Exemplo n.º 1
0
def downloadData(param: Param, download: bool = True):
    '''Download user data (if {download} is True) to json files, merge them into a flat pandas.DataFrame, and write it to disk.'''
    logging.info(f"{param.filePath().name.replace('.','|')}")
    if download:
        subMethod = param.splitMethod(lower=True)
        for f in param.filePath(glob='*json'):
            f.unlink()
        pbarManager = enlighten.get_manager()
        with pbarManager.counter(unit='page', leave=False) as pbar:
            while param.page <= param.nPages:
                fileName = param.filePath(ext=f'.{param.page:04d}.json')
                response = getReq(param=param,
                                  pbarManager=pbarManager,
                                  collapse=False)
                param.page = int(
                    response.get(subMethod).get('@attr').get('page'))
                param.nPages = int(
                    response.get(subMethod).get('@attr').get('totalPages'))
                pbar.total = param.nPages  # [tqdm: update total without resetting time elapsed](https://stackoverflow.com/a/58961015/13019084)
                pbar.update()
                param.filePath().parent.mkdir(exist_ok=True)
                with open(file=fileName, mode='w') as jsonF:
                    json.dump(obj=response, fp=jsonF)
                param.page += 1
                time.sleep(param.sleep)
        pbarManager.stop()
    DF = loadJSON(param)
    df = flattenDF(param=param, DF=DF, writeToDisk=True)
    if param.splitMethod() in ['TopArtists', 'TopAlbums', 'TopTracks']:
        writeCSV(param=param, df=df)
Exemplo n.º 2
0
def recommFromNeighbor(neighbor:str=None, method:str='user.getTopArtists', neighborThr:int=100, myThr:int=1000, **kwargs) -> pandas.DataFrame:
    '''Return neighbor's top artists/albums/songs missing from the user's top listens'''
    if not neighbor: return lastfmNeighbors()
    else:
        myData = loadUserData(Param(method=method)).head(myThr)
        param = Param(method=method, user=neighbor, lim=neighborThr)
        entity = param.splitMethod(lower=True, plural=False, strip=True)
        neighborData = getReq(param)
        cols = [f'{entity}_name', f'{entity}_playcount']
        if entity != 'artist': cols = [f'artist_name', *cols]
        # numpy.setdiff1d(neighborData.get(f'{entity}_name'), myData.get(f'{entity}_name')) # [Compare and find missing strings in pandas Series](https://stackoverflow.com/a/58544291/13019084)
        return neighborData[[item not in myData.get(f'{entity}_name').to_list() for item in neighborData.get(f'{entity}_name').to_list()]][cols]