Exemplo n.º 1
0
def readApprentice(fname):
    """
    Read an apprentice JSON file. We abuse try except here to
    figure out whether it's a rational or polynomial approximation.
    """
    import apprentice
    import os
    if not os.path.exists(fname):
        raise Exception("File {} not found".format(fname))

    try:
        app = apprentice.RationalApproximation(fname=fname)
    except:
        app = apprentice.PolynomialApproximation(fname=fname)
    return app
Exemplo n.º 2
0
def mkBestRA(X,
             Y,
             pnames,
             split=0.7,
             norm=2,
             m_max=5,
             n_max=None,
             f_plot=None):
    """
    """
    _N, _dim = X.shape

    i_train = sorted(
        list(np.random.choice(range(_N), int(np.ceil(split * _N)))))
    i_test = [i for i in range(_N) if not i in i_train]

    N_train = len(i_train)
    N_test = len(i_test)

    orders = apprentice.tools.possibleOrders(N_train, _dim, mirror=True)
    if n_max is not None:
        orders = [o for o in orders if o[1] <= n_max and o[0] <= m_max]

    # d_RA   = { o : apprentice.RationalApproximation(X[i_train], Y[i_train], order=o, pnames=pnames) for o in orders }
    d_RA = {}
    for o in orders:
        if o[1] == 0:
            d_RA[o] = apprentice.PolynomialApproximation(X[i_train],
                                                         Y[i_train],
                                                         order=o[0],
                                                         pnames=pnames)
        else:
            d_RA[o] = apprentice.RationalApproximation(X[i_train],
                                                       Y[i_train],
                                                       order=o,
                                                       pnames=pnames)
    d_norm = {o: raNorm(d_RA[o], X[i_test], Y[i_test]) for o in orders}
    import operator
    sorted_norm = sorted(d_norm.items(), key=operator.itemgetter(1))
    if f_plot is not None: mkPlotNorm(d_norm, f_plot, norm)
    winner = sorted_norm[0]
    print("Winner: m={} n={} with L2={}".format(*winner[0], winner[1]))
    return apprentice.RationalApproximation(X,
                                            Y,
                                            order=winner[0],
                                            pnames=pnames)
Exemplo n.º 3
0
def readApprox(fname, set_structures=True, usethese=None):
    import json, apprentice
    with open(fname) as f:
        rd = json.load(f)
    binids = app.tools.sorted_nicely(rd.keys())
    binids = [x for x in binids if not x.startswith("__")]
    if usethese is not None:
        binids = [x for x in binids if x in usethese]

    APP = {}
    for b in binids:
        if "n" in rd[b]:
            APP[b] = apprentice.RationalApproximation(
                initDict=rd[b]
            )  # FIXME what about set_structures for rationals?
        else:
            APP[b] = apprentice.PolynomialApproximation(
                initDict=rd[b], set_structures=set_structures)
    return binids, [APP[b] for b in binids]
Exemplo n.º 4
0
def runPAforsimcoeffs(X, Y, fndesc, m, n, ts, outfile):
    import json
    dim = X[0].shape[0]
    M = apprentice.tools.numCoeffsPoly(dim, m)
    N = apprentice.tools.numCoeffsPoly(dim, n)
    totalcoeffsinRA = M + N
    padeg = 0
    pacoeffs = apprentice.tools.numCoeffsPoly(dim, padeg)
    while (pacoeffs < totalcoeffsinRA):
        padeg += 1
        pacoeffs = apprentice.tools.numCoeffsPoly(dim, padeg)

    if (ts == ".5x" or ts == "0.5x"):
        trainingsize = 0.5 * pacoeffs
    elif (ts == "1x"):
        trainingsize = pacoeffs
    elif (ts == "2x"):
        trainingsize = 2 * pacoeffs
    elif (ts == "Cp"):
        trainingsize = len(X)
    else:
        raise Exception("Training scale %s unknown" % (ts))

    if (trainingsize > len(X)):
        raise Exception(
            "Not enough data for padeg = %d and dim = %d. Require %d (%s) and only have %d"
            % (padeg, dim, trainingsize, ts, len(X)))

    train = range(trainingsize)
    start = timer()
    pa = apprentice.PolynomialApproximation(X[train], Y[train], order=padeg)
    end = timer()
    padict = pa.asDict
    fittime = end - start
    padict["log"] = {"fittime": fittime}
    import json
    with open(outfile, "w") as f:
        json.dump(padict, f, indent=4, sort_keys=True)
Exemplo n.º 5
0
def plotoptimaldegree(folder, testfile, desc, bottom_or_all, opt):
    import glob
    import json
    import re
    filelistRA = np.array(glob.glob(folder + "/out/*.json"))
    filelistRA = np.sort(filelistRA)

    filelistPA = np.array(glob.glob(folder + "/outpa/*.json"))
    filelistPA = np.sort(filelistPA)

    if not os.path.exists(folder + "/plots"):
        os.mkdir(folder + '/plots')

    maxpap = 0
    dim = 0
    ts = ""

    orders = []
    APP = []
    nnzthreshold = 1e-6
    for file in filelistRA:
        if file:
            with open(file, 'r') as fn:
                datastore = json.load(fn)
        m = datastore['m']
        n = datastore['n']
        ts = datastore['trainingscale']
        if (n != 0):
            orders.append((m, n))
            for i, p in enumerate(datastore['pcoeff']):
                if (abs(p) < nnzthreshold):
                    datastore['pcoeff'][i] = 0.
            for i, q in enumerate(datastore['qcoeff']):
                if (abs(q) < nnzthreshold):
                    datastore['qcoeff'][i] = 0.
            APP.append(apprentice.RationalApproximationSIP(datastore))
        dim = datastore['dim']

    for file in filelistPA:
        if file:
            with open(file, 'r') as fn:
                datastore = json.load(fn)
        m = datastore['m']
        if ((m, 0) in orders):
            continue
        orders.append((m, 0))
        for i, p in enumerate(datastore['pcoeff']):
            if (abs(p) < nnzthreshold):
                datastore['pcoeff'][i] = 0.
        APP.append(apprentice.PolynomialApproximation(initDict=datastore))
        if m > maxpap:
            maxpap = m

    try:
        X, Y = apprentice.tools.readData(testfile)
    except:
        DATA = apprentice.tools.readH5(testfile, [0])
        X, Y = DATA[0]

    if (bottom_or_all == "bottom"):
        trainingsize = apprentice.tools.numCoeffsPoly(dim, maxpap)
        if (ts == ".5x" or ts == "0.5x"):
            trainingsize = 0.5 * trainingsize
        elif (ts == "1x"):
            trainingsize = trainingsize
        elif (ts == "2x"):
            trainingsize = 2 * trainingsize
        elif (ts == "Cp"):
            trainingsize = len(X)
        else:
            raise Exception("Training scale %s unknown" % (ts))
        testset = [i for i in range(trainingsize, len(X))]
        X_test = X[testset]
        Y_test = Y[testset]
    elif (bottom_or_all == "all"):
        X_test = X
        Y_test = Y
    else:
        raise Exception(
            "bottom or all? Option ambiguous. Check spelling and/or usage")
    if (len(X_test) <= 1): raise Exception("Not enough testing data")

    # print(orders)
    # print(len(X_test))

    L2 = [np.sqrt(raNorm(app, X_test, Y_test, 2)) for app in APP]
    Linf = [raNormInf(app, X_test, Y_test) for app in APP]
    NNZ = [apprentice.tools.numNonZeroCoeff(app, nnzthreshold) for app in APP]
    VAR = [l / m for l, m in zip(L2, NNZ)]

    ncN, ncM = [], []

    NC = []
    for m, n in orders:
        ncM.append(apprentice.tools.numCoeffsPoly(dim, m))
        ncN.append(apprentice.tools.numCoeffsPoly(dim, n))
        if n == 0:
            NC.append(apprentice.tools.numCoeffsPoly(dim, m))
        else:
            NC.append(apprentice.tools.numCoeffsRapp(dim, (m, n)))

    # D3D = np.array([(m,n,v,o[0], o[1]) for m,n,v, o in zip(ncM,ncN, VAR, orders)])
    # outfileparetomn = "%s/plots/Poptdeg_%s_paretomn.png"%(folder, desc)
    # mkPlotParetoSquare(D3D, outfileparetomn)
    # print("paretomn written to %s"%(outfileparetomn))

    # import matplotlib as mpl
    # import matplotlib.pyplot as plt
    # from mpl_toolkits.mplot3d import Axes3D
    # plt.clf()
    # mpl.rc('text', usetex = True)
    # mpl.rc('font', family = 'serif', size=12)
    # mpl.style.use("ggplot")
    #
    # fig = plt.figure()
    # ax = fig.add_subplot(111, projection='3d')
    # p3D = is_pareto_efficient_dumb(D3D)
    # for num, (m,n,v) in enumerate(zip(ncM,ncN, VAR)):
    #     if p3D[num]:
    #         ax.scatter(m, n, np.log10(v), c="gold")
    #     else:
    #         ax.scatter(m, n, np.log10(v), c="r")
    # ax.set_xlabel('nc m')
    # ax.set_ylabel('nc n')
    # ax.set_zlabel('log v')
    # plt.show()

    jsdump = {}
    jsdump['dim'] = dim

    NNC = []
    for num, n in enumerate(NC):
        NNC.append(n - NNZ[num])

    CMP = [a * b for a, b in zip(NNZ, L2)]

    nopoints = len(Y_test)
    #1
    if (opt == "opt1"):
        Xcomp = NC
        Ycomp = [v / n for v, n in zip(VAR, NC)]
        Xdesc = "$N_\\mathrm{\\times N_\\mathrm{coeff}}$"
        Ydesc = "$\\frac{L_2^\\mathrm{test}}{N_\mathrm{non-zero}}$"
        logx = True
        logy = True
    elif (opt == "opt2"):
        Xcomp = NNZ
        Ycomp = L2
        Xdesc = "$N_\\mathrm{non-zero}$"
        Ydesc = "$L_2^\\mathrm{test}$"
        logx = True
        logy = True
    elif (opt == "opt3"):
        Xcomp = [2 * i for i in NC]
        Ycomp = [nopoints * np.log(i / nopoints) for i in L2]
        Xdesc = "$2N_\\mathrm{coeff}$"
        Ydesc = "$nlog\\left(\\frac{L_2^\\mathrm{test}}{n}\\right)$"
        logx = False
        logy = False
    elif (opt == "opt4"):
        Xcomp = [i * np.log(nopoints) for i in NC]
        Ycomp = [nopoints * np.log(i / nopoints) for i in L2]
        Xdesc = "$N_\\mathrm{coeff}log(n)$"
        Ydesc = "$nlog\\left(\\frac{L_2^\\mathrm{test}}{n}\\right)$"
        logx = False
        logy = False
    elif (opt == "opt5"):
        Xcomp = NC
        # print(np.c_[NC,NNZ])
        # for l, m,n in zip(L2, NNZ,NC):
        #     print(l, m,n)
        #     print(l*n/((n-m+1)))
        Ycomp = [l * n / (n - m + 1) for l, m, n in zip(L2, NNZ, NC)]
        Xdesc = "$N_\\mathrm{coeff}$"
        Ydesc = "$\\frac{L_2^\\mathrm{test}\\times N_\\mathrm{coeff}}{N_\\mathrm{coeff} - N_\mathrm{non-zero}+1}$"
        logx = False
        logy = True
    elif (opt == "opt6"):
        Xcomp = NC
        Ycomp = L2
        Xdesc = "$\\log_{10}(N_\\mathrm{coeff})$"
        Ydesc = "$\\log_{10}(L_2^\\mathrm{test})$"
        logx = True
        logy = True
    elif (opt == "opt7"):
        Xcomp = [2 * i for i in NC]
        Ycomp = L2
        Xdesc = "$N_\\mathrm{coeff}$"
        Ydesc = "$\\log_{10}(L_2^\\mathrm{test})$"
        logx = False
        logy = True

    else:
        raise Exception("option ambiguous/not defined")

    outfilepareton = "%s/plots/Poptdeg_%s_pareton_%s.png" % (folder, desc, opt)
    jsdump = mkPlotCompromise([(a, b) for a, b in zip(Xcomp, Ycomp)],
                              desc,
                              outfilepareton,
                              orders,
                              ly=Ydesc,
                              lx=Xdesc,
                              logy=logy,
                              logx=logx,
                              normalize_data=False,
                              jsdump=jsdump)
    outfileparetojsdump = "%s/plots/Joptdeg_%s_jsdump_%s.json" % (folder, desc,
                                                                  opt)
    import json
    with open(outfileparetojsdump, "w") as f:
        json.dump(jsdump, f, indent=4, sort_keys=True)
    print("pareton written to %s" % (outfilepareton))
    print("paretojsdump written to %s" % (outfileparetojsdump))
Exemplo n.º 6
0
def calcApprox(X,
               Y,
               order,
               pnames,
               mode="sip",
               onbtol=-1,
               debug=False,
               testforPoles=100,
               ftol=1e-9,
               itslsqp=200):
    M, N = order
    import apprentice as app
    if N == 0:
        _app = app.PolynomialApproximation(X, Y, order=M, pnames=pnames)
        hasPole = False
    else:
        if mode == "la":
            _app = app.RationalApproximation(X,
                                             Y,
                                             order=(M, N),
                                             pnames=pnames,
                                             strategy=2)
        elif mode == "onb":
            _app = app.RationalApproximationONB(X,
                                                Y,
                                                order=(M, N),
                                                pnames=pnames,
                                                tol=onbtol,
                                                debug=debug)
        elif mode == "sip":
            try:
                _app = app.RationalApproximationSLSQP(X,
                                                      Y,
                                                      order=(M, N),
                                                      pnames=pnames,
                                                      debug=debug,
                                                      ftol=ftol,
                                                      itslsqp=itslsqp)
            except Exception as e:
                print("Exception:", e)
                return None, True
        elif mode == "lasip":
            try:
                _app = app.RationalApproximation(X,
                                                 Y,
                                                 order=(M, N),
                                                 pnames=pnames,
                                                 strategy=2,
                                                 debug=debug)
            except Exception as e:
                print("Exception:", e)
                return None, True
            has_pole = denomChangesSignMS(_app, 100)[0]
            if has_pole:
                try:
                    _app = app.RationalApproximationSLSQP(X,
                                                          Y,
                                                          order=(M, N),
                                                          pnames=pnames,
                                                          debug=debug,
                                                          ftol=ftol,
                                                          itslsqp=itslsqp)
                except Exception as e:
                    print("Exception:", e)
                    return None, True
        else:
            raise Exception(
                "Specified mode {} does not exist, choose la|onb|sip".format(
                    mode))
        hasPole = denomChangesSignMS(_app, testforPoles)[0]

    return _app, hasPole
Exemplo n.º 7
0
def mkBestRACPL(X,
                Y,
                pnames=None,
                train_fact=2,
                split=0.6,
                norm=2,
                m_max=None,
                n_max=None,
                f_plot=None,
                seed=1234,
                allow_const=False,
                debug=0):
    """
    """
    import apprentice
    _N, _dim = X.shape
    np.random.seed(seed)

    # Split dataset in training and test sample
    i_train = sorted(
        list(np.random.choice(range(_N), int(np.ceil(split * _N)))))
    i_test = [i for i in range(_N) if not i in i_train]

    N_train = len(i_train)
    N_test = len(i_test)

    orders = sorted(apprentice.tools.possibleOrders(N_train, _dim,
                                                    mirror=True))
    if not allow_const: orders = orders[1:]
    if n_max is not None: orders = [o for o in orders if o[1] <= n_max]
    if m_max is not None: orders = [o for o in orders if o[0] <= m_max]

    # Discard those orders where we do not have enough training points if train_fact>1
    if train_fact > 1:
        _temp = []
        for o in orders:
            if o[1] > 0:
                if train_fact * apprentice.tools.numCoeffsRapp(_dim,
                                                               o) <= N_train:
                    _temp.append(o)
            else:
                if train_fact * apprentice.tools.numCoeffsPoly(
                        _dim, o[0]) <= N_train:
                    _temp.append(o)
        orders = sorted(_temp)

    APP = []

    # print("Calculating {} approximations".format(len(orders)))
    import time
    t1 = time.time()
    for o in orders:
        m, n = o
        if n == 0:
            i_train_o = np.random.choice(
                i_train,
                int(train_fact * apprentice.tools.numCoeffsPoly(_dim, m)))
            APP.append(
                apprentice.PolynomialApproximation(X[i_train_o],
                                                   Y[i_train_o],
                                                   order=m,
                                                   pnames=pnames))
        else:
            i_train_o = np.random.choice(
                i_train,
                int(train_fact * apprentice.tools.numCoeffsRapp(_dim, (m, n))))
            APP.append(
                apprentice.RationalApproximation(X[i_train_o],
                                                 Y[i_train_o],
                                                 order=(m, n),
                                                 strategy=1,
                                                 pnames=pnames))
    t2 = time.time()
    print("Calculating {} approximations took {} seconds".format(
        len(orders), t2 - t1))

    L2 = [np.sqrt(raNorm(app, X, Y, 2)) for app in APP]
    Linf = [raNormInf(app, X, Y) for app in APP]
    NNZ = [apprentice.tools.numNonZeroCoeff(app, 1e-6) for app in APP]
    VAR = [l / m for l, m in zip(L2, NNZ)]

    ncN, ncM = [], []

    NC = []
    for m, n in orders:
        ncM.append(apprentice.tools.numCoeffsPoly(_dim, m))
        ncN.append(apprentice.tools.numCoeffsPoly(_dim, n))
        if n == 0:
            NC.append(apprentice.tools.numCoeffsPoly(_dim, m))
        else:
            NC.append(apprentice.tools.numCoeffsRapp(_dim, (m, n)))

    # currently, this zips the number of coefficients for P and Q, the L2 norm divided by the number of non-zero
    # coefficients and for convenients the orders of the polynomials
    D3D = np.array([(m, n, v, o[0], o[1])
                    for m, n, v, o in zip(ncM, ncN, VAR, orders)])
    # D3D = np.array([(o[0],o[1],v) for o,v in zip(orders, VAR)])
    mkPlotParetoSquare(D3D, "paretomn.pdf")

    # import matplotlib as mpl
    # import matplotlib.pyplot as plt
    # from mpl_toolkits.mplot3d import Axes3D
    # plt.clf()
    # mpl.rc('text', usetex = True)
    # mpl.rc('font', family = 'serif', size=12)
    # mpl.style.use("ggplot")

    # fig = plt.figure()
    # ax = fig.add_subplot(111, projection='3d')
    # p3D = is_pareto_efficient_dumb(D3D)
    # # # from IPython import embed
    # # # embed()

    # for num, (m,n,v) in enumerate(zip(ncM,ncN, VAR)):
    # if p3D[num]:
    # ax.scatter(m, n, np.log10(v), c="gold")
    # else:
    # ax.scatter(m, n, np.log10(v), c="r")
    # ax.set_xlabel('nc m')
    # ax.set_ylabel('nc n')
    # ax.set_zlabel('log v')
    # plt.show()
    # sys.exit(1)

    NNC = []
    for num, n in enumerate(NC):
        NNC.append(n - NNZ[num])

    CMP = [a * b for a, b in zip(NNZ, L2)]

    if f_plot:
        # mkPlotCompromise([(a,b) for a, b in zip(NNZ, L2)],  f_plot,  orders, ly="$L_2^\\mathrm{test}$", lx="$N_\\mathrm{non-zero}$", logx=False)
        # mkPlotCompromise([(a,b) for a, b in zip(NNZ, VAR)],  "VAR_{}".format(f_plot),  orders, ly="$\\frac{L_2^\\mathrm{test}}{N_\mathrm{non-zero}}$", lx="$N_\\mathrm{non-zero}$", logy=True, logx=False)
        # mkPlotCompromise([(a,b) for a, b in zip(NC, VAR)],  "NCVAR_{}".format(f_plot),  orders, ly="$\\frac{L_2^\\mathrm{test}}{N_\mathrm{non-zero}}$", lx="$N_\\mathrm{coeff}$", logy=True, logx=True, normalize_data=False)
        mkPlotCompromise2(
            [(a, b) for a, b in zip(NC, VAR)],
            "NCVAR_{}".format(f_plot),
            orders,
            ly="$\\frac{L_2^\\mathrm{test}}{N_\mathrm{non-zero}}$",
            lx="$N_\\mathrm{coeff}$",
            logy=True,
            logx=True,
            normalize_data=False)
        # mkPlotCompromise([(a,b) for a, b in zip(NNC, VAR)],  "NNCVAR_{}".format(f_plot),  orders, ly="$\\frac{L_2^\\mathrm{test}}{N_\mathrm{non-zero}}$", lx="$N_\\mathrm{coeff}-N_\mathrm{non-zero}$", logy=True, logx=True)

    # Proactive memory cleanup
    del APP

    for l in sorted(CMP)[0:debug]:
        i = CMP.index(l)
        oo = orders[i]
        print("{} -- L2: {:10.4e} | Loo: {:10.4e} | NNZ : {} | VVV : {:10.4e}".
              format(oo, L2[i], Linf[i], NNZ[i], VAR[i]))

    for l in sorted(CMP):
        i = CMP.index(l)
        oo = orders[i]
        # print("{} -- L2: {:10.4e} | Loo: {:10.4e}".format(oo, L2[i], Linf[i]))
        # If it is a polynomial we are done --- return the approximation that uses all data
        if oo[1] == 0:
            return apprentice.PolynomialApproximation(X,
                                                      Y,
                                                      order=oo[0],
                                                      pnames=pnames)
        else:
            APP_test = apprentice.RationalApproximation(X,
                                                        Y,
                                                        order=oo,
                                                        strategy=1,
                                                        pnames=pnames)
            bad = denomChangesSign(APP_test, APP_test._scaler.box,
                                   APP_test._scaler.center)[0]
            if bad:
                print("Cannot use {} due to pole in denominator".format(oo))
            else:
                return APP_test
Exemplo n.º 8
0
def mkBestRASIP(X,
                Y,
                pnames=None,
                train_fact=1,
                split=0.5,
                norm=2,
                m_max=None,
                n_max=None,
                f_plot=None,
                seed=1234,
                use_all=False):
    """
    """
    import apprentice
    np.random.seed(seed)
    _N, _dim = X.shape

    # Split dataset in training and test sample
    i_train = sorted(
        list(np.random.choice(range(_N), int(np.ceil(split * _N)))))
    i_test = [i for i in range(_N) if not i in i_train]

    N_train = len(i_train)
    N_test = len(i_test)

    orders = sorted(apprentice.tools.possibleOrders(N_train, _dim,
                                                    mirror=True))
    if n_max is not None: orders = [o for o in orders if o[1] <= n_max]
    if m_max is not None: orders = [o for o in orders if o[0] <= m_max]

    # Discard those orders where we do not have enough training points if train_fact>1
    if train_fact > 1:
        _temp = []
        for o in orders:
            if o[1] > 0:
                if train_fact * apprentice.tools.numCoeffsRapp(_dim,
                                                               o) <= N_train:
                    _temp.append(o)
            else:
                if train_fact * apprentice.tools.numCoeffsPoly(
                        _dim, o[0]) <= N_train:
                    _temp.append(o)
        orders = sorted(_temp)

    APP, APPcpl = [], []

    # print("Calculating {} approximations".format(len(orders)))
    import time
    t1 = time.time()
    for o in orders:
        m, n = o
        if n == 0:
            i_train_o = np.random.choice(
                i_train,
                int(train_fact * apprentice.tools.numCoeffsPoly(_dim, m)))
            APP.append(
                apprentice.PolynomialApproximation(X[i_train_o],
                                                   Y[i_train_o],
                                                   order=m))
            APPcpl.append(
                apprentice.PolynomialApproximation(X[i_train],
                                                   Y[i_train],
                                                   order=m))
        else:
            i_train_o = np.random.choice(
                i_train,
                int(train_fact * apprentice.tools.numCoeffsRapp(_dim, (m, n))))
            APP.append(
                apprentice.RationalApproximation(X[i_train_o],
                                                 Y[i_train_o],
                                                 order=(m, n),
                                                 strategy=1))
            APPcpl.append(
                apprentice.RationalApproximation(X[i_train],
                                                 Y[i_train],
                                                 order=(m, n),
                                                 strategy=1))
        # print("I used a training size of {}/{} available training points for order {}".format(len(i_train_o), len(i_train), o))
    t2 = time.time()
    print("Calculating {} approximations took {} seconds".format(
        len(orders), t2 - t1))

    L2 = [np.sqrt(raNorm(app, X[i_test], Y[i_test], 2)) for app in APP]
    L2cpl = [np.sqrt(raNorm(app, X[i_test], Y[i_test], 2)) for app in APPcpl]
    Linf = [raNormInf(app, X[i_test], Y[i_test]) for app in APP]

    # Find the order that gives the best L2 norm
    winner = L2.index(min(L2))
    runnerup = L2.index(sorted(L2)[1])
    winnerinf = Linf.index(min(Linf))

    o_win = orders[winner]
    o_rup = orders[runnerup]
    APP_win = APP[winner]
    APP_rup = APP[runnerup]

    # Confirm using all training data
    temp = apprentice.RationalApproximation(X[i_train],
                                            Y[i_train],
                                            order=o_win,
                                            strategy=1)
    l2temp = np.sqrt(raNorm(temp, X[i_test], Y[i_test], 2))

    #
    print("Winner: {} with L2 {} and L2 complete = {}".format(
        o_win, min(L2), l2temp))
    print("Winnerinf: {} with Loo {}".format(orders[winnerinf], min(Linf)))

    for l in sorted(L2)[0:4]:
        i = L2.index(l)
        print("{} -- L2: {:10.2e} || {:10.2e} -- Loo: {:10.2e}".format(
            orders[i], l, L2cpl[i], Linf[i]))

    # If it is a polynomial we are done
    if o_win[1] == 0: return APP_win

    # Let's check for poles in the denominator
    isbad = denomChangesSign(APP_win, APP_win._scaler.box,
                             APP_win._scaler.center)[0]

    if isbad:

        print("Can't use this guy {} (L2: {:10.2e})".format(o_win, min(L2)))
        _l2 = min(L2)
        for l in sorted(L2)[1:]:
            i = L2.index(l)
            print("Testing {} (L2: {:10.2e})".format(orders[i], l))
            if orders[i][1] == 0:
                print("This is a polynomial,done")
                return APP[i]
            else:
                bad = denomChangesSign(APP[i], APP[i]._scaler.box,
                                       APP[i]._scaler.center)[0]
                if bad:
                    ("Cannot use {} either".format(orders[i]))
                else:
                    return APP[i]
        # if rupisbad:
        # print("This guy  works though{}".format(o_rup))
        # else:
        # print("Need to fix also this guy {}".format(o_rup))

        # FS = ["filter", "scipy"]
        # FS = ["scipy"]
        # RS = ["ms"]

        # import json
        # for fs in FS:
        # for rs in RS:
        # rrr = apprentice.RationalApproximationSIP(X[i_train], Y[i_train],
        # m=o_win[0], n=o_win[1], pnames=pnames, fitstrategy=fs, trainingscale="Cp",
        # roboptstrategy=rs)
        # print("Test error FS {} RS {}: 1N:{} 2N:{} InfN:{}".format(fs, rs,
        # raNorm(rrr, X[i_test], Y[i_test],1),
        # np.sqrt(raNorm(rrr, X[i_test], Y[i_test],2)),
        # raNormInf(rrr, X[i_test], Y[i_test])))
        # print("Total Approximation time {}\n".format(rrr.fittime))
        # print("{}".format(denomChangesSign(rrr, rrr._scaler.box, rrr._scaler.center)))

        # # with open("test2D_{}_{}.json".format(fs,rs), "w") as f: json.dump(rrr.asDict, f, indent=4)
        # return rrr

    else:
        return APP_win