Exemplo n.º 1
0
def test_wiggle_parameters_repeated():
    """ Test that wiggle_parameters accepts a nested list as input """
    si.wiggle_parameters(parameters=si.wiggle_parameters(parameters={'a': 1, 'b': 2},
                                                         parameter_to_wiggle='a',
                                                         values=[1, 2, 3, 4]),
                         parameter_to_wiggle='b',
                         values=[10, 20])
Exemplo n.º 2
0
def test_wiggle_parameters_input_array_to_3d_array():
    """ Test that wiggle_parameters accepts an array as input and returns an array of the correct shape once we
     wiggle a few times """
    output = si.wiggle_parameters(parameters=np.array([{'a': 1, 'b': 2}]), parameter_to_wiggle='a', values=[1, 2, 3, 4])
    output = si.wiggle_parameters(output, parameter_to_wiggle='b', values=[1, 2, 3, 4, 5])
    output = si.wiggle_parameters(output, parameter_to_wiggle='c', values=[1, 2, 3, 4, 5, 6])
    assert output.shape == (4, 5, 6)
Exemplo n.º 3
0
def calculate_fdl_vs_dur(dur_low, dur_high, n_dur):
    """
    Calculates ideal observer FDL vs duration

    Arguments:
        dur_low (float): lowest duration to test in seconds

        dur_high (float): highest duration to test in seconds

        n_dur (int): number of durations to test... frequencies between dur_low and dur_high will be distributed
            logarithmically

    Returns:
        tuple of ndarrays, the first containing all-information thresholds, the second containing
            rate-place thresholds, and the third containing the durations at which they were estimated

    """
    # Initialize simulator object
    sim = anf.AuditoryNerveHeinz2001()

    # Define stimulus parameters
    tone_level = 40
    tone_freq = 970
    tone_ramp_dur = 0.004
    tone_durs = 10**np.linspace(np.log10(dur_low), np.log10(dur_high), n_dur)

    # Encode stimulus parameters
    params = {
        'level': tone_level,
        'freq': tone_freq,
        'dur_ramp': tone_ramp_dur
    }
    params = si.wiggle_parameters(params, 'dur', tone_durs)

    # Encode model parameters
    params = si.append_parameters(params, [
        'cf_low', 'cf_high', 'n_cf', 'fs', 'n_fiber_per_chan', 'delta_theta',
        'API'
    ], [100, 10000, 60, int(500e3), 200, [0.001],
        np.zeros(1)])

    # Encode increment and synthesize
    params = si.increment_parameters(params, {'freq': 0.001})
    synth = PureToneHeinz2001()
    stimuli = synth.synthesize_sequence(params)
    params = si.stitch_parameters(params, '_input', stimuli)

    # Run model
    output = sim.run(params,
                     parallel=True,
                     runfunc=dc.decode_ideal_observer(sim.simulate))
    t_AI = [
        x[0] for x in output
    ]  # extract AI thresholds, which are always the first element of each tuple in results
    t_RP = [
        x[1] for x in output
    ]  # extract RP thresholds, which are always the second element of each tuple in results

    # Return
    return np.array(t_AI), np.array(t_RP), tone_durs
Exemplo n.º 4
0
def test_wiggle_parameters_bad_input():
    """ Test that wiggle_parameters throws an error if we pass a weird type """
    try:
        output = si.wiggle_parameters(1, parameter_to_wiggle='a', values=[1, 2, 3, 4])
        raise Exception('This should have failed!')
    except TypeError:
        return
Exemplo n.º 5
0
def test_ideal_observer_real_simulation_with_level_roving():
    """ Test that ideal observer analysis on simple pure tone FDLs shows increasing FDLs with increasing frequency in
    the context of a mild level rove on the pure tone """
    # Initialize simulator object
    sim = anf.AuditoryNerveHeinz2001()

    # Define stimulus parameters
    fs = int(200e3)

    def tone_level():
        return np.random.uniform(25, 35, 1)

    tone_dur = 0.1
    tone_ramp_dur = 0.01
    tone_freqs = [1000, 2000, 4000, 8000]

    # Encode stimulus parameters
    params = {
        'level': tone_level,
        'dur': tone_dur,
        'dur_ramp': tone_ramp_dur,
        'fs': fs
    }
    params = si.wiggle_parameters(params, 'freq', tone_freqs)

    # Encode model parameters
    params = si.stitch_parameters(params, 'cf_low', [1000, 2000, 4000, 8000])
    params = si.stitch_parameters(params, 'cf_high', [1000, 2000, 4000, 8000])
    params = si.append_parameters(
        params, ['fs', 'n_cf', 'n_fiber_per_chan', 'delta_theta', 'API'],
        [int(200e3), 1, 5, [0.001, 0.001],
         np.array([[0, 0], [0, 1 / 6**2]])])

    # Encode repeats and increments
    params = si.repeat_parameters(params, 10)
    params = si.increment_parameters(params, {'freq': 0.001, 'level': 0.001})

    # Synthesize stimuli and encode in params
    synth = sy.PureTone()
    stimuli = synth.synthesize_sequence(params)
    params = si.stitch_parameters(params, '_input', stimuli)

    # Run model
    output = sim.run(params,
                     parallel=True,
                     runfunc=decode_ideal_observer(sim.simulate))

    # Extract AI thresholds
    output = [
        out[0] for out in output
    ]  # AI thresholds are always the first element of each tuple in output

    # Check to make sure that thresholds grow with frequency
    assert np.all(np.diff(output) > 0)
Exemplo n.º 6
0
def test_ideal_observer_FDL_vs_frequency():
    """ Test that ideal observer analysis on simple pure tone FDLs shows increasing FDLs with increasing frequency """
    # Initialize simulator object
    sim = anf.AuditoryNerveHeinz2001()

    # Define stimulus parameters
    fs = int(200e3)
    tone_level = 30
    tone_dur = 0.1
    tone_ramp_dur = 0.01
    tone_freqs = [1000, 2000, 4000, 8000]

    # Encode stimulus information
    params = {
        'level': tone_level,
        'dur': tone_dur,
        'dur_ramp': tone_ramp_dur,
        'fs': fs
    }
    params = si.wiggle_parameters(params, 'freq', tone_freqs)

    # Encode model information
    params = si.stitch_parameters(params, 'cf_low', [1000, 2000, 4000, 8000])
    params = si.stitch_parameters(params, 'cf_high', [1000, 2000, 4000, 8000])
    params = si.append_parameters(
        params, ['n_cf', 'fs', 'n_fiber_per_chan', 'delta_theta', 'API'],
        [1, int(200e3), 5, [0.001], np.zeros((1))])

    # Flatten and increment frequency
    params = si.flatten_parameters(params)
    params = si.increment_parameters(params, {'freq': 0.001})
    synth = sy.PureTone()
    stimuli = synth.synthesize_sequence(params)
    params = si.stitch_parameters(params, '_input', stimuli)

    # Run model
    output = sim.run(params,
                     parallel=True,
                     runfunc=decode_ideal_observer(sim.simulate))

    # Extract AI thresholds
    output = [
        out[0] for out in output
    ]  # AI thresholds are always the first element of each tuple in output

    # Check to make sure that thresholds grow with frequency
    assert np.all(np.diff(output) > 0)
Exemplo n.º 7
0
def test_wiggle_parameters_input_nested_list():
    """ Test that wiggle_parameters accepts a nested list as input """
    si.wiggle_parameters(parameters=[{'a': 1, 'b': 2},
                                     [[{'a': 1, 'b': 2}, {'a': 1, 'b': 2}], [{'a': 2, 'b': 40}]]],
                         parameter_to_wiggle='a', values=[1, 2, 3, 4])
Exemplo n.º 8
0
def test_wiggle_parameters_input_array():
    """ Test that wiggle_parameters accepts an array as input and returns sensible output """
    output = si.wiggle_parameters(parameters=np.array([{'a': 1, 'b': 2}]), parameter_to_wiggle='a', values=[1, 2, 3, 4])
    assert output[0]['a'] == 1 and output[3]['a'] == 4