Northing: 7676551.710 
        #Latitude:   -21  0 ' 0.00000 ''  Longitude: 115  0 ' 0.00000 '' 

        urs_ungridded2sww(base_name, mean_stage=-240992.0,
                          hole_points_UTM=[ 292110.784, 7676551.710 ])
        
        # now I want to check the sww file ...
        sww_file = base_name + '.sww'
        fid = NetCDFFile(sww_file)
        
        volumes = fid.variables['volumes'][:]
        #print "number_of_volumes",len(volumes)

        fid.close()
        os.remove(sww_file)
        
        urs_ungridded2sww(base_name, mean_stage=-240992.0)
        
        # now I want to check the sww file ...
        sww_file = base_name + '.sww'
        fid = NetCDFFile(sww_file)
        
        volumes_again = fid.variables['volumes'][:]
        #print "number_of_volumes",len(volumes_again) 
        assert num.allclose(len(volumes_again),
                            len(volumes))
        fid.close()
        os.remove(sww_file)
        self.delete_mux(files) 
Exemplo n.º 43
0
    def test_boundary_time(self):
        """
        test_boundary_time(self):
        test that the starttime of a boundary condition is carried thru
        to the output sww file.
        
        """

        boundary_starttime = 0
        boundary_filename = self.create_sww_boundary(boundary_starttime)
        filename = tempfile.mktemp(".sww")
        dir, base = os.path.split(filename)
        senario_name = base[:-4]

        mesh = Mesh()
        ###mesh.add_region_from_polygon([[10,10], [90,10], [90,90], [10,90]])
        mesh.add_region_from_polygon([[0, 0], [100, 0], [100, 100], [0, 100]])
        mesh.generate_mesh(verbose=False)

        domain = pmesh_to_domain_instance(mesh, anuga.Domain)
        domain.set_name(senario_name)
        domain.set_datadir(dir)

        # Setup initial conditions
        domain.set_quantity("elevation", 0.0)
        domain.set_quantity("stage", 0.0)
        Bf = anuga.File_boundary(boundary_filename, domain, use_cache=False, verbose=False)

        # Setup boundary conditions
        domain.set_boundary({"exterior": Bf})

        for t in domain.evolve(yieldstep=5.0, finaltime=10.0):
            pass
            # print domain.write_time()
            # print "domain.time", domain.time

        # do an assertion on the time of the produced sww file
        fid = NetCDFFile(filename, netcdf_mode_r)  # Open existing file for read
        times = fid.variables["time"][:]
        # print "times", times
        # print "fid.starttime", fid.starttime
        assert num.allclose(fid.starttime, boundary_starttime)
        fid.close()

        # clean up
        os.remove(boundary_filename)
        os.remove(filename)
Exemplo n.º 44
0
    def helper_write_msh_file(self, filename, l):
        # open the NetCDF file
        fd = NetCDFFile(filename, netcdf_mode_w)
        fd.description = 'Test file - string arrays'

        # convert list of strings to num.array
        al = num.array(string_to_char(l), num.character)

        # write the list
        fd.createDimension('num_of_strings', al.shape[0])
        fd.createDimension('size_of_strings', al.shape[1])

        var = fd.createVariable('strings', netcdf_char,
                                ('num_of_strings', 'size_of_strings'))
        var[:] = al

        fd.close()
Exemplo n.º 45
0
    def helper_write_msh_file(self, filename, l):
        # open the NetCDF file
        fd = NetCDFFile(filename, netcdf_mode_w)
        fd.description = 'Test file - string arrays'

        # convert list of strings to num.array
        al = num.array(string_to_char(l), num.character)

        # write the list
        fd.createDimension('num_of_strings', al.shape[0])
        fd.createDimension('size_of_strings', al.shape[1])

        var = fd.createVariable('strings', netcdf_char,
                                ('num_of_strings', 'size_of_strings'))
        var[:] = al

        fd.close()
Exemplo n.º 46
0
    def test_triangulation_2_geo_refs(self):
        #
        #

        filename = tempfile.mktemp("_data_manager.sww")
        outfile = NetCDFFile(filename, netcdf_mode_w)
        points_utm = num.array([[0., 0.], [1., 1.], [0., 1.]])
        volumes = [[0, 1, 2]]
        elevation = [0, 1, 2]
        new_origin = Geo_reference(56, 1, 1)
        points_georeference = Geo_reference(56, 0, 0)
        points_utm = points_georeference.change_points_geo_ref(points_utm)
        times = [0, 10]
        number_of_volumes = len(volumes)
        number_of_points = len(points_utm)
        sww = Write_sww(['elevation'], ['stage', 'xmomentum', 'ymomentum'])
        sww.store_header(outfile,
                         times,
                         number_of_volumes,
                         number_of_points,
                         description='fully sick testing',
                         verbose=self.verbose,
                         sww_precision=netcdf_float)
        sww.store_triangulation(outfile,
                                points_utm,
                                volumes,
                                elevation,
                                new_origin=new_origin,
                                points_georeference=points_georeference,
                                verbose=self.verbose)
        outfile.close()
        fid = NetCDFFile(filename)

        x = fid.variables['x'][:]
        y = fid.variables['y'][:]
        results_georef = Geo_reference()
        results_georef.read_NetCDF(fid)
        assert results_georef == new_origin
        fid.close()

        absolute = Geo_reference(56, 0, 0)
        assert num.allclose(
            num.array(
                absolute.change_points_geo_ref(map(None, x, y), new_origin)),
            points_utm)
        os.remove(filename)
Exemplo n.º 47
0
    def test_small_nxn(self):
        most2nc(input_file=FN,output_file='test.nc'\
                        ,inverted_bathymetry = False,verbose = False)

        fid = NetCDFFile('test.nc')
        elevation = fid.variables['ELEVATION'][:]
        fid.close()

        z=[[-13., -14., -15., -16.]\
           ,[-9., -10., -11., -12.]\
           ,[-5.,  -6.,  -7.,  -8.]\
           ,[-1.,  -2.,  -3.,  -4.]]
        z = num.asarray(z)

        assert num.allclose(z, elevation)
        import os
        os.remove('test.nc')
Exemplo n.º 48
0
    def test_small_nxn(self):
        most2nc(input_file=FN,output_file='test.nc'\
                        ,inverted_bathymetry = False,verbose = False)

        fid = NetCDFFile('test.nc')
        elevation = fid.variables['ELEVATION'][:]
        fid.close()

        z=[[-13., -14., -15., -16.]\
           ,[-9., -10., -11., -12.]\
           ,[-5.,  -6.,  -7.,  -8.]\
           ,[-1.,  -2.,  -3.,  -4.]]
        z = num.asarray(z)

        assert num.allclose(z,elevation)
        import os
        os.remove('test.nc')
Exemplo n.º 49
0
    def test_sww_variable(self):
        """Test that sww information can be written correctly
        """
        self.domain.set_name('datatest' + str(id(self)))
        self.domain.format = 'sww'
        self.domain.smooth = True
        self.domain.reduction = mean

        sww = SWW_file(self.domain)
        sww.store_connectivity()
        sww.store_timestep()

        # Check contents
        # Get NetCDF
        fid = NetCDFFile(sww.filename, netcdf_mode_r)  # Open existing file for append


        # Get the variables
        time = fid.variables['time']
        stage = fid.variables['stage']

        Q = self.domain.quantities['stage']
        Q0 = Q.vertex_values[:,0]
        Q1 = Q.vertex_values[:,1]
        Q2 = Q.vertex_values[:,2]

        A = stage[0,:]
        
#         print stage[0,:]
#         print A[0], (Q2[0] + Q1[1])/2
#         print A[1], (Q0[1] + Q1[3] + Q2[2])/3
#         print A[2], Q0[3]
#         print A[3], (Q0[0] + Q1[5] + Q2[4])/3
        assert num.allclose(A[0], (Q2[0] + Q1[1])/2, rtol=1.0e-5, atol=1.0e-5)
        
        assert num.allclose(A[1], (Q0[1] + Q1[3] + Q2[2])/3, rtol=1.0e-5, atol=1.0e-5)
        assert num.allclose(A[2], Q0[3])
        assert num.allclose(A[3], (Q0[0] + Q1[5] + Q2[4])/3, rtol=1.0e-5, atol=1.0e-5)

        #Center point
        assert num.allclose(A[4], (Q1[0] + Q2[1] + Q0[2] +\
                                   Q0[5] + Q2[6] + Q1[7])/6, rtol=1.0e-5, atol=1.0e-5)
        
        fid.close()
        os.remove(sww.filename)
    def test_read_NetCDFI(self):
        # test if read_NetCDF
        from anuga.file.netcdf import NetCDFFile
        g = Geo_reference(56,1.9,1.9)
        file_name = tempfile.mktemp(".geo_referenceTest")
        
        outfile = NetCDFFile(file_name, netcdf_mode_w)
        outfile.xllcorner = g.get_xllcorner() 
        outfile.yllcorner =  g.get_yllcorner() 
        outfile.zone = g.get_zone()
        outfile.close()
        
        in_file = NetCDFFile(file_name, netcdf_mode_r)
        new_g = Geo_reference(NetCDFObject=in_file)
        in_file.close()
        os.remove(file_name)

        self.assertTrue(g == new_g, ' failed')
Exemplo n.º 51
0
 def getQuantityPoints(self, quantityName, dynamic=False):
     try:
         if dynamic:
             q = self.quantityCache[quantityName][self.vis_frame]
         else:
             q = self.quantityCache[quantityName]
     except KeyError:
         fin = NetCDFFile(self.vis_source, 'r')
         if dynamic:
             if not self.quantityCache.has_key(quantityName):
                 self.quantityCache[quantityName] = {}
             q = array(fin.variables[quantityName][self.vis_frame], Float)
             self.quantityCache[quantityName][self.vis_frame] = q
         else:
             q = array(fin.variables[quantityName], Float)
             self.quantityCache[quantityName] = q
         fin.close()
     return q
Exemplo n.º 52
0
 def getQuantityPoints(self, quantityName, dynamic=False):
     try:
         if dynamic:
             q = self.quantityCache[quantityName][self.vis_frame]
         else:
             q = self.quantityCache[quantityName]
     except KeyError:
         fin = NetCDFFile(self.vis_source, 'r')
         if dynamic:
             if quantityName not in self.quantityCache:
                 self.quantityCache[quantityName] = {}
             q = array(fin.variables[quantityName][self.vis_frame], Float)
             self.quantityCache[quantityName][self.vis_frame] = q
         else:
             q = array(fin.variables[quantityName], Float)
             self.quantityCache[quantityName] = q
         fin.close()
     return q
Exemplo n.º 53
0
    def test_sync(self):
        """test_sync - Test info stored at each timestep is as expected (incl initial condition)
        """

        import time, os

        self.domain.set_name('synctest')
        self.domain.format = 'sww'
        self.domain.smooth = False
        self.domain.store = True

        self.domain.tight_slope_limiters = True
        self.domain.use_centroid_velocities = True        
        
        # In this case tight_slope_limiters as default
        # in conjunction with protection
        # against isolated degenerate timesteps works.
        #self.domain.tight_slope_limiters = 1
        #self.domain.protect_against_isolated_degenerate_timesteps = True

        #print 'tight_sl', self.domain.tight_slope_limiters
        

        #Evolution
        for t in self.domain.evolve(yieldstep = 1.0, finaltime = 4.0):
            
            #########self.domain.write_time(track_speeds=True)
            stage = self.domain.quantities['stage'].vertex_values

            #Get NetCDF
            fid = NetCDFFile(self.domain.writer.filename, netcdf_mode_r)
            stage_file = fid.variables['stage']
            
            if t == 0.0:
                assert num.allclose(stage, self.initial_stage, rtol=1.0e-5, atol=1.0e-5)
                assert num.allclose(stage_file[:], stage.flatten(),rtol=1.0e-5, atol=1.0e-5)
            else:
                assert not num.allclose(stage, self.initial_stage, rtol=1.0e-5, atol=1.0e-5)
                assert not num.allclose(stage_file[:], stage.flatten(), rtol=1.0e-5, atol=1.0e-5)

            fid.close()

        os.remove(self.domain.writer.filename)
Exemplo n.º 54
0
 def test_urs_ungridded2sww_mint_maxtII (self):
     
     #Zone:   50    
     #Easting:  240992.578  Northing: 7620442.472 
     #Latitude:   -21  30 ' 0.00000 ''  Longitude: 114  30 ' 0.00000 '' 
     lat_long = [[-21.5,114.5],[-21,114.5],[-21,115]]
     time_step_count = 6
     time_step = 100
     tide = 9000000
     base_name, files = self.write_mux(lat_long,
                                       time_step_count, time_step)
     urs_ungridded2sww(base_name, mean_stage=tide, origin =(50,23432,4343),
                       mint=0, maxt=100000)
     
     # now I want to check the sww file ...
     sww_file = base_name + '.sww'
     
     #Let's interigate the sww file
     # Note, the sww info is not gridded.  It is point data.
     fid = NetCDFFile(sww_file)
     
     # Make x and y absolute
     geo_reference = Geo_reference(NetCDFObject=fid)
     points = geo_reference.get_absolute(map(None, fid.variables['x'][:],
                                             fid.variables['y'][:]))
     points = ensure_numeric(points)
     x = points[:,0]
     
     #Check the time vector
     times = fid.variables['time'][:]
     
     times_actual = [0,100,200,300,400,500]
     assert num.allclose(ensure_numeric(times),
                         ensure_numeric(times_actual))
     
     #Check first value
     stage = fid.variables['stage'][:]
     assert num.allclose(stage[0], x +tide)
     
     fid.close()
     self.delete_mux(files)
     os.remove(sww_file)