Exemplo n.º 1
0
 def setbeta(self, ep_beta):
     sz = self.size_pars()
     if not helpers.check_vecsize(ep_beta, sz):
         raise TypeError('EP_BETA must be vector of size {0}'.format(sz))
     if self.ep_beta is None:
         self.ep_beta = np.empty(sz)
     self.ep_beta[:] = ep_beta
Exemplo n.º 2
0
 def setpi(self, ep_pi):
     sz = self.size_pars()
     if not helpers.check_vecsize(ep_pi, sz):
         raise TypeError('EP_PI must be vector of size {0}'.format(sz))
     if self.ep_pi is None:
         self.ep_pi = np.empty(sz)
     self.ep_pi[:] = ep_pi
Exemplo n.º 3
0
 def mat_btdb(self,v,out=None):
     if not helpers.check_vecsize(v,self.m):
         raise TypeError('V wrong')
     if out is None:
         return np.diag(v)
     else:
         self._matbtdb_setdgout(out,v)
         return out
Exemplo n.º 4
0
 def mat_btdb(self, v, out=None):
     if not helpers.check_vecsize(v, self.m):
         raise TypeError('V wrong')
     if out is None:
         return np.diag(v)
     else:
         self._matbtdb_setdgout(out, v)
         return out
Exemplo n.º 5
0
 def predict(self, pbfact, pmeans, pvars=None):
     if not isinstance(pbfact, cf.MatFactorizedInf):
         raise TypeError('PBFACT must be apbsint.MatFactorizedInf')
     pm, n = pbfact.shape()
     if n != self.bfact.shape(1):
         raise TypeError('PBFACT has wrong size')
     if not (helpers.check_vecsize(pmeans, pm) and
             (pvars is None or helpers.check_vecsize(pvars, pm))):
         raise TypeError('PMEANS or PVARS wrong')
     tvec = 1. / self.marg_pi
     if pvars is not None:
         # 'pbfact.b2fact' is B_test**2
         pvars[:] = pbfact.b2fact.dot(tvec)
     tvec *= self.marg_beta
     if pmeans.flags['C_CONTIGUOUS']:
         pbfact.mvm(tvec, pmeans)
     else:
         pmeans[:] = pbfact.mvm(tvec)
Exemplo n.º 6
0
 def _mvm_checkin(self, v, out):
     """
     Tests input arguments to 'mvm'. Returns buffer vector for result,
     which is 'out' if given, otherwise a new vector.
     """
     m, n = self.shape()
     if not helpers.check_vecsize(v, n):
         raise TypeError('V wrong')
     return self._check_resultvec(out, m)
Exemplo n.º 7
0
 def _mvm_checkin(self,v,out):
     """
     Tests input arguments to 'mvm'. Returns buffer vector for result,
     which is 'out' if given, otherwise a new vector.
     """
     m, n = self.shape()
     if not helpers.check_vecsize(v,n):
         raise TypeError('V wrong')
     return self._check_resultvec(out,m)
Exemplo n.º 8
0
 def _check_resultvec(self,out,sz):
     """
     If 'out' is not None, checks that it is a contiguous vector of
     size 'sz'. Otherwise, a vector of this size is created. In any
     case, the vector is returned.
     """
     if out is None:
         out = np.empty(sz)
     elif not (helpers.check_vecsize(out,sz) and
               out.flags['C_CONTIGUOUS']):
         raise TypeError('OUT argument wrong (must be contiguous)')
     return out
Exemplo n.º 9
0
 def __init__(self,dg):
     if isinstance(dg,MatDiag):
         Mat.__init__(self,dg)
         self.dg = dg.dg
         self.sqdg = dg.sqdg
     else:
         if not helpers.check_vecsize(dg) or dg.shape[0] == 0:
             raise TypeError('DG wrong type or size')
         n = dg.shape[0]
         Mat.__init__(self,n,n)
         self.dg = dg
         self.sqdg = dg**2
Exemplo n.º 10
0
 def __init__(self, dg):
     if isinstance(dg, MatDiag):
         Mat.__init__(self, dg)
         self.dg = dg.dg
         self.sqdg = dg.sqdg
     else:
         if not helpers.check_vecsize(dg) or dg.shape[0] == 0:
             raise TypeError('DG wrong type or size')
         n = dg.shape[0]
         Mat.__init__(self, n, n)
         self.dg = dg
         self.sqdg = dg**2
Exemplo n.º 11
0
 def _check_resultvec(self, out, sz):
     """
     If 'out' is not None, checks that it is a contiguous vector of
     size 'sz'. Otherwise, a vector of this size is created. In any
     case, the vector is returned.
     """
     if out is None:
         out = np.empty(sz)
     elif not (helpers.check_vecsize(out, sz)
               and out.flags['C_CONTIGUOUS']):
         raise TypeError('OUT argument wrong (must be contiguous)')
     return out
Exemplo n.º 12
0
 def predict(self, pbfact, pmeans, pvars=None, use_cov=False):
     """
     Compute predictive means (and variances, optional), given test set
     coupling factor B_p (in 'pbfact').
     Predictive variances require A^-1. If 'post_cov' is defined and
     'use_cov'==True, A^-1 is taken from 'post_cov'. Otherwise, it is
     computed here (and written into 'post_cov').
     NOTE: Use 'use_cov'=True if 'refresh' with 'keep_margs'=True has
     been called just before.
     """
     if not isinstance(pbfact, cf.Mat):
         raise TypeError('PBFACT must be instance of apbsint.Mat')
     pm, n = pbfact.shape()
     if n != self.bfact.shape(1):
         raise TypeError('PBFACT has wrong size')
     if not (helpers.check_vecsize(pmeans, pm) and
             (pvars is None or helpers.check_vecsize(pvars, pm))):
         raise TypeError('PMEANS or PVARS wrong')
     # Predictive means
     pbfact.mvm(
         sla.solve_triangular(self.lfact, self.cvec, lower=True, trans='T'),
         pmeans)
     if pvars is not None:
         # Predictive variances: Need inverse A^-1
         try:
             if self.post_cov.shape != (n, n):
                 raise TypeError(
                     'Internal error: POST_COV attribute has wrong size')
         except AttributeError:
             if use_cov:
                 raise ValueError('POST_COV is not defined')
             self.post_cov = np.empty((n, n))
         amat = self.post_cov
         if not use_cov:
             self._comp_inva(amat)
         pbfact.diag_bsbt(amat, pvars)
Exemplo n.º 13
0
 def mat_btdb(self,v,out=None):
     if self.transp:
         raise NotImplementedError("NOT IMPLEMENTED")
     if not helpers.check_vecsize(v,self.m):
         raise TypeError('V wrong')
     off = 0
     m, n = self.shape()
     if out is None:
         out = np.empty((n,n))
     else:
         self._matbtdb_checkout(out)
     out.fill(0.)
     # 'buffmat1' is allocated once, then reused
     try:
         self.buffmat1.resize((n,n),refcheck=False)
     except AttributeError:
         self.buffmat1 = np.empty((n,n))
     for chd in self.child:
         sz = chd.shape(0)
         chd.mat_btdb(v[off:off+sz],self.buffmat1)
         out += self.buffmat1
         off += sz
     return out
Exemplo n.º 14
0
 def mat_btdb(self, v, out=None):
     if self.transp:
         raise NotImplementedError("NOT IMPLEMENTED")
     if not helpers.check_vecsize(v, self.m):
         raise TypeError('V wrong')
     off = 0
     m, n = self.shape()
     if out is None:
         out = np.empty((n, n))
     else:
         self._matbtdb_checkout(out)
     out.fill(0.)
     # 'buffmat1' is allocated once, then reused
     try:
         self.buffmat1.resize((n, n), refcheck=False)
     except AttributeError:
         self.buffmat1 = np.empty((n, n))
     for chd in self.child:
         sz = chd.shape(0)
         chd.mat_btdb(v[off:off + sz], self.buffmat1)
         out += self.buffmat1
         off += sz
     return out
Exemplo n.º 15
0
 def get_marg(self, j, vvec=None):
     """
     Returns (mu, rho), mu marginal mean, rho marginal variance at potential
     j (Gaussian marginal, not tilted marginal).
     If 'vvec' is given, L^-1 B[j,:] is written there. In this case, the
     marginal is always computed from scratch. Otherwise, if
     'keep_margs'==True, we use 'marg_XXX'.
     If (mu, rho) are computed from scratch and 'keep_margs'==True, the
     corr. entries of 'marg_XXX' are refreshed.
     """
     bfact = self.bfact
     m, n = bfact.shape()
     if not (isinstance(j, numbers.Integral) and j >= 0 and j < m):
         raise ValueError('J wrong')
     if vvec is None:
         if self.keep_margs:
             return (self.marg_means[j], self.marg_vars[j])
         vvec = np.empty(n)
     else:
         if not helpers.check_vecsize(vvec, n):
             raise TypeError('VVEC wrong')
     try:
         self.us_bvec.resize(n, refcheck=False)
     except AttributeError:
         self.us_bvec = np.empty(n)
     bfact.T().getcol(j, self.us_bvec)
     vvec[:] = sla.solve_triangular(self.lfact,
                                    self.us_bvec,
                                    lower=True,
                                    trans='N')
     mu = np.inner(vvec, self.cvec)
     rho = np.inner(vvec, vvec)
     if self.keep_margs:
         # Refresh entries
         self.marg_means[j] = mu
         self.marg_vars[j] = rho
     return (mu, rho)
Exemplo n.º 16
0
 def mat_btdb(self,v,out=None):
     """
     Returns matrix B^T (diag v) B.
     If 'out' is given, the result is written there directly. 'out' must
     have exactly the right size and must be C contiguous, otherwise an
     exception is thrown.
     """
     m, n = self.shape()
     if not helpers.check_vecsize(v,m):
         raise TypeError('V wrong')
     if out is None:
         out = np.empty((n,n))
     else:
         self._matbtdb_checkout(out)
     bt = self.T()
     tv1 = np.zeros(n)
     tv2 = np.empty(m)
     for i in xrange(n):
         tv1[i] = 1.
         self.mvm(tv1,tv2)
         tv1[i] = 0.
         tv2 *= v
         bt.mvm(tv2,out[i])
     return out
Exemplo n.º 17
0
 def mat_btdb(self, v, out=None):
     """
     Returns matrix B^T (diag v) B.
     If 'out' is given, the result is written there directly. 'out' must
     have exactly the right size and must be C contiguous, otherwise an
     exception is thrown.
     """
     m, n = self.shape()
     if not helpers.check_vecsize(v, m):
         raise TypeError('V wrong')
     if out is None:
         out = np.empty((n, n))
     else:
         self._matbtdb_checkout(out)
     bt = self.T()
     tv1 = np.zeros(n)
     tv2 = np.empty(m)
     for i in xrange(n):
         tv1[i] = 1.
         self.mvm(tv1, tv2)
         tv1[i] = 0.
         tv2 *= v
         bt.mvm(tv2, out[i])
     return out
Exemplo n.º 18
0
 def seldamp_reset(self, numk, subind=None, subexcl=False):
     """
     Initializes or resets the selective damping (SD) representation. SD
     ensures that cavity marginals are well-defined after each EP update.
     The SD representation tracks max_k pi_{k,i} for each variable, by
     storing the 'numk' largest pi values for each i. The larger 'numk',
     the less often maxima have to be recomputed.
     If 'subind' is given, max_k runs only over this index (if
     'subexcl'==False) or over its complement (if 'subexcl'==True).
     """
     bf = self.bfact
     m, n = bf.shape()
     if not isinstance(numk, numbers.Integral) or numk < 2:
         raise TypeError('NUMK must be integer > 1')
     if not (subind is None or
             (helpers.check_vecsize(subind) and subind.dtype == np.int32)):
         raise TypeError(
             'SUBIND must be numpy.ndarray with dtype numpy.int32')
     (self.sd_numvalid, self.sd_topind, self.sd_topval) \
         = epx.fact_compmaxpi(n,m,bf.rowind,bf.colind,bf.bvals,self.ep_pi,
                              self.ep_beta,numk,subind,subexcl)
     self.sd_subind = subind
     self.sd_subexcl = subexcl
     self.sd_numk = numk
Exemplo n.º 19
0
 def update_single(self, j, delpi, delbeta, vvec=None):
     """
     Change of EP parameters:
       ep_pi[j] += delpi; ep_beta[j] += delbeta
     The representation is updated accordingly. In particular, the
     Cholesky factor 'lfact' is updated ('delpi'>0) or downdated
     ('delpi'<0). If 'keep_margs'==True, the marginal moments are
     updated as well.
     In 'vvec', the vector L^-1 B[j,:] can be passed. If not, it is
     recomputed here.
     NOTE: 'post_cov' (if given) is not updated!
     """
     bfact = self.bfact
     m, n = bfact.shape()
     if not (isinstance(j, numbers.Integral) and j >= 0 and j < m
             and isinstance(delpi, numbers.Real)
             and isinstance(delbeta, numbers.Real)):
         raise ValueError('J, DELPI or DELBETA wrong')
     if not (vvec is None or helpers.check_vecsize(vvec, n)):
         raise TypeError('VVEC wrong')
     # Scratch variables. We keep them as members, to avoid having to
     # allocate them in every call
     try:
         self.cup_c.resize(n, refcheck=False)
         self.cup_s.resize(n, refcheck=False)
         self.cup_wk.resize(n, refcheck=False)
         self.cup_z.resize((1, n), refcheck=False)
         self.us_bvec.resize(n, refcheck=False)
         if self.keep_margs:
             self.us_wvec.resize(m, refcheck=False)
             self.us_w2vec.resize(m, refcheck=False)
     except AttributeError:
         self.cup_c = np.empty(n)
         self.cup_s = np.empty(n)
         self.cup_wk = np.empty(n)
         self.cup_z = np.empty((1, n), order='F')
         self.us_bvec = np.empty(n)
         if self.keep_margs:
             self.us_wvec = np.empty(m)
             self.us_w2vec = np.empty(m)
     bvec = self.us_bvec
     if self.keep_margs:
         wvec = self.us_wvec
         w2vec = self.us_w2vec
     if delpi > 0.:
         # Cholesky update
         tscal = np.sqrt(delpi)
         bfact.T().getcol(j, bvec)
         if self.keep_margs:
             if vvec is None:
                 # Need 'vvec' below, so compute it here
                 vvec = sla.solve_triangular(self.lfact,
                                             bvec,
                                             lower=True,
                                             trans='N')
             mu = np.inner(vvec, self.cvec)
             rho = np.inner(vvec, vvec)
         bvec *= tscal
         yscal = np.empty(1)
         yscal[0] = delbeta / tscal
         self.cup_z[0] = self.cvec
         stat = epx.choluprk1(self.lfact, 'L', bvec, self.cup_c, self.cup_s,
                              self.cup_wk, self.cup_z, yscal)
         if stat != 0:
             raise sla.LinAlgError(
                 "Numerical error in 'choluprk1' (external)")
         self.cvec[:] = self.cup_z.ravel()
     else:
         # Cholesky downdate
         tscal = np.sqrt(-delpi)
         if vvec is None:
             bfact.T().getcol(j, bvec)
             vvec = sla.solve_triangular(self.lfact,
                                         bvec,
                                         lower=True,
                                         trans='N')
         if self.keep_margs:
             mu = np.inner(vvec, self.cvec)
             rho = np.inner(vvec, vvec)
         yscal = np.empty(1)
         yscal[0] = -delbeta / tscal
         self.cup_z[0] = self.cvec
         bvec[:] = vvec
         bvec *= tscal
         stat = epx.choldnrk1(self.lfact, 'L', bvec, self.cup_c, self.cup_s,
                              self.cup_wk, self.cup_z, yscal)
         if stat != 0:
             raise sla.LinAlgError(
                 "Numerical error in 'choldnrk1' (external)")
         self.cvec[:] = self.cup_z.ravel()
     self.ep_pi[j] += delpi
     self.ep_beta[j] += delbeta
     if self.keep_margs:
         # Update marginal moments
         assert vvec is not None
         bfact.mvm(
             sla.solve_triangular(self.lfact, vvec, lower=True, trans='T'),
             wvec)
         tscal = 1. / (delpi * rho + 1.)
         w2vec[:] = wvec
         w2vec *= ((delbeta - delpi * mu) * tscal)
         self.marg_means += w2vec
         wvec *= wvec
         wvec *= (delpi * tscal)
         self.marg_vars -= wvec