Exemplo n.º 1
0
    def post(self, request):
        new_filters = request.data.get("filters", [])
        filters = get_qa_metrics_settings(request.user)
        fields = [field["name"] for field in filters]
        filters = update_drop_down_fields(
            filters,
            get_issues_dataframe(
                fields=fields, filters=[UNRESOLVED_BUGS_FILTER]
            ),
        )

        if new_filters:
            for new_filter in new_filters:
                for filter_ in filters:
                    if new_filter["name"] == filter_["name"]:
                        filter_.update(
                            {
                                "current_value": new_filter["current_value"],
                                "filtration_type": new_filter[
                                    "filtration_type"
                                ],
                                "exact_match": new_filter["exact_match"],
                            }
                        )
        filters += [UNRESOLVED_BUGS_FILTER]

        cached_filters = redis_conn.get(
            f"user:{request.user.id}:qa_metrics:filters"
        )
        cached_filters = loads(cached_filters) if cached_filters else []

        context = {
            "records_count": {
                "total": get_issue_count(filters=[UNRESOLVED_BUGS_FILTER]),
                "filtered": get_issue_count(filters),
            },
            "filters": filters,
        }

        if not cached_filters or not check_filters_equality(
            filters, cached_filters
        ):
            clear_cache(
                [
                    "qa_metrics:predictions_table",
                    "qa_metrics:predictions_page",
                ],
                request.user.id,
            )
            for element in context:
                redis_conn.set(
                    f"user:{request.user.id}:qa_metrics:{element}",
                    dumps(context.get(element)),
                )

        return Response(context)
Exemplo n.º 2
0
    def get(self, request):
        total_count = get_issue_count(filters=[UNRESOLVED_BUGS_FILTER])

        if not total_count:
            Response({})

        cache = redis_conn.get(f"user:{request.user.id}:qa_metrics:filters")

        filters = [UNRESOLVED_BUGS_FILTER]
        if cache:
            filters = loads(cache)

        context = {
            "records_count": {
                "total": total_count,
                "filtered": get_issue_count(filters),
            },
        }
        return Response(context)
Exemplo n.º 3
0
def create_report_file(
    created_issues: DataFrame,
    resolved_issues: DataFrame,
    filename: str,
    file_path: str,
) -> None:
    """Create report file.

    Parameters
    ----------
    created_issues:
        Issues created on specific date.
    resolved_issues:
        Issues resolved on specific date.
    filename:
        Sheet name.
    file_path:
        File path.
    """
    with ExcelWriter(file_path, engine="xlsxwriter") as writer:
        row = 0

        text_style = writer.book.add_format({"bold": True})
        text_style.set_font_size(SHEET_FONT_SIZE)

        if not writer.book.get_worksheet_by_name(filename):
            sheet = writer.book.add_worksheet(filename)
            writer.sheets.update({filename: sheet})

        row += write_report_dataframe(
            df=created_issues,
            writer=writer,
            sheet_name=filename,
            header="Created",
            text_style=text_style,
            row_number=row,
        )
        row += write_report_dataframe(
            df=resolved_issues,
            writer=writer,
            sheet_name=filename,
            header="Resolved",
            text_style=text_style,
            row_number=row,
        )

        text_style = writer.book.add_format({"bold": True, "border": 1})
        sheet.write_column(
            row, 0, ["Total", "Created", "Resolved"], text_style,
        )
        sheet.write_column(
            row,
            1,
            [get_issue_count(), len(created_issues), len(resolved_issues)],
        )
Exemplo n.º 4
0
    def get(self, request):

        total_count = get_issue_count()
        if not total_count:
            return Response({})

        cache = redis_conn.get(
            f"user:{request.user.id}:analysis_and_training:filters"
        )

        filters = None
        if cache:
            filters = loads(cache)

        filtered_count = get_issue_count(filters)

        context = {
            "records_count": {
                "total": total_count,
                "filtered": filtered_count,
            },
        }

        return Response(context)
Exemplo n.º 5
0
    def post(self, request):
        fields = get_issues_fields(request.user)
        issues = get_issues_dataframe(fields=fields)

        filters = get_filters(
            request.user,
            issues=issues,
        )

        if request.data.get("action") == "apply":
            new_filters = request.data.get("filters")
            if new_filters:
                for new_filter in new_filters:
                    for filter_ in filters:
                        if new_filter["name"] == filter_["name"]:
                            filter_.update(
                                {
                                    "current_value": new_filter[
                                        "current_value"
                                    ],
                                    "filtration_type": new_filter[
                                        "filtration_type"
                                    ],
                                    "exact_match": new_filter["exact_match"],
                                }
                            )
                issues = get_issues(filters=filters, fields=fields)

        issues_count = len(issues)
        context = {
            "records_count": {
                "total": get_issue_count(),
                "filtered": issues_count,
            },
            "filters": filters,
        }
        for element in context:
            redis_conn.set(
                f"user:{request.user.id}:analysis_and_training:{element}",
                dumps(context.get(element)),
            )

        remove_cache_record(
            "analysis_and_training:defect_submission", request.user.id
        )

        return Response(context)
Exemplo n.º 6
0
    def post(self, request):
        fields = get_issues_fields(request.user)

        filters = get_filters(
            request.user,
            issues=pd.DataFrame.from_records(get_issues(fields=fields)),
        )

        if request.data.get("action") == "apply":
            new_filters = request.data.get("filters")
            if new_filters:
                for new_filter in new_filters:
                    for filter_ in filters:
                        if new_filter["name"] == filter_["name"]:
                            filter_.update({
                                "current_value":
                                new_filter["current_value"],
                                "filtration_type":
                                new_filter["filtration_type"],
                                "exact_match":
                                new_filter["exact_match"],
                            })
                issues = get_issues(filters=filters, fields=fields)
            else:
                issues = get_issues(fields=fields)
        else:
            issues = get_issues(fields=fields)

        if len(issues) == 0:
            context = {
                "records_count": {
                    "total": get_issue_count(),
                    "filtered": 0
                },
                "frequently_terms": [],
                "statistics": {},
                "submission_chart": {},
                "significant_terms": {},
                "filters": filters,
            }
            redis_conn.set(f"analysis_and_training:{request.user.id}",
                           dumps(context))
            return Response({})

        issues = pd.DataFrame.from_records(issues)
        freq_terms = calculate_frequently_terms(issues)
        statistics = calculate_statistics(
            df=issues, series=["Comments", "Attachments", "Time to Resolve"])
        submission_chart = calculate_defect_submission(df=issues,
                                                       period="Month")
        significant_terms = get_significant_terms(
            issues, get_training_settings(request.user))

        context = {
            "records_count": {
                "total": get_issue_count(),
                "filtered": len(issues),
            },
            "frequently_terms": freq_terms,
            "statistics": statistics,
            "submission_chart": submission_chart,
            "significant_terms": significant_terms,
            "filters": filters,
        }
        redis_conn.set(f"analysis_and_training:{request.user.id}",
                       dumps(context))

        return Response(context)
Exemplo n.º 7
0
def check_issues_exist() -> None:
    """Checks that database have issues. If it doesn't have issues then raises warning."""
    if not get_issue_count():
        raise BugsNotFoundWarning
Exemplo n.º 8
0
    def get(self, request):
        issues_count = get_issue_count()

        return Response({"issues_loaded": bool(issues_count)})
Exemplo n.º 9
0
 def get(self, request):
     context = {"issues_exists": bool(get_issue_count())}
     return Response(context)