Exemplo n.º 1
0
def test_model_add_layers():
    model = Model()
    model.add(Dense(10))
    model.add(Activation('relu'))
    model.add(Dense(1))

    assert len(model.layers) == 3
    assert type(model.layers[0]) == Dense
    assert type(model.layers[1]) == Activation
Exemplo n.º 2
0
def test_relu_output_size():
    x = torch.randn(2, 2)
    l1 = Dense(3, input_dim=2)
    l2 = Activation('relu')

    y = l1.forward(x)
    y = l2.forward(y)

    assert y.size() == (2, 3)
    assert (y.data >= 0).sum() == 6
Exemplo n.º 3
0
def test_model_fit_unknown_loss():
    x = torch.rand(20, 4)
    y = torch.rand(20, 10)

    model = Model(Dense(10, input_dim=x.size()[-1]), Activation('relu'),
                  Dense(5), Activation('relu'), Dense(y.size()[-1]))

    assert len(model.params) > 0

    with pytest.raises(Exception) as e:
        model.fit(x, y, loss='UNKNOWN_TEST', batch_size=10, n_epoch=5)
Exemplo n.º 4
0
def test_model_adam_optmizer():
    X = np.random.normal(size=[10, 10]).astype('float32')
    y = np.random.normal(size=[10, 1]).astype('float32')

    model = Model(Dense(10, input_dim=X.shape[-1]), Activation('relu'),
                  Dense(5), Activation('relu'), Dense(y.shape[-1]))
    history = model.fit(X, y=y, loss='mse', optimizer='adam', epochs=10)

    y_pred = model.predict(X)
    assert type(y_pred) is np.ndarray

    assert len(history['loss']) == 10
    assert all(type(v) is float for v in history['loss'])
    assert history['loss'] == sorted(history['loss'], reverse=True)
Exemplo n.º 5
0
def test_model_simple_fit():
    x = torch.rand(20, 4)
    y = torch.rand(20, 10)

    model = Model(Dense(10, input_dim=x.size()[-1]), Activation('relu'),
                  Dense(5), Activation('relu'), Dense(y.size()[-1]))

    opt = SGD(lr=0.01, momentum=0.9)
    loss = mean_squared_error
    history = model.fit(x, y, loss=loss, optimizer='sgd', epochs=10, verbose=1)

    assert len(history['loss']) == 10
    assert all(type(v) is float for v in history['loss'])
    assert history['loss'] == sorted(history['loss'], reverse=True)
Exemplo n.º 6
0
def test_model_conv2d():
    X = np.random.normal(size=[10, 3, 10, 10]).astype('float32')
    y = np.random.normal(size=[10, 1]).astype('float32')

    model = Model(Conv2D(4, kernel_size=(3, 3), input_dim=X.shape[1:]),
                  Flatten(), Dense(5), Activation('relu'), Dense(y.shape[-1]))
    history = model.fit(X, y=y, loss='mse', val_data=(X, y))

    y_pred = model.predict(X)
    assert type(y_pred) is np.ndarray

    assert 'loss' in history
    assert 'val_loss' in history
    assert all(type(v) is float for v in history['loss'])
    assert all(type(v) is float for v in history['val_loss'])
    assert history['loss'] == sorted(history['loss'], reverse=True)
Exemplo n.º 7
0
def test_model_validation_split():
    X = np.random.normal(size=[10, 10]).astype('float32')
    y = np.random.normal(size=[10, 1]).astype('float32')

    model = Model(Dense(10, input_dim=X.shape[-1]), Activation('relu'),
                  Dense(5), Activation('relu'), Dense(y.shape[-1]))
    history = model.fit(X, y=y, loss='mse', val_split=0.1)

    y_pred = model.predict(X)
    assert type(y_pred) is np.ndarray

    assert 'loss' in history
    assert 'val_loss' in history
    assert all(type(v) is float for v in history['loss'])
    assert all(type(v) is float for v in history['val_loss'])
    assert history['loss'] == sorted(history['loss'], reverse=True)
Exemplo n.º 8
0
def test_model_custom_loss():
    x = torch.rand(20, 4)
    y = torch.rand(20, 10)

    model = Model(Dense(10, input_dim=x.size()[-1]), Activation('relu'),
                  Dense(5), Activation('relu'), Dense(y.size()[-1]))

    opt = SGD(lr=0.01, momentum=0.9)

    def mae(y_true, y_pred):
        return torch.mean(torch.abs(y_true - y_pred))

    history = model.fit(x, y, loss=mae, optimizer=opt, epochs=10)
    assert len(history['loss']) == 10
    assert all(type(v) is float for v in history['loss'])
    assert history['loss'] == sorted(history['loss'], reverse=True)
Exemplo n.º 9
0
def test_initializer_glorot_uniform():
    X = Tensor([[10, 10, 10]])
    input_dim = X.size()[-1]
    dense = Dense(10, init='glorot_uniform', input_dim=input_dim)

    assert dense.params[0].max() <= math.sqrt(6 / (input_dim + 10))
    assert dense.params[1].max() <= math.sqrt(6 / (input_dim + 10))
    assert dense.params[0].min() >= -math.sqrt(6 / (input_dim + 10))
    assert dense.params[1].min() >= -math.sqrt(6 / (input_dim + 10))
Exemplo n.º 10
0
def test_model_recurrent_time_distributed():
    X = np.random.normal(size=[2, 3, 4]).astype('float32')
    y = np.random.normal(size=[2, 3, 10]).astype('float32')

    model = Model(
        Recurrent(units=2, length=3, input_dim=4),
        Activation('relu'),
        TimeDistributed(Dense(units=10)),
    )
    history = model.fit(X, y, loss='mse')
    y_pred = model.predict(X)
    assert history['loss'] == sorted(history['loss'], reverse=True)
Exemplo n.º 11
0
def test_dense_multiple_layers():
    x = torch.randn(2, 10)
    l1 = Dense(5, input_dim=10)
    l2 = Dense(3, input_dim=5)

    y = l1.forward(x)
    assert y.size() == (2, 5)

    y = l2.forward(y)
    assert y.size() == (2, 3)
Exemplo n.º 12
0
def test_model_forward():
    model = Model(Dense(10, input_dim=4), Dense(1), Dense(20))

    x = torch.randn(2, 4)
    y = model.forward(x)

    assert y.size() == (2, 20)

    model = Model(Dense(10, input_dim=4), Dense(1), Dense(20))

    x = torch.randn(2, 4)
    y = model.predict(x)

    assert y.size() == (2, 20)
Exemplo n.º 13
0
X = X / 127.0
X_test = X_test / 127.0
y = np.eye(y.max() + 1)[y]
y_test = np.eye(y_test.max() + 1)[y_test]
print(X.shape, X_test.shape)

X = X.astype('float32')
X_test = X_test.astype('float32')
y = y.astype('float32')
y_test = y_test.astype('float32')

model = Model(
    Conv2D(8, kernel_size=(3, 3), input_dim=X.shape[1:]),
    Flatten(),
    Activation('relu'),
    Dropout(0.5),
    Dense(100),
    Activation('relu'),
    Dropout(0.5),
    Dense(y_test.shape[-1]),
    Activation('softmax')
)

loss = 'categorical_crossentropy'
history = model.fit(X, y, loss=loss, val_data=(X_test, y_test))

y_pred = model.predict(X_test)
acc = metrics.accuracy_score(y_test.argmax(axis=1), y_pred.argmax(axis=1))
print('Classes:', y.shape[1])
print('Accuracy:', acc)
Exemplo n.º 14
0
def test_layer_get_params():
    l = Dense(3, input_dim=3)
    assert len(l.params) == 2

    l = Activation('relu')
    assert len(l.params) == 0
Exemplo n.º 15
0
def test_model_constructor_layers():
    model = Model(Dense(10), Activation('relu'), Dense(1))

    assert len(model.layers) == 3
    assert type(model.layers[0]) == Dense
    assert type(model.layers[1]) == Activation
Exemplo n.º 16
0
def test_dense_layer_forward():
    x = torch.randn(2, 10)
    l = Dense(5, input_dim=10)
    y = l.forward(x)

    assert y.size() == (2, 5)
Exemplo n.º 17
0
def test_dense_layer_output_dim():
    l = Dense(5, input_dim=10)

    assert l.output_dim == 5
Exemplo n.º 18
0
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import metrics

import numpy as np
from aorun.models import Model
from aorun.layers import Dense
from aorun.layers import Activation

X, y = datasets.load_digits(return_X_y=True)
X = X.astype('float32')
y = np.eye(y.max() + 1)[y].astype('float32')

X = StandardScaler().fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
print(X_train.shape, y_train.shape)

model = Model(Dense(100, input_dim=X_train.shape[-1]), Activation('relu'),
              Dense(100), Activation('relu'), Dense(y_test.shape[-1]),
              Activation('softmax'))

loss = 'categorical_crossentropy'
history = model.fit(X_train, y_train, loss=loss, val_split=0.1)

y_pred = model.predict(X_test)
acc = metrics.accuracy_score(y_test.argmax(axis=1), y_pred.argmax(axis=1))
print('Classes:', y.shape[1])
print('Accuracy:', acc)