Exemplo n.º 1
0
  def _check_fn_registration_multi_request(self, *args):
    """Check the function registration calls to the sdk_harness.

    Args:
     tuple of request_count, number of process_bundles per request and workers
     counts to process the request.
    """
    for (request_count, process_bundles_per_request) in args:
      requests = []
      process_bundle_descriptors = []

      for i in range(request_count):
        pbd = self._get_process_bundles(i, process_bundles_per_request)
        process_bundle_descriptors.extend(pbd)
        requests.append(
            beam_fn_api_pb2.InstructionRequest(
                instruction_id=str(i),
                register=beam_fn_api_pb2.RegisterRequest(
                    process_bundle_descriptor=process_bundle_descriptors)))

      test_controller = BeamFnControlServicer(requests)

      server = grpc.server(UnboundedThreadPoolExecutor())
      beam_fn_api_pb2_grpc.add_BeamFnControlServicer_to_server(
          test_controller, server)
      test_port = server.add_insecure_port("[::]:0")
      server.start()

      harness = sdk_worker.SdkHarness(
          "localhost:%s" % test_port, state_cache_size=100)
      harness.run()

      self.assertEqual(harness._bundle_processor_cache.fns,
                       {item.id: item
                        for item in process_bundle_descriptors})
Exemplo n.º 2
0
    def test_fn_registration(self):
        process_bundle_descriptors = [
            beam_fn_api_pb2.ProcessBundleDescriptor(
                id=str(100 + ix),
                transforms={
                    str(ix):
                    beam_runner_api_pb2.PTransform(unique_name=str(ix))
                }) for ix in range(4)
        ]

        test_controller = BeamFnControlServicer([
            beam_fn_api_pb2.InstructionRequest(
                register=beam_fn_api_pb2.RegisterRequest(
                    process_bundle_descriptor=process_bundle_descriptors))
        ])

        server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
        beam_fn_api_pb2.add_BeamFnControlServicer_to_server(
            test_controller, server)
        test_port = server.add_insecure_port("[::]:0")
        server.start()

        channel = grpc.insecure_channel("localhost:%s" % test_port)
        harness = sdk_worker.SdkHarness(channel)
        harness.run()
        self.assertEqual(
            harness.worker.fns,
            {item.id: item
             for item in process_bundle_descriptors})
Exemplo n.º 3
0
    def test_source_split(self):
        source = RangeSource(0, 100)
        expected_splits = list(source.split(30))

        worker = sdk_harness.SdkWorker(
            None, data_plane.GrpcClientDataChannelFactory())
        worker.register(
            beam_fn_api_pb2.RegisterRequest(process_bundle_descriptor=[
                beam_fn_api_pb2.ProcessBundleDescriptor(primitive_transform=[
                    beam_fn_api_pb2.PrimitiveTransform(
                        function_spec=sdk_harness.serialize_and_pack_py_fn(
                            SourceBundle(1.0, source, None, None),
                            sdk_harness.PYTHON_SOURCE_URN,
                            id="src"))
                ])
            ]))
        split_response = worker.initial_source_split(
            beam_fn_api_pb2.InitialSourceSplitRequest(
                desired_bundle_size_bytes=30, source_reference="src"))

        self.assertEqual(expected_splits, [
            sdk_harness.unpack_and_deserialize_py_fn(s.source)
            for s in split_response.splits
        ])

        self.assertEqual([s.weight for s in expected_splits],
                         [s.relative_size for s in split_response.splits])
Exemplo n.º 4
0
    def test_fn_registration(self):
        fns = [beam_fn_api_pb2.FunctionSpec(id=str(ix)) for ix in range(4)]

        process_bundle_descriptors = [
            beam_fn_api_pb2.ProcessBundleDescriptor(
                id=str(100 + ix),
                primitive_transform=[
                    beam_fn_api_pb2.PrimitiveTransform(function_spec=fn)
                ]) for ix, fn in enumerate(fns)
        ]

        test_controller = BeamFnControlServicer([
            beam_fn_api_pb2.InstructionRequest(
                register=beam_fn_api_pb2.RegisterRequest(
                    process_bundle_descriptor=process_bundle_descriptors))
        ])

        server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
        beam_fn_api_pb2.add_BeamFnControlServicer_to_server(
            test_controller, server)
        test_port = server.add_insecure_port("[::]:0")
        server.start()

        channel = grpc.insecure_channel("localhost:%s" % test_port)
        harness = sdk_worker.SdkHarness(channel)
        harness.run()
        self.assertEqual(
            harness.worker.fns,
            {item.id: item
             for item in fns + process_bundle_descriptors})
Exemplo n.º 5
0
  def process_bundle(self, inputs, expected_outputs):
    # Unique id for the instruction processing this bundle.
    BundleManager._uid_counter += 1
    process_bundle_id = 'bundle_%s' % BundleManager._uid_counter

    # Register the bundle descriptor, if needed.
    if self._registered:
      registration_future = None
    else:
      process_bundle_registration = beam_fn_api_pb2.InstructionRequest(
          register=beam_fn_api_pb2.RegisterRequest(
              process_bundle_descriptor=[self._bundle_descriptor]))
      registration_future = self._controller.control_handler.push(
          process_bundle_registration)
      self._registered = True

    # Write all the input data to the channel.
    for (transform_id, name), elements in inputs.items():
      data_out = self._controller.data_plane_handler.output_stream(
          process_bundle_id, beam_fn_api_pb2.Target(
              primitive_transform_reference=transform_id, name=name))
      for element_data in elements:
        data_out.write(element_data)
      data_out.close()

    # Actually start the bundle.
    if registration_future and registration_future.get().error:
      raise RuntimeError(registration_future.get().error)
    process_bundle = beam_fn_api_pb2.InstructionRequest(
        instruction_id=process_bundle_id,
        process_bundle=beam_fn_api_pb2.ProcessBundleRequest(
            process_bundle_descriptor_reference=self._bundle_descriptor.id))
    result_future = self._controller.control_handler.push(process_bundle)

    with ProgressRequester(
        self._controller, process_bundle_id, self._progress_frequency):
      # Gather all output data.
      expected_targets = [
          beam_fn_api_pb2.Target(primitive_transform_reference=transform_id,
                                 name=output_name)
          for (transform_id, output_name), _ in expected_outputs.items()]
      logging.debug('Gather all output data from %s.', expected_targets)
      for output in self._controller.data_plane_handler.input_elements(
          process_bundle_id,
          expected_targets,
          abort_callback=lambda: (result_future.is_done()
                                  and result_future.get().error)):
        target_tuple = (
            output.target.primitive_transform_reference, output.target.name)
        if target_tuple in expected_outputs:
          self._get_buffer(expected_outputs[target_tuple]).append(output.data)

      logging.debug('Wait for the bundle to finish.')
      result = result_future.get()

    if result.error:
      raise RuntimeError(result.error)
    return result
Exemplo n.º 6
0
 def _map_task_registration(self, map_task, state_handler,
                            data_operation_spec):
   input_data, side_input_data, runner_sinks, process_bundle_descriptor = (
       self._map_task_to_protos(map_task, data_operation_spec))
   # Side inputs will be accessed over the state API.
   for key, elements_data in side_input_data.items():
     state_key = beam_fn_api_pb2.StateKey.MultimapSideInput(key=key)
     state_handler.Clear(state_key)
     state_handler.Append(state_key, [elements_data])
   return beam_fn_api_pb2.InstructionRequest(
       instruction_id=self._next_uid(),
       register=beam_fn_api_pb2.RegisterRequest(
           process_bundle_descriptor=[process_bundle_descriptor])
       ), runner_sinks, input_data
Exemplo n.º 7
0
  def _register_bundle_descriptor(self):
    # type: () -> Optional[ControlFuture]
    if self._registered:
      registration_future = None
    else:
      assert self._worker_handler is not None
      process_bundle_registration = beam_fn_api_pb2.InstructionRequest(
          register=beam_fn_api_pb2.RegisterRequest(
              process_bundle_descriptor=[self._bundle_descriptor]))
      registration_future = self._worker_handler.control_conn.push(
          process_bundle_registration)
      self._registered = True

    return registration_future
Exemplo n.º 8
0
    def test_source_split_via_instruction(self):

        source = RangeSource(0, 100)
        expected_splits = list(source.split(30))

        test_controller = BeamFnControlServicer([
            beam_fn_api_pb2.InstructionRequest(
                instruction_id="register_request",
                register=beam_fn_api_pb2.RegisterRequest(
                    process_bundle_descriptor=[
                        beam_fn_api_pb2.ProcessBundleDescriptor(
                            primitive_transform=[
                                beam_fn_api_pb2.PrimitiveTransform(
                                    function_spec=sdk_harness.
                                    serialize_and_pack_py_fn(
                                        SourceBundle(1.0, source, None, None),
                                        sdk_harness.PYTHON_SOURCE_URN,
                                        id="src"))
                            ])
                    ])),
            beam_fn_api_pb2.InstructionRequest(
                instruction_id="split_request",
                initial_source_split=beam_fn_api_pb2.InitialSourceSplitRequest(
                    desired_bundle_size_bytes=30, source_reference="src"))
        ])

        server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
        beam_fn_api_pb2.add_BeamFnControlServicer_to_server(
            test_controller, server)
        test_port = server.add_insecure_port("[::]:0")
        server.start()

        channel = grpc.insecure_channel("localhost:%s" % test_port)
        harness = sdk_harness.SdkHarness(channel)
        harness.run()

        split_response = test_controller.responses[
            "split_request"].initial_source_split

        self.assertEqual(expected_splits, [
            sdk_harness.unpack_and_deserialize_py_fn(s.source)
            for s in split_response.splits
        ])

        self.assertEqual([s.weight for s in expected_splits],
                         [s.relative_size for s in split_response.splits])
Exemplo n.º 9
0
    def run_stage(self, controller, pipeline_components, stage, pcoll_buffers,
                  safe_coders):

        context = pipeline_context.PipelineContext(pipeline_components)
        data_operation_spec = controller.data_operation_spec()

        def extract_endpoints(stage):
            # Returns maps of transform names to PCollection identifiers.
            # Also mutates IO stages to point to the data data_operation_spec.
            data_input = {}
            data_side_input = {}
            data_output = {}
            for transform in stage.transforms:
                if transform.spec.urn in (bundle_processor.DATA_INPUT_URN,
                                          bundle_processor.DATA_OUTPUT_URN):
                    pcoll_id = transform.spec.payload
                    if transform.spec.urn == bundle_processor.DATA_INPUT_URN:
                        target = transform.unique_name, only_element(
                            transform.outputs)
                        data_input[target] = pcoll_id
                    elif transform.spec.urn == bundle_processor.DATA_OUTPUT_URN:
                        target = transform.unique_name, only_element(
                            transform.inputs)
                        data_output[target] = pcoll_id
                    else:
                        raise NotImplementedError
                    if data_operation_spec:
                        transform.spec.payload = data_operation_spec.SerializeToString(
                        )
                    else:
                        transform.spec.payload = ""
                elif transform.spec.urn == urns.PARDO_TRANSFORM:
                    payload = proto_utils.parse_Bytes(
                        transform.spec.payload,
                        beam_runner_api_pb2.ParDoPayload)
                    for tag, si in payload.side_inputs.items():
                        data_side_input[transform.unique_name, tag] = (
                            'materialize:' + transform.inputs[tag],
                            beam.pvalue.SideInputData.from_runner_api(
                                si, None))
            return data_input, data_side_input, data_output

        logging.info('Running %s', stage.name)
        logging.debug('       %s', stage)
        data_input, data_side_input, data_output = extract_endpoints(stage)

        process_bundle_descriptor = beam_fn_api_pb2.ProcessBundleDescriptor(
            id=self._next_uid(),
            transforms={
                transform.unique_name: transform
                for transform in stage.transforms
            },
            pcollections=dict(pipeline_components.pcollections.items()),
            coders=dict(pipeline_components.coders.items()),
            windowing_strategies=dict(
                pipeline_components.windowing_strategies.items()),
            environments=dict(pipeline_components.environments.items()))

        process_bundle_registration = beam_fn_api_pb2.InstructionRequest(
            instruction_id=self._next_uid(),
            register=beam_fn_api_pb2.RegisterRequest(
                process_bundle_descriptor=[process_bundle_descriptor]))

        process_bundle = beam_fn_api_pb2.InstructionRequest(
            instruction_id=self._next_uid(),
            process_bundle=beam_fn_api_pb2.ProcessBundleRequest(
                process_bundle_descriptor_reference=process_bundle_descriptor.
                id))

        # Write all the input data to the channel.
        for (transform_id, name), pcoll_id in data_input.items():
            data_out = controller.data_plane_handler.output_stream(
                process_bundle.instruction_id,
                beam_fn_api_pb2.Target(
                    primitive_transform_reference=transform_id, name=name))
            for element_data in pcoll_buffers[pcoll_id]:
                data_out.write(element_data)
            data_out.close()

        # Store the required side inputs into state.
        for (transform_id, tag), (pcoll_id, si) in data_side_input.items():
            elements_by_window = _WindowGroupingBuffer(si)
            for element_data in pcoll_buffers[pcoll_id]:
                elements_by_window.append(element_data)
            for window, elements_data in elements_by_window.items():
                state_key = beam_fn_api_pb2.StateKey(
                    multimap_side_input=beam_fn_api_pb2.StateKey.
                    MultimapSideInput(ptransform_id=transform_id,
                                      side_input_id=tag,
                                      window=window))
                controller.state_handler.blocking_append(
                    state_key, elements_data, process_bundle.instruction_id)

        # Register and start running the bundle.
        logging.debug('Register and start running the bundle')
        controller.control_handler.push(process_bundle_registration)
        controller.control_handler.push(process_bundle)

        # Wait for the bundle to finish.
        logging.debug('Wait for the bundle to finish.')
        while True:
            result = controller.control_handler.pull()
            if result and result.instruction_id == process_bundle.instruction_id:
                if result.error:
                    raise RuntimeError(result.error)
                break

        expected_targets = [
            beam_fn_api_pb2.Target(primitive_transform_reference=transform_id,
                                   name=output_name)
            for (transform_id, output_name), _ in data_output.items()
        ]

        # Gather all output data.
        logging.debug('Gather all output data from %s.', expected_targets)

        for output in controller.data_plane_handler.input_elements(
                process_bundle.instruction_id, expected_targets):
            target_tuple = (output.target.primitive_transform_reference,
                            output.target.name)
            if target_tuple in data_output:
                pcoll_id = data_output[target_tuple]
                if pcoll_id.startswith('materialize:'):
                    # Just store the data chunks for replay.
                    pcoll_buffers[pcoll_id].append(output.data)
                elif pcoll_id.startswith('group:'):
                    # This is a grouping write, create a grouping buffer if needed.
                    if pcoll_id not in pcoll_buffers:
                        original_gbk_transform = pcoll_id.split(':', 1)[1]
                        transform_proto = pipeline_components.transforms[
                            original_gbk_transform]
                        input_pcoll = only_element(
                            transform_proto.inputs.values())
                        output_pcoll = only_element(
                            transform_proto.outputs.values())
                        pre_gbk_coder = context.coders[
                            safe_coders[pipeline_components.
                                        pcollections[input_pcoll].coder_id]]
                        post_gbk_coder = context.coders[
                            safe_coders[pipeline_components.
                                        pcollections[output_pcoll].coder_id]]
                        windowing_strategy = context.windowing_strategies[
                            pipeline_components.pcollections[output_pcoll].
                            windowing_strategy_id]
                        pcoll_buffers[pcoll_id] = _GroupingBuffer(
                            pre_gbk_coder, post_gbk_coder, windowing_strategy)
                    pcoll_buffers[pcoll_id].append(output.data)
                else:
                    # These should be the only two identifiers we produce for now,
                    # but special side input writes may go here.
                    raise NotImplementedError(pcoll_id)
        return result
Exemplo n.º 10
0
    def _map_task_registration(self, map_task, state_handler,
                               data_operation_spec):
        input_data = {}
        runner_sinks = {}
        transforms = []
        transform_index_to_id = {}

        # Maps coders to new coder objects and references.
        coders = {}

        def coder_id(coder):
            if coder not in coders:
                coders[coder] = beam_fn_api_pb2.Coder(
                    function_spec=sdk_worker.pack_function_spec_data(
                        json.dumps(coder.as_cloud_object()),
                        sdk_worker.PYTHON_CODER_URN,
                        id=self._next_uid()))

            return coders[coder].function_spec.id

        def output_tags(op):
            return getattr(op, 'output_tags', ['out'])

        def as_target(op_input):
            input_op_index, input_output_index = op_input
            input_op = map_task[input_op_index][1]
            return {
                'ignored_input_tag':
                beam_fn_api_pb2.Target.List(target=[
                    beam_fn_api_pb2.Target(
                        primitive_transform_reference=transform_index_to_id[
                            input_op_index],
                        name=output_tags(input_op)[input_output_index])
                ])
            }

        def outputs(op):
            return {
                tag:
                beam_fn_api_pb2.PCollection(coder_reference=coder_id(coder))
                for tag, coder in zip(output_tags(op), op.output_coders)
            }

        for op_ix, (stage_name, operation) in enumerate(map_task):
            transform_id = transform_index_to_id[op_ix] = self._next_uid()
            if isinstance(operation, operation_specs.WorkerInMemoryWrite):
                # Write this data back to the runner.
                fn = beam_fn_api_pb2.FunctionSpec(
                    urn=sdk_worker.DATA_OUTPUT_URN, id=self._next_uid())
                if data_operation_spec:
                    fn.data.Pack(data_operation_spec)
                inputs = as_target(operation.input)
                side_inputs = {}
                runner_sinks[(transform_id, 'out')] = operation

            elif isinstance(operation, operation_specs.WorkerRead):
                # A Read is either translated to a direct injection of windowed values
                # into the sdk worker, or an injection of the source object into the
                # sdk worker as data followed by an SDF that reads that source.
                if (isinstance(operation.source.source,
                               maptask_executor_runner.InMemorySource)
                        and isinstance(
                            operation.source.source.default_output_coder(),
                            WindowedValueCoder)):
                    output_stream = create_OutputStream()
                    element_coder = (operation.source.source.
                                     default_output_coder().get_impl())
                    # Re-encode the elements in the nested context and
                    # concatenate them together
                    for element in operation.source.source.read(None):
                        element_coder.encode_to_stream(element, output_stream,
                                                       True)
                    target_name = self._next_uid()
                    input_data[(transform_id,
                                target_name)] = output_stream.get()
                    fn = beam_fn_api_pb2.FunctionSpec(
                        urn=sdk_worker.DATA_INPUT_URN, id=self._next_uid())
                    if data_operation_spec:
                        fn.data.Pack(data_operation_spec)
                    inputs = {target_name: beam_fn_api_pb2.Target.List()}
                    side_inputs = {}
                else:
                    # Read the source object from the runner.
                    source_coder = beam.coders.DillCoder()
                    input_transform_id = self._next_uid()
                    output_stream = create_OutputStream()
                    source_coder.get_impl().encode_to_stream(
                        GlobalWindows.windowed_value(operation.source),
                        output_stream, True)
                    target_name = self._next_uid()
                    input_data[(input_transform_id,
                                target_name)] = output_stream.get()
                    input_ptransform = beam_fn_api_pb2.PrimitiveTransform(
                        id=input_transform_id,
                        function_spec=beam_fn_api_pb2.FunctionSpec(
                            urn=sdk_worker.DATA_INPUT_URN,
                            id=self._next_uid()),
                        # TODO(robertwb): Possible name collision.
                        step_name=stage_name + '/inject_source',
                        inputs={target_name: beam_fn_api_pb2.Target.List()},
                        outputs={
                            'out':
                            beam_fn_api_pb2.PCollection(
                                coder_reference=coder_id(source_coder))
                        })
                    if data_operation_spec:
                        input_ptransform.function_spec.data.Pack(
                            data_operation_spec)
                    transforms.append(input_ptransform)

                    # Read the elements out of the source.
                    fn = sdk_worker.pack_function_spec_data(
                        OLDE_SOURCE_SPLITTABLE_DOFN_DATA,
                        sdk_worker.PYTHON_DOFN_URN,
                        id=self._next_uid())
                    inputs = {
                        'ignored_input_tag':
                        beam_fn_api_pb2.Target.List(target=[
                            beam_fn_api_pb2.Target(
                                primitive_transform_reference=
                                input_transform_id,
                                name='out')
                        ])
                    }
                    side_inputs = {}

            elif isinstance(operation, operation_specs.WorkerDoFn):
                fn = sdk_worker.pack_function_spec_data(
                    operation.serialized_fn,
                    sdk_worker.PYTHON_DOFN_URN,
                    id=self._next_uid())
                inputs = as_target(operation.input)
                # Store the contents of each side input for state access.
                for si in operation.side_inputs:
                    assert isinstance(si.source, iobase.BoundedSource)
                    element_coder = si.source.default_output_coder()
                    view_id = self._next_uid()
                    # TODO(robertwb): Actually flesh out the ViewFn API.
                    side_inputs[si.tag] = beam_fn_api_pb2.SideInput(
                        view_fn=sdk_worker.serialize_and_pack_py_fn(
                            element_coder,
                            urn=sdk_worker.PYTHON_ITERABLE_VIEWFN_URN,
                            id=view_id))
                    # Re-encode the elements in the nested context and
                    # concatenate them together
                    output_stream = create_OutputStream()
                    for element in si.source.read(
                            si.source.get_range_tracker(None, None)):
                        element_coder.get_impl().encode_to_stream(
                            element, output_stream, True)
                    elements_data = output_stream.get()
                    state_key = beam_fn_api_pb2.StateKey.MultimapSideInput(
                        key=view_id)
                    state_handler.Clear(state_key)
                    state_handler.Append(state_key, elements_data)

            elif isinstance(operation, operation_specs.WorkerFlatten):
                fn = sdk_worker.pack_function_spec_data(
                    operation.serialized_fn,
                    sdk_worker.IDENTITY_DOFN_URN,
                    id=self._next_uid())
                inputs = {
                    'ignored_input_tag':
                    beam_fn_api_pb2.Target.List(target=[
                        beam_fn_api_pb2.Target(
                            primitive_transform_reference=
                            transform_index_to_id[input_op_index],
                            name=output_tags(map_task[input_op_index]
                                             [1])[input_output_index]) for
                        input_op_index, input_output_index in operation.inputs
                    ])
                }
                side_inputs = {}

            else:
                raise TypeError(operation)

            ptransform = beam_fn_api_pb2.PrimitiveTransform(
                id=transform_id,
                function_spec=fn,
                step_name=stage_name,
                inputs=inputs,
                side_inputs=side_inputs,
                outputs=outputs(operation))
            transforms.append(ptransform)

        process_bundle_descriptor = beam_fn_api_pb2.ProcessBundleDescriptor(
            id=self._next_uid(),
            coders=coders.values(),
            primitive_transform=transforms)
        return beam_fn_api_pb2.InstructionRequest(
            instruction_id=self._next_uid(),
            register=beam_fn_api_pb2.RegisterRequest(
                process_bundle_descriptor=[process_bundle_descriptor
                                           ])), runner_sinks, input_data
Exemplo n.º 11
0
  def run_stage(
      self, controller, pipeline_components, stage, pcoll_buffers, safe_coders):

    coders = pipeline_context.PipelineContext(pipeline_components).coders
    data_operation_spec = controller.data_operation_spec()

    def extract_endpoints(stage):
      # Returns maps of transform names to PCollection identifiers.
      # Also mutates IO stages to point to the data data_operation_spec.
      data_input = {}
      data_side_input = {}
      data_output = {}
      for transform in stage.transforms:
        pcoll_id = transform.spec.payload
        if transform.spec.urn in (bundle_processor.DATA_INPUT_URN,
                                  bundle_processor.DATA_OUTPUT_URN):
          if transform.spec.urn == bundle_processor.DATA_INPUT_URN:
            target = transform.unique_name, only_element(transform.outputs)
            data_input[target] = pcoll_id
          elif transform.spec.urn == bundle_processor.DATA_OUTPUT_URN:
            target = transform.unique_name, only_element(transform.inputs)
            data_output[target] = pcoll_id
          else:
            raise NotImplementedError
          if data_operation_spec:
            transform.spec.payload = data_operation_spec.SerializeToString()
            transform.spec.any_param.Pack(data_operation_spec)
          else:
            transform.spec.payload = ""
            transform.spec.any_param.Clear()
      return data_input, data_side_input, data_output

    logging.info('Running %s', stage.name)
    logging.debug('       %s', stage)
    data_input, data_side_input, data_output = extract_endpoints(stage)
    if data_side_input:
      raise NotImplementedError('Side inputs.')

    process_bundle_descriptor = beam_fn_api_pb2.ProcessBundleDescriptor(
        id=self._next_uid(),
        transforms={transform.unique_name: transform
                    for transform in stage.transforms},
        pcollections=dict(pipeline_components.pcollections.items()),
        coders=dict(pipeline_components.coders.items()),
        windowing_strategies=dict(
            pipeline_components.windowing_strategies.items()),
        environments=dict(pipeline_components.environments.items()))

    process_bundle_registration = beam_fn_api_pb2.InstructionRequest(
        instruction_id=self._next_uid(),
        register=beam_fn_api_pb2.RegisterRequest(
            process_bundle_descriptor=[process_bundle_descriptor]))

    process_bundle = beam_fn_api_pb2.InstructionRequest(
        instruction_id=self._next_uid(),
        process_bundle=beam_fn_api_pb2.ProcessBundleRequest(
            process_bundle_descriptor_reference=
            process_bundle_descriptor.id))

    # Write all the input data to the channel.
    for (transform_id, name), pcoll_id in data_input.items():
      data_out = controller.data_plane_handler.output_stream(
          process_bundle.instruction_id, beam_fn_api_pb2.Target(
              primitive_transform_reference=transform_id, name=name))
      for element_data in pcoll_buffers[pcoll_id]:
        data_out.write(element_data)
      data_out.close()

    # Register and start running the bundle.
    controller.control_handler.push(process_bundle_registration)
    controller.control_handler.push(process_bundle)

    # Wait for the bundle to finish.
    while True:
      result = controller.control_handler.pull()
      if result and result.instruction_id == process_bundle.instruction_id:
        if result.error:
          raise RuntimeError(result.error)
        break

    # Gather all output data.
    expected_targets = [
        beam_fn_api_pb2.Target(primitive_transform_reference=transform_id,
                               name=output_name)
        for (transform_id, output_name), _ in data_output.items()]
    for output in controller.data_plane_handler.input_elements(
        process_bundle.instruction_id, expected_targets):
      target_tuple = (
          output.target.primitive_transform_reference, output.target.name)
      if target_tuple in data_output:
        pcoll_id = data_output[target_tuple]
        if pcoll_id.startswith('materialize:'):
          # Just store the data chunks for replay.
          pcoll_buffers[pcoll_id].append(output.data)
        elif pcoll_id.startswith('group:'):
          # This is a grouping write, create a grouping buffer if needed.
          if pcoll_id not in pcoll_buffers:
            original_gbk_transform = pcoll_id.split(':', 1)[1]
            transform_proto = pipeline_components.transforms[
                original_gbk_transform]
            input_pcoll = only_element(transform_proto.inputs.values())
            output_pcoll = only_element(transform_proto.outputs.values())
            pre_gbk_coder = coders[safe_coders[
                pipeline_components.pcollections[input_pcoll].coder_id]]
            post_gbk_coder = coders[safe_coders[
                pipeline_components.pcollections[output_pcoll].coder_id]]
            pcoll_buffers[pcoll_id] = _GroupingBuffer(
                pre_gbk_coder, post_gbk_coder)
          pcoll_buffers[pcoll_id].append(output.data)
        else:
          # These should be the only two identifiers we produce for now,
          # but special side input writes may go here.
          raise NotImplementedError(pcoll_id)