Exemplo n.º 1
0
    def test_slide_tsunami_domain(self):

        if anuga_installed:
            pass
        else:
            print 'Note: test_slide_tsunami_domain not tested as ANUGA '\
                'is not installed'
            return
        length = 600.0
        dep = 150.0
        th = 9.0
        thk = 15.0
        wid = 340.0
        kappa = 3.0
        kappad = 0.8
        x0 = 100000.
        y0 = x0
        
        from anuga.pmesh.mesh_interface import create_mesh_from_regions
        polygon = [[0,0],[200000,0],[200000,200000],[0,200000]]
        create_mesh_from_regions(polygon,
                                 {'e0': [0], 'e1': [1], 'e2': [2], 'e3': [3]},
                                 maximum_triangle_area=5000000000,
                                 filename='test.msh',
                                 verbose = False)

        domain = Domain('test.msh', use_cache = True, verbose = False)

        slide = slide_tsunami(length, dep, th, x0, y0, \
                              wid, thk, kappa, kappad, \
                              domain=domain,verbose=False)

        domain.set_quantity('stage', slide)
        stage = domain.get_quantity('stage')
        w = stage.get_values()

##        check = [[-0.0 -0.0 -0.0],
##                 [-.189709745 -517.877716 -0.0],
##                 [-0.0 -0.0 -2.7695931e-08],
##                 [-0.0 -2.7695931e-08 -1.897097e-01]
##                 [-0.0 -517.877716 -0.0],
##                 [-0.0 -0.0 -0.0],
##                 [-0.0 -0.0 -0.0],
##                 [-0.0 -0.0 -0.0]]

        assert num.allclose(num.min(w), -517.877771593)
        assert num.allclose(num.max(w), 0.0)
        assert num.allclose(slide.a3D, 518.38797486)
Exemplo n.º 2
0
    def test_slide_tsunami_domain(self):

        length = 600.0
        dep = 150.0
        th = 9.0
        thk = 15.0
        wid = 340.0
        kappa = 3.0
        kappad = 0.8
        x0 = 100000.
        y0 = x0

        from anuga.pmesh.mesh_interface import create_mesh_from_regions
        polygon = [[0, 0], [200000, 0], [200000, 200000], [0, 200000]]
        create_mesh_from_regions(polygon, {
            'e0': [0],
            'e1': [1],
            'e2': [2],
            'e3': [3]
        },
                                 maximum_triangle_area=5000000000,
                                 filename='test.msh',
                                 verbose=False)

        domain = Domain('test.msh', use_cache=True, verbose=False)

        slide = slide_tsunami(length, dep, th, x0, y0, \
                              wid, thk, kappa, kappad, \
                              domain=domain,verbose=False)

        domain.set_quantity('stage', slide)
        stage = domain.get_quantity('stage')
        w = stage.get_values()

        ##        check = [[-0.0 -0.0 -0.0],
        ##                 [-.189709745 -517.877716 -0.0],
        ##                 [-0.0 -0.0 -2.7695931e-08],
        ##                 [-0.0 -2.7695931e-08 -1.897097e-01]
        ##                 [-0.0 -517.877716 -0.0],
        ##                 [-0.0 -0.0 -0.0],
        ##                 [-0.0 -0.0 -0.0],
        ##                 [-0.0 -0.0 -0.0]]

        assert num.allclose(num.min(w), -517.877771593)
        assert num.allclose(num.max(w), 0.0)
        assert num.allclose(slide.a3D, 518.38797486)
Exemplo n.º 3
0
    def test_runup_sinusoid(self):
        """ Run a version of the validation test runup_sinusoid
        to ensure limiting solution has small velocity
        """

        points, vertices, boundary = anuga.rectangular_cross(20,20, len1=1., len2=1.)


        domain=Domain(points,vertices,boundary)    # Create Domain
        domain.set_flow_algorithm('DE0')
        
        domain.set_name('runup_sinusoid_v2')                         # Output to file runup.sww
        domain.set_datadir('.')                          # Use current folder
        domain.set_quantities_to_be_stored({'stage': 2, 'xmomentum': 2, 'ymomentum': 2, 'elevation': 1})
        #domain.set_store_vertices_uniquely(True)
        #------------------
        # Define topography
        #------------------
        scale_me=1.0

        def topography(x,y):
            return (-x/2.0 +0.05*num.sin((x+y)*50.0))*scale_me

        def stagefun(x,y):
            stge=-0.2*scale_me #+0.01*(x>0.9)
            return stge

        domain.set_quantity('elevation',topography)     # Use function for elevation
        domain.get_quantity('elevation').smooth_vertex_values()
        domain.set_quantity('friction',0.03)            # Constant friction


        domain.set_quantity('stage', stagefun)             # Constant negative initial stage
        domain.get_quantity('stage').smooth_vertex_values()


        #--------------------------
        # Setup boundary conditions
        #--------------------------
        Br=anuga.Reflective_boundary(domain)                 # Solid reflective wall
        Bd=anuga.Dirichlet_boundary([-0.1*scale_me,0.,0.])   # Constant boundary values -- not used in this example

        #----------------------------------------------
        # Associate boundary tags with boundary objects
        #----------------------------------------------
        domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom':Br})

        #------------------------------
        #Evolve the system through time
        #------------------------------

        for t in domain.evolve(yieldstep=7.0,finaltime=7.0):
            #print domain.timestepping_statistics()
            xx = domain.quantities['xmomentum'].centroid_values
            yy = domain.quantities['ymomentum'].centroid_values
            dd = domain.quantities['stage'].centroid_values - domain.quantities['elevation'].centroid_values
            #dd_raw=1.0*dd
            dd = (dd)*(dd>1.0e-03)+1.0e-03
            vv = ( (xx/dd)**2 + (yy/dd)**2)**0.5
            vv = vv*(dd>1.0e-03)
            #print 'Peak velocity is: ', vv.max(), vv.argmax()
            #print 'Volume is', sum(dd_raw*domain.areas)


        #print vv.max()

        assert num.all(vv<1.01e-01)
Exemplo n.º 4
0
        'ymomentum': 2,
        'elevation': 1
    })
    domain.set_flow_algorithm(alg)

    #------------------
    # Define topography
    #------------------
    def topography(x, y):
        return -x / 2  #Linear bed slope

    def stagefun(x, y):
        return -0.45  #Stage

    domain.set_quantity('elevation', topography)  # Use function for elevation
    domain.get_quantity('elevation').smooth_vertex_values(
    )  # Steve's fix -- without this, substantial artificial velcities are generated everywhere in the domain. With this fix, there are artificial velocities near the coast, but not elsewhere.
    domain.set_quantity('friction', 0.0)  # Constant friction
    domain.set_quantity('stage', stagefun)  # Constant negative initial stage
else:
    domain = None

#--------------------------
# create Parallel Domain
#--------------------------
domain = distribute(domain)

# Setup boundary conditions
#--------------------------
Br = anuga.Reflective_boundary(domain)  # Solid reflective wall
Bt = anuga.Transmissive_boundary(
    domain)  # Continue all values of boundary -- not used in this example
#------------------------------------------------------------------------------
# Evolve system through time
#------------------------------------------------------------------------------

#from anuga.operators.set_elevation_operators import Circular_set_elevation_operator

#op1 = Circular_set_elevation_operator(domain, elevation=pole, radius=0.5, center = (12.0,3.0))


dam_break = False

for t in domain.evolve(yieldstep=0.1, finaltime=40.0):
    domain.print_timestepping_statistics()
    domain.print_operator_timestepping_statistics()

    if t >= 10 and not dam_break:
        print 'changing elevation'

        stage_c = domain.get_quantity('stage').centroid_values
        elev_c =  domain.get_quantity('elevation').centroid_values
        height_c = stage_c - elev_c
        domain.set_quantity('elevation', topography_dam_break)
        stage_c[:] = elev_c + height_c

        dam_break = True





#------------------------------------------------------------------------------
polygon1 = [ [10.0, 0.0], [11.0, 0.0], [11.0, 5.0], [10.0, 5.0] ]
polygon2 = [ [12.0, 2.0], [13.0, 2.0], [13.0, 3.0], [12.0, 3.0] ]

from anuga.operators.rate_operators import Rate_operator

op1 = Rate_operator(domain, rate=lambda t: 10.0 if (t>=0.0) else 0.0, polygon=polygon2)
op2 = Rate_operator(domain, rate=lambda t: 10.0 if (t>=0.0) else 0.0, radius=0.5, center=(10.0, 3.0))


domain.set_starttime(-0.1)
for t in domain.evolve(yieldstep=0.01, finaltime=0.0):
    domain.print_timestepping_statistics()
    domain.print_operator_timestepping_statistics()

    stage = domain.get_quantity('stage')
    elev  = domain.get_quantity('elevation')
    height = stage - elev

    print 'integral = ', height.get_integral()


for t in domain.evolve(yieldstep=0.1, duration=5.0):

    domain.print_timestepping_statistics()
    domain.print_operator_timestepping_statistics()

    stage = domain.get_quantity('stage')
    elev  = domain.get_quantity('elevation')
    height = stage - elev
Exemplo n.º 7
0
    domain.set_datadir(".")  # Use current folder
    domain.set_quantities_to_be_stored({"stage": 2, "xmomentum": 2, "ymomentum": 2, "elevation": 1})
    domain.set_flow_algorithm(alg)

    # ------------------
    # Define topography
    # ------------------
    def topography(x, y):
        return -x / 2  # Linear bed slope

    def stagefun(x, y):
        return -0.45  # Stage

    domain.set_quantity("elevation", topography)  # Use function for elevation
    domain.get_quantity(
        "elevation"
    ).smooth_vertex_values()  # Steve's fix -- without this, substantial artificial velcities are generated everywhere in the domain. With this fix, there are artificial velocities near the coast, but not elsewhere.
    domain.set_quantity("friction", 0.0)  # Constant friction
    domain.set_quantity("stage", stagefun)  # Constant negative initial stage
else:
    domain = None

# --------------------------
# create Parallel Domain
# --------------------------
domain = distribute(domain)

# Setup boundary conditions
# --------------------------
Br = anuga.Reflective_boundary(domain)  # Solid reflective wall
Bt = anuga.Transmissive_boundary(domain)  # Continue all values of boundary -- not used in this example
Exemplo n.º 8
0
Bi = Dirichlet_boundary([0.4, 0, 0])  # Inflow
Br = Reflective_boundary(domain)  # Solid reflective wall
Bo = Dirichlet_boundary([-5, 0, 0])  # Outflow

domain.set_boundary({'left': Bi, 'right': Bo, 'top': Br, 'bottom': Br})

#------------------------------------------------------------------------------
# Evolve system through time
#------------------------------------------------------------------------------

#from anuga.operators.set_elevation_operators import Circular_set_elevation_operator

#op1 = Circular_set_elevation_operator(domain, elevation=pole, radius=0.5, center = (12.0,3.0))

dam_break = False

for t in domain.evolve(yieldstep=0.1, finaltime=40.0):
    domain.print_timestepping_statistics()
    domain.print_operator_timestepping_statistics()

    if t >= 10 and not dam_break:
        print 'changing elevation'

        stage_c = domain.get_quantity('stage').centroid_values
        elev_c = domain.get_quantity('elevation').centroid_values
        height_c = stage_c - elev_c
        domain.set_quantity('elevation', topography_dam_break)
        stage_c[:] = elev_c + height_c

        dam_break = True
    def parallel_time_varying_file_boundary_sts(self):
        """ parallel_test_time_varying_file_boundary_sts_sequential(self):
            Read correct points from ordering file and apply sts to boundary. 
            The boundary is time varying. Compares sequential result with 
            distributed result found using anuga_parallel
        """

        #------------------------------------------------------------
        # Define test variables
        #------------------------------------------------------------
        lat_long_points = [[6.01, 97.0], [6.02, 97.0], [6.05, 96.9],
                           [6.0, 97.0]]
        bounding_polygon = [[6.0, 97.0], [6.01, 97.0], [6.02, 97.0],
                            [6.02, 97.02], [6.00, 97.02]]
        tide = 3.0
        time_step_count = 65
        time_step = 2
        n = len(lat_long_points)
        first_tstep = num.ones(n, num.int)
        last_tstep = (time_step_count) * num.ones(n, num.int)
        finaltime = num.float(time_step * (time_step_count - 1))
        yieldstep = num.float(time_step)
        gauge_depth = 20 * num.ones(n, num.float)
        ha = 2 * num.ones((n, time_step_count), num.float)
        ua = 10 * num.ones((n, time_step_count), num.float)
        va = -10 * num.ones((n, time_step_count), num.float)

        times = num.arange(0, time_step_count * time_step, time_step)
        for i in range(n):
            #ha[i]+=num.sin(times)
            ha[i] += times / finaltime

        #------------------------------------------------------------
        # Write mux data to file then convert to sts format
        #------------------------------------------------------------
        sts_file = "test"
        if myid == 0:
            base_name, files = self.write_mux2(lat_long_points,
                                               time_step_count,
                                               time_step,
                                               first_tstep,
                                               last_tstep,
                                               depth=gauge_depth,
                                               ha=ha,
                                               ua=ua,
                                               va=va)
            # base name will not exist, but 3 other files are created

            # Write order file
            file_handle, order_base_name = tempfile.mkstemp("")
            os.close(file_handle)
            os.remove(order_base_name)
            d = ","
            order_file = order_base_name + 'order.txt'
            fid = open(order_file, 'w')

            # Write Header
            header = 'index, longitude, latitude\n'
            fid.write(header)
            indices = [3, 0, 1]
            for i in indices:
                line=str(i)+d+str(lat_long_points[i][1])+d+\
                    str(lat_long_points[i][0])+"\n"
                fid.write(line)
            fid.close()

            urs2sts(base_name,
                    basename_out=sts_file,
                    ordering_filename=order_file,
                    mean_stage=tide,
                    verbose=verbose)
            self.delete_mux(files)

            assert (os.access(sts_file + '.sts', os.F_OK))

            os.remove(order_file)

        barrier()
        #------------------------------------------------------------
        # Define boundary_polygon on each processor. This polygon defines the
        # urs boundary and lies on a portion of the bounding_polygon
        #------------------------------------------------------------
        boundary_polygon = create_sts_boundary(sts_file)

        # Append the remaining part of the boundary polygon to be defined by
        # the user
        bounding_polygon_utm = []
        for point in bounding_polygon:
            zone, easting, northing = redfearn(point[0], point[1])
            bounding_polygon_utm.append([easting, northing])

        boundary_polygon.append(bounding_polygon_utm[3])
        boundary_polygon.append(bounding_polygon_utm[4])

        assert num.allclose(bounding_polygon_utm, boundary_polygon)

        extent_res = 10000
        meshname = 'urs_test_mesh' + '.tsh'
        interior_regions = None
        boundary_tags = {'ocean': [0, 1], 'otherocean': [2, 3, 4]}

        #------------------------------------------------------------
        # Create mesh on the master processor and store in file. This file
        # is read in by each slave processor when needed
        #------------------------------------------------------------
        if myid == 0:
            create_mesh_from_regions(boundary_polygon,
                                     boundary_tags=boundary_tags,
                                     maximum_triangle_area=extent_res,
                                     filename=meshname,
                                     interior_regions=interior_regions,
                                     verbose=verbose)

            # barrier()
            domain_fbound = Domain(meshname)
            domain_fbound.set_quantities_to_be_stored(None)
            domain_fbound.set_quantity('stage', tide)
            # print domain_fbound.mesh.get_boundary_polygon()
        else:
            domain_fbound = None

        barrier()
        if (verbose and myid == 0):
            print 'DISTRIBUTING PARALLEL DOMAIN'
        domain_fbound = distribute(domain_fbound)

        #--------------------------------------------------------------------
        # Find which sub_domain in which the interpolation points are located
        #
        # Sometimes the interpolation points sit exactly
        # between two centroids, so in the parallel run we
        # reset the interpolation points to the centroids
        # found in the sequential run
        #--------------------------------------------------------------------
        interpolation_points = [[279000, 664000], [280250, 664130],
                                [279280, 665400], [280500, 665000]]

        interpolation_points = num.array(interpolation_points)

        #if myid==0:
        #    import pylab as P
        #    boundary_polygon=num.array(boundary_polygon)
        #    P.plot(boundary_polygon[:,0],boundary_polygon[:,1])
        #    P.plot(interpolation_points[:,0],interpolation_points[:,1],'ko')
        #    P.show()

        fbound_gauge_values = []
        fbound_proc_tri_ids = []
        for i, point in enumerate(interpolation_points):
            fbound_gauge_values.append([])  # Empty list for timeseries

            try:
                k = domain_fbound.get_triangle_containing_point(point)
                if domain_fbound.tri_full_flag[k] == 1:
                    fbound_proc_tri_ids.append(k)
                else:
                    fbound_proc_tri_ids.append(-1)
            except:
                fbound_proc_tri_ids.append(-2)

        if verbose: print 'P%d has points = %s' % (myid, fbound_proc_tri_ids)

        #------------------------------------------------------------
        # Set boundary conditions
        #------------------------------------------------------------
        Bf = File_boundary(sts_file + '.sts',
                           domain_fbound,
                           boundary_polygon=boundary_polygon)
        Br = Reflective_boundary(domain_fbound)

        domain_fbound.set_boundary({'ocean': Bf, 'otherocean': Br})

        #------------------------------------------------------------
        # Evolve the domain on each processor
        #------------------------------------------------------------
        for i, t in enumerate(
                domain_fbound.evolve(yieldstep=yieldstep,
                                     finaltime=finaltime,
                                     skip_initial_step=False)):

            stage = domain_fbound.get_quantity('stage')
            for i in range(4):
                if fbound_proc_tri_ids[i] > -1:
                    fbound_gauge_values[i].append(
                        stage.centroid_values[fbound_proc_tri_ids[i]])

        #------------------------------------------------------------
        # Create domain to be run sequntially on each processor
        #------------------------------------------------------------
        domain_drchlt = Domain(meshname)
        domain_drchlt.set_quantities_to_be_stored(None)
        domain_drchlt.set_starttime(time_step)
        domain_drchlt.set_quantity('stage', tide)
        Br = Reflective_boundary(domain_drchlt)
        #Bd = Dirichlet_boundary([2.0+tide,220+10*tide,-220-10*tide])
        Bd = Time_boundary(
            domain=domain_drchlt,
            function=lambda t: [
                2.0 + t / finaltime + tide, 220. + 10. * tide + 10. * t /
                finaltime, -220. - 10. * tide - 10. * t / finaltime
            ])
        #Bd = Time_boundary(domain=domain_drchlt,function=lambda t: [2.0+num.sin(t)+tide,10.*(2+20.+num.sin(t)+tide),-10.*(2+20.+num.sin(t)+tide)])
        domain_drchlt.set_boundary({'ocean': Bd, 'otherocean': Br})

        drchlt_gauge_values = []
        drchlt_proc_tri_ids = []
        for i, point in enumerate(interpolation_points):
            drchlt_gauge_values.append([])  # Empty list for timeseries

            try:
                k = domain_drchlt.get_triangle_containing_point(point)
                if domain_drchlt.tri_full_flag[k] == 1:
                    drchlt_proc_tri_ids.append(k)
                else:
                    drchlt_proc_tri_ids.append(-1)
            except:
                drchlt_proc_tri_ids.append(-2)

        if verbose: print 'P%d has points = %s' % (myid, drchlt_proc_tri_ids)

        #------------------------------------------------------------
        # Evolve entire domain on each processor
        #------------------------------------------------------------
        for i, t in enumerate(
                domain_drchlt.evolve(yieldstep=yieldstep,
                                     finaltime=finaltime,
                                     skip_initial_step=False)):

            stage = domain_drchlt.get_quantity('stage')
            for i in range(4):
                drchlt_gauge_values[i].append(
                    stage.centroid_values[drchlt_proc_tri_ids[i]])

        #------------------------------------------------------------
        # Compare sequential values with parallel values
        #------------------------------------------------------------
        barrier()
        success = True
        for i in range(4):
            if fbound_proc_tri_ids[i] > -1:
                fbound_gauge_values[i] = num.array(fbound_gauge_values[i])
                drchlt_gauge_values[i] = num.array(drchlt_gauge_values[i])
                #print i,fbound_gauge_values[i][4]
                #print i,drchlt_gauge_values[i][4]
                success = success and num.allclose(fbound_gauge_values[i],
                                                   drchlt_gauge_values[i])
                assert success  #, (fbound_gauge_values[i]-drchlt_gauge_values[i])

        #assert_(success)

        if not sys.platform == 'win32':
            if myid == 0: os.remove(sts_file + '.sts')

        if myid == 0: os.remove(meshname)
    def parallel_time_varying_file_boundary_sts(self):
        """ parallel_test_time_varying_file_boundary_sts_sequential(self):
            Read correct points from ordering file and apply sts to boundary. 
            The boundary is time varying. Compares sequential result with 
            distributed result found using anuga_parallel
        """

        #------------------------------------------------------------
        # Define test variables
        #------------------------------------------------------------
        lat_long_points=[[6.01,97.0],[6.02,97.0],[6.05,96.9],[6.0,97.0]]
        bounding_polygon=[[6.0,97.0],[6.01,97.0],[6.02,97.0],
                          [6.02,97.02],[6.00,97.02]]
        tide = 3.0
        time_step_count = 65
        time_step = 2
        n=len(lat_long_points)
        first_tstep=num.ones(n,num.int)
        last_tstep=(time_step_count)*num.ones(n,num.int)
        finaltime=num.float(time_step*(time_step_count-1))
        yieldstep=num.float(time_step)
        gauge_depth=20*num.ones(n,num.float)
        ha=2*num.ones((n,time_step_count),num.float)
        ua=10*num.ones((n,time_step_count),num.float)
        va=-10*num.ones((n,time_step_count),num.float)

        times=num.arange(0, time_step_count*time_step, time_step)
        for i in range(n):
            #ha[i]+=num.sin(times)
            ha[i]+=times/finaltime

        #------------------------------------------------------------
        # Write mux data to file then convert to sts format
        #------------------------------------------------------------
        sts_file="test"
        if myid==0:
            base_name, files = self.write_mux2(lat_long_points,
                                               time_step_count,
                                               time_step,
                                               first_tstep,
                                               last_tstep,
                                               depth=gauge_depth,
                                               ha=ha,
                                               ua=ua,
                                               va=va)
            # base name will not exist, but 3 other files are created

            # Write order file
            file_handle, order_base_name = tempfile.mkstemp("")
            os.close(file_handle)
            os.remove(order_base_name)
            d=","
            order_file=order_base_name+'order.txt'
            fid=open(order_file,'w')
        
            # Write Header
            header='index, longitude, latitude\n'
            fid.write(header)
            indices=[3,0,1]
            for i in indices:
                line=str(i)+d+str(lat_long_points[i][1])+d+\
                    str(lat_long_points[i][0])+"\n"
                fid.write(line)
            fid.close()

            urs2sts(base_name,
                    basename_out=sts_file,
                    ordering_filename=order_file,
                    mean_stage=tide,
                    verbose=verbose)
            self.delete_mux(files)

            assert(os.access(sts_file+'.sts', os.F_OK))

            os.remove(order_file)

        barrier()
        #------------------------------------------------------------
        # Define boundary_polygon on each processor. This polygon defines the
        # urs boundary and lies on a portion of the bounding_polygon
        #------------------------------------------------------------
        boundary_polygon = create_sts_boundary(sts_file)

        # Append the remaining part of the boundary polygon to be defined by
        # the user
        bounding_polygon_utm=[]
        for point in bounding_polygon:
            zone,easting,northing=redfearn(point[0],point[1])
            bounding_polygon_utm.append([easting,northing])

        boundary_polygon.append(bounding_polygon_utm[3])
        boundary_polygon.append(bounding_polygon_utm[4])


        assert num.allclose(bounding_polygon_utm,boundary_polygon)

        extent_res=10000
        meshname = 'urs_test_mesh' + '.tsh'
        interior_regions=None
        boundary_tags={'ocean': [0,1], 'otherocean': [2,3,4]}
        
        #------------------------------------------------------------
        # Create mesh on the master processor and store in file. This file
        # is read in by each slave processor when needed
        #------------------------------------------------------------
        if myid==0:
            create_mesh_from_regions(boundary_polygon,
                                     boundary_tags=boundary_tags,
                                     maximum_triangle_area=extent_res,
                                     filename=meshname,
                                     interior_regions=interior_regions,
                                     verbose=verbose)
        

            # barrier()
            domain_fbound = Domain(meshname)
            domain_fbound.set_quantities_to_be_stored(None)
            domain_fbound.set_quantity('stage', tide)
            # print domain_fbound.mesh.get_boundary_polygon()
        else:
            domain_fbound=None

        barrier()
        if ( verbose and myid == 0 ): 
            print 'DISTRIBUTING PARALLEL DOMAIN'
        domain_fbound = distribute(domain_fbound)

        #--------------------------------------------------------------------
        # Find which sub_domain in which the interpolation points are located 
        #
        # Sometimes the interpolation points sit exactly
        # between two centroids, so in the parallel run we
        # reset the interpolation points to the centroids
        # found in the sequential run
        #--------------------------------------------------------------------
        interpolation_points = [[279000,664000], [280250,664130], 
                                    [279280,665400], [280500,665000]]

        interpolation_points=num.array(interpolation_points)

        #if myid==0:
        #    import pylab as P
        #    boundary_polygon=num.array(boundary_polygon)
        #    P.plot(boundary_polygon[:,0],boundary_polygon[:,1])
        #    P.plot(interpolation_points[:,0],interpolation_points[:,1],'ko')
        #    P.show()

        fbound_gauge_values = []
        fbound_proc_tri_ids = []
        for i, point in enumerate(interpolation_points):
            fbound_gauge_values.append([]) # Empty list for timeseries

            try:
                k = domain_fbound.get_triangle_containing_point(point)
                if domain_fbound.tri_full_flag[k] == 1:
                    fbound_proc_tri_ids.append(k)
                else:
                    fbound_proc_tri_ids.append(-1)            
            except:
                fbound_proc_tri_ids.append(-2)


        if verbose: print 'P%d has points = %s' %(myid, fbound_proc_tri_ids)

        #------------------------------------------------------------
        # Set boundary conditions
        #------------------------------------------------------------
        Bf = File_boundary(sts_file+'.sts',
                           domain_fbound,
                           boundary_polygon=boundary_polygon)
        Br = Reflective_boundary(domain_fbound)
    
        domain_fbound.set_boundary({'ocean': Bf,'otherocean': Br})

        #------------------------------------------------------------
        # Evolve the domain on each processor
        #------------------------------------------------------------  
        for i, t in enumerate(domain_fbound.evolve(yieldstep=yieldstep,
                                                   finaltime=finaltime, 
                                                   skip_initial_step = False)):

            stage = domain_fbound.get_quantity('stage')
            for i in range(4):
                if fbound_proc_tri_ids[i] > -1:
                    fbound_gauge_values[i].append(stage.centroid_values[fbound_proc_tri_ids[i]])
        
        #------------------------------------------------------------
        # Create domain to be run sequntially on each processor
        #------------------------------------------------------------
        domain_drchlt = Domain(meshname)
        domain_drchlt.set_quantities_to_be_stored(None)
        domain_drchlt.set_starttime(time_step)
        domain_drchlt.set_quantity('stage', tide)
        Br = Reflective_boundary(domain_drchlt)
        #Bd = Dirichlet_boundary([2.0+tide,220+10*tide,-220-10*tide])
        Bd = Time_boundary(domain=domain_drchlt, function=lambda t: [2.0+t/finaltime+tide,220.+10.*tide+10.*t/finaltime,-220.-10.*tide-10.*t/finaltime])
        #Bd = Time_boundary(domain=domain_drchlt,function=lambda t: [2.0+num.sin(t)+tide,10.*(2+20.+num.sin(t)+tide),-10.*(2+20.+num.sin(t)+tide)])
        domain_drchlt.set_boundary({'ocean': Bd,'otherocean': Br})
       
        drchlt_gauge_values = []
        drchlt_proc_tri_ids = []
        for i, point in enumerate(interpolation_points):
            drchlt_gauge_values.append([]) # Empty list for timeseries

            try:
                k = domain_drchlt.get_triangle_containing_point(point)
                if domain_drchlt.tri_full_flag[k] == 1:
                    drchlt_proc_tri_ids.append(k)
                else:
                    drchlt_proc_tri_ids.append(-1)            
            except:
                drchlt_proc_tri_ids.append(-2)


        if verbose: print 'P%d has points = %s' %(myid, drchlt_proc_tri_ids)

        #------------------------------------------------------------
        # Evolve entire domain on each processor
        #------------------------------------------------------------
        for i, t in enumerate(domain_drchlt.evolve(yieldstep=yieldstep,
                                                   finaltime=finaltime, 
                                                   skip_initial_step = False)):

            stage = domain_drchlt.get_quantity('stage')
            for i in range(4):
                drchlt_gauge_values[i].append(stage.centroid_values[drchlt_proc_tri_ids[i]])

        #------------------------------------------------------------
        # Compare sequential values with parallel values
        #------------------------------------------------------------
        barrier()
        success = True
        for i in range(4):
            if fbound_proc_tri_ids[i] > -1:
                fbound_gauge_values[i]=num.array(fbound_gauge_values[i])
                drchlt_gauge_values[i]=num.array(drchlt_gauge_values[i])
                #print i,fbound_gauge_values[i][4]
                #print i,drchlt_gauge_values[i][4]
                success = success and num.allclose(fbound_gauge_values[i], drchlt_gauge_values[i])
                assert success#, (fbound_gauge_values[i]-drchlt_gauge_values[i])

        #assert_(success)       

        if not sys.platform == 'win32':
            if myid==0: os.remove(sts_file+'.sts')
        
        if myid==0: os.remove(meshname)