Exemplo n.º 1
0
    def test_place_pwlin_id(self):
        # Single branch, discontiguous segments.
        s0p = A.mpoint(0, 0, 0, 10)
        s0d = A.mpoint(1, 0, 0, 10)
        s1p = A.mpoint(3, 0, 0, 10)
        s1d = A.mpoint(4, 0, 0, 10)

        tree = A.segment_tree()
        i = tree.append(A.mnpos, s0p, s0d, 1)
        tree.append(i, s1p, s1d, 2)

        m = A.morphology(tree)
        place = A.place_pwlin(m)

        L0 = place.at(A.location(0, 0))
        L0s = place.all_at(A.location(0, 0))
        self.assertEqual(s0p, L0)
        self.assertEqual([s0p], L0s)

        Lhalf = place.at(A.location(0, 0.5))
        Lhalfs = place.all_at(A.location(0, 0.5))
        self.assertTrue(s0d == Lhalf or s1p == Lhalf)
        self.assertTrue([s0d, s1p] == Lhalfs)

        Chalf = [(s.prox, s.dist)
                 for s in place.segments([A.cable(0, 0., 0.5)])]
        self.assertEqual([(s0p, s0d)], Chalf)

        Chalf_all = [(s.prox, s.dist)
                     for s in place.all_segments([A.cable(0, 0., 0.5)])]
        self.assertEqual([(s0p, s0d), (s1p, s1p)], Chalf_all)
Exemplo n.º 2
0
    def cell_description(self, gid):
        tree = arbor.segment_tree()
        tree.append(arbor.mnpos,
                    arbor.mpoint(-3, 0, 0, 3),
                    arbor.mpoint(3, 0, 0, 3),
                    tag=1)

        labels = arbor.label_dict({
            'soma': '(tag 1)',
            'center': '(location 0 0.5)'
        })

        decor = arbor.decor()
        decor.set_property(Vm=-40)
        decor.paint('(all)', arbor.density('hh'))

        decor.place('"center"', arbor.spike_detector(-10), "detector")
        decor.place('"center"', arbor.synapse('expsyn'), "synapse")

        mech = arbor.mechanism('expsyn_stdp')
        mech.set("max_weight", 1.)
        syn = arbor.synapse(mech)

        decor.place('"center"', syn, "stpd_synapse")

        cell = arbor.cable_cell(tree, labels, decor)

        return cell
Exemplo n.º 3
0
    def cell_description(self, gid):
        """A high level description of the cell with global identifier gid.

        For example the morphology, synapses and ion channels required
        to build a multi-compartment neuron.
        """
        assert gid == 0

        tree = arbor.segment_tree()

        tree.append(arbor.mnpos,
                    arbor.mpoint(0, 0, 0, self.radius),
                    arbor.mpoint(self.length, 0, 0, self.radius),
                    tag=1)

        labels = arbor.label_dict({'cable': '(tag 1)',
                                   'start': '(location 0 0)'})

        decor = arbor.decor()
        decor.set_property(Vm=self.Vm)
        decor.set_property(cm=self.cm)
        decor.set_property(rL=self.rL)

        decor.paint('"cable"',
                    arbor.density(f'pas/e={self.Vm}', {'g': self.g}))

        decor.place('"start"', arbor.iclamp(self.stimulus_start, self.stimulus_duration, self.stimulus_amplitude), "iclamp")

        policy = arbor.cv_policy_max_extent(self.cv_policy_max_extent)
        decor.discretization(policy)

        return arbor.cable_cell(tree, labels, decor)
Exemplo n.º 4
0
 def cell_description(self, gid):
     tree = arb.segment_tree()
     tree.append(arb.mnpos,
                 arb.mpoint(-3, 0, 0, 3),
                 arb.mpoint(3, 0, 0, 3),
                 tag=1)
     decor = arb.decor()
     decor.place('(location 0 0.5)', arb.gap_junction_site(), "gj")
     return arb.cable_cell(tree, arb.label_dict(), decor)
Exemplo n.º 5
0
def make_cable_cell(gid):
    # (1) Build a segment tree
    tree = arbor.segment_tree()

    # Soma (tag=1) with radius 6 μm, modelled as cylinder of length 2*radius
    s = tree.append(arbor.mnpos,
                    arbor.mpoint(-12, 0, 0, 6),
                    arbor.mpoint(0, 0, 0, 6),
                    tag=1)

    # Single dendrite (tag=3) of length 50 μm and radius 2 μm attached to soma.
    b0 = tree.append(s,
                     arbor.mpoint(0, 0, 0, 2),
                     arbor.mpoint(50, 0, 0, 2),
                     tag=3)

    # Attach two dendrites (tag=3) of length 50 μm to the end of the first dendrite.
    # Radius tapers from 2 to 0.5 μm over the length of the dendrite.
    b1 = tree.append(b0,
                     arbor.mpoint(50, 0, 0, 2),
                     arbor.mpoint(50 + 50 / sqrt(2), 50 / sqrt(2), 0, 0.5),
                     tag=3)
    # Constant radius of 1 μm over the length of the dendrite.
    b2 = tree.append(b0,
                     arbor.mpoint(50, 0, 0, 1),
                     arbor.mpoint(50 + 50 / sqrt(2), -50 / sqrt(2), 0, 1),
                     tag=3)

    # Associate labels to tags
    labels = arbor.label_dict()
    labels['soma'] = '(tag 1)'
    labels['dend'] = '(tag 3)'

    # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite).
    labels['synapse_site'] = '(location 1 0.5)'
    labels['synapse_site2'] = '(location 1 0.5)'
    # Mark the root of the tree.
    labels['root'] = '(root)'

    # (3) Create a decor and a cable_cell
    decor = arbor.decor()

    # Put hh dynamics on soma, and passive properties on the dendrites.
    decor.paint('"soma"', 'hh')
    decor.paint('"dend"', 'pas')

    # (4) Attach a single synapse.
    decor.place('"synapse_site"', 'expsyn')
    decor.place('"synapse_site2"', 'expsyn')

    # Attach a spike detector with threshold of -10 mV.
    decor.place('"root"', arbor.spike_detector(-10))

    cell = arbor.cable_cell(tree, labels, decor)

    return cell
Exemplo n.º 6
0
 def __init__(self):
     A.recipe.__init__(self)
     st = A.segment_tree()
     i = st.append(A.mnpos, (0, 0, 0, 10), (1, 0, 0, 10), 1)
     st.append(i, (1, 3, 0, 5), 1)
     st.append(i, (1, -4, 0, 3), 1)
     self.the_morphology = A.morphology(st)
     self.the_cat = A.default_catalogue()
     self.the_props = A.neuron_cable_properties()
     self.the_props.register(self.the_cat)
Exemplo n.º 7
0
 def __init__(self):
     arb.recipe.__init__(self)
     self.tree = arb.segment_tree()
     self.tree.append(arb.mnpos, (0, 0, 0, 10), (1, 0, 0, 10), 1)
     self.props = arb.neuron_cable_properties()
     self.props.catalogue = arb.load_catalogue(cat)
     d = arb.decor()
     d.paint('(all)', 'dummy')
     d.set_property(Vm=0.0)
     self.cell = arb.cable_cell(self.tree, arb.label_dict(), d)
def make_cable_cell(gid):
    # (1) Build a segment tree
    # https://docs.arbor-sim.org/en/latest/concepts/morphology.html
    tree = arbor.segment_tree()

    # Soma (tag=1) with radius 6 μm, modelled as cylinder of length 2*radius
    s = tree.append(arbor.mnpos,
                    arbor.mpoint(-12, 0, 0, 6),
                    arbor.mpoint(0, 0, 0, 6),
                    tag=1)

    # Single dendrite (tag=3) of length 50 μm and radius 2 μm attached to soma.
    b0 = tree.append(s,
                     arbor.mpoint(0, 0, 0, 2),
                     arbor.mpoint(50, 0, 0, 2),
                     tag=3)

    # Attach two dendrites (tag=3) of length 50 μm to the end of the first dendrite.
    # Radius tapers from 2 to 0.5 μm over the length of the dendrite.
    b1 = TODO
    # Constant radius of 1 μm over the length of the dendrite.
    b2 = TODO

    # Associate labels to tags
    # https://docs.arbor-sim.org/en/latest/concepts/labels.html
    labels = arbor.label_dict()
    labels['soma'] = '(tag 1)'
    labels['dend'] = '(tag 3)'

    # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite).
    # https://docs.arbor-sim.org/en/latest/concepts/labels.html
    labels['synapse_site'] = TODO
    # Mark the root of the tree.
    labels['root'] = TODO

    # (3) Create a decor and a cable_cell
    # https://docs.arbor-sim.org/en/latest/python/decor.html
    decor = arbor.decor()

    # Put hh dynamics on soma, and passive properties on the dendrites.
    decor.paint('"soma"', 'hh')
    decor.paint('"dend"', 'pas')

    # (4) Attach a single synapse.
    decor.place('"synapse_site"', 'expsyn', 'syn')

    # Attach a spike detector with threshold of -10 mV.
    decor.place(TODO)

    cell = arbor.cable_cell(tree, labels, decor)

    return cell
Exemplo n.º 9
0
    def __init__(self):
        A.recipe.__init__(self)
        st = A.segment_tree()
        st.append(A.mnpos, (0, 0, 0, 10), (1, 0, 0, 10), 1)

        dec = A.decor()

        dec.place('(location 0 0.08)', "expsyn")
        dec.place('(location 0 0.09)', "exp2syn")
        dec.paint('(all)', "hh")

        self.cell = A.cable_cell(st, A.label_dict(), dec)

        self.cat = A.default_catalogue()
        self.props = A.neuron_cable_propetries()
        self.props.register(self.cat)
Exemplo n.º 10
0
    def __init__(self):
        arb.recipe.__init__(self)
        self.tree = arb.segment_tree()
        self.tree.append(arb.mnpos, (0, 0, 0, 10), (1, 0, 0, 10), 1)
        self.props = arb.neuron_cable_properties()
        try:
            self.cat = arb.default_catalogue()
            self.props.register(self.cat)
        except:
            print("Catalogue not found. Are you running from build directory?")
            raise

        d = arb.decor()
        d.paint('(all)', arb.density('pas'))
        d.set_property(Vm=0.0)
        self.cell = arb.cable_cell(self.tree, arb.label_dict(), d)
Exemplo n.º 11
0
    def __init__(self):
        A.recipe.__init__(self)
        st = A.segment_tree()
        st.append(A.mnpos, (0, 0, 0, 10), (1, 0, 0, 10), 1)

        dec = A.decor()

        dec.place('(location 0 0.08)', A.synapse("expsyn"), "syn0")
        dec.place('(location 0 0.09)', A.synapse("exp2syn"), "syn1")
        dec.place('(location 0 0.1)', A.iclamp(20.), "iclamp")
        dec.paint('(all)', A.density("hh"))

        self.cell = A.cable_cell(st, A.label_dict(), dec)

        self.props = A.neuron_cable_properties()
        self.props.catalogue = A.default_catalogue()
Exemplo n.º 12
0
def make_cable_cell(gid):

    # Build a segment tree
    tree = arbor.segment_tree()

    # Soma with radius 5 μm and length 2 * radius = 10 μm, (tag = 1)
    s = tree.append(arbor.mnpos,
                    arbor.mpoint(-10, 0, 0, 5),
                    arbor.mpoint(0, 0, 0, 5),
                    tag=1)

    # Single dendrite with radius 2 μm and length 40 μm, (tag = 2)
    b = tree.append(s,
                    arbor.mpoint(0, 0, 0, 2),
                    arbor.mpoint(40, 0, 0, 2),
                    tag=2)

    # Label dictionary for cell components
    labels = arbor.label_dict()
    labels['soma'] = '(tag 1)'
    labels['dend'] = '(tag 2)'

    # Mark location for synapse site at midpoint of dendrite (branch 0 = soma + dendrite)
    labels['synapse_site'] = '(location 0 0.6)'

    # Gap junction site at connection point of soma and dendrite
    labels['gj_site'] = '(location 0 0.2)'

    # Label root of the tree
    labels['root'] = '(root)'

    # Paint dynamics onto the cell, hh on soma and passive properties on dendrite
    decor = arbor.decor()
    decor.paint('"soma"', arbor.density("hh"))
    decor.paint('"dend"', arbor.density("pas"))

    # Attach one synapse and gap junction each on their labeled sites
    decor.place('"synapse_site"', arbor.synapse('expsyn'), 'syn')
    decor.place('"gj_site"', arbor.junction('gj'), 'gj')

    # Attach spike detector to cell root
    decor.place('"root"', arbor.spike_detector(-10), 'detector')

    cell = arbor.cable_cell(tree, labels, decor)

    return cell
Exemplo n.º 13
0
def cable_cell():
    # (1) Create a morphology with a single (cylindrical) segment of length=diameter=6 μm
    tree = arbor.segment_tree()
    tree.append(
        arbor.mnpos,
        arbor.mpoint(-3, 0, 0, 3),
        arbor.mpoint(3, 0, 0, 3),
        tag=1,
    )

    # (2) Define the soma and its midpoint
    labels = arbor.label_dict({'soma':   '(tag 1)',
                               'midpoint': '(location 0 0.5)'})

    # (3) Create cell and set properties
    decor = arbor.decor()
    decor.set_property(Vm=-40)
    decor.paint('"soma"', arbor.density('hh'))
    decor.place('"midpoint"', arbor.iclamp( 10, 2, 0.8), "iclamp")
    decor.place('"midpoint"', arbor.spike_detector(-10), "detector")
    return arbor.cable_cell(tree, labels, decor)
Exemplo n.º 14
0
def create_arbor_cell(cell, nl_network, gid):

    if cell.arbor_cell=='cable_cell':

        default_tree = arbor.segment_tree()
        radius = evaluate(cell.parameters['radius'], nl_network.parameters) if 'radius' in cell.parameters else 3

        default_tree.append(arbor.mnpos, arbor.mpoint(-1*radius, 0, 0, radius), arbor.mpoint(radius, 0, 0, radius), tag=1)

        labels = arbor.label_dict({'soma':   '(tag 1)',
                                   'center': '(location 0 0.5)'})

        labels['root'] = '(root)'

        decor = arbor.decor()

        v_init = evaluate(cell.parameters['v_init'], nl_network.parameters) if 'v_init' in cell.parameters else -70
        decor.set_property(Vm=v_init)

        decor.paint('"soma"', cell.parameters['mechanism'])

        if gid==0:
            ic = arbor.iclamp( nl_network.parameters['input_del'], nl_network.parameters['input_dur'], nl_network.parameters['input_amp'])
            print_v("Stim: %s"%ic)
            decor.place('"center"', ic)

        decor.place('"center"', arbor.spike_detector(-10))


        # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite).
        labels['synapse_site'] = '(location 0 0.5)'
        # (4) Attach a single synapse.
        decor.place('"synapse_site"', 'expsyn')

        default_cell = arbor.cable_cell(default_tree, labels, decor)

        print_v("Created a new cell for gid %i: %s"%(gid,cell))
        print_v("%s"%(default_cell))

        return default_cell
Exemplo n.º 15
0
    def cell_description(self, gid):
        """A high level description of the cell with global identifier gid.

        For example the morphology, synapses and ion channels required
        to build a multi-compartment neuron.
        """
        assert gid in [0, 1]

        tree = arbor.segment_tree()

        tree.append(arbor.mnpos,
                    arbor.mpoint(0, 0, 0, self.radius),
                    arbor.mpoint(self.length, 0, 0, self.radius),
                    tag=1)

        labels = arbor.label_dict({
            'cell': '(tag 1)',
            'gj_site': '(location 0 0.5)'
        })

        decor = arbor.decor()
        decor.set_property(Vm=self.Vms[gid])
        decor.set_property(cm=self.cm)
        decor.set_property(rL=self.rL)

        # add a gap junction mechanism at the "gj_site" location and label that specific mechanism on that location "gj_label"
        junction_mech = arbor.junction('gj', {"g": self.gj_g})
        decor.place('"gj_site"', junction_mech, 'gj_label')
        decor.paint('"cell"',
                    arbor.density(f'pas/e={self.Vms[gid]}', {'g': self.g}))

        if self.cv_policy_max_extent is not None:
            policy = arbor.cv_policy_max_extent(self.cv_policy_max_extent)
            decor.discretization(policy)
        else:
            decor.discretization(arbor.cv_policy_single())

        return arbor.cable_cell(tree, labels, decor)
Exemplo n.º 16
0
    def test_place_pwlin_isometry(self):
        # Single branch, discontiguous segments.
        s0p = A.mpoint(0, 0, 0, 10)
        s0d = A.mpoint(1, 0, 0, 10)
        s1p = A.mpoint(3, 0, 0, 10)
        s1d = A.mpoint(4, 0, 0, 10)

        tree = A.segment_tree()
        i = tree.append(A.mnpos, s0p, s0d, 1)
        tree.append(i, s1p, s1d, 2)

        m = A.morphology(tree)
        iso = A.isometry.translate(2, 3, 4)
        place = A.place_pwlin(m, iso)

        x0p = iso(s0p)
        x0d = iso(s0d)
        x1p = iso(s1p)
        x1d = iso(s1d)

        L0 = place.at(A.location(0, 0))
        L0s = place.all_at(A.location(0, 0))
        self.assertEqual(x0p, L0)
        self.assertEqual([x0p], L0s)

        Lhalf = place.at(A.location(0, 0.5))
        Lhalfs = place.all_at(A.location(0, 0.5))
        self.assertTrue(x0d == Lhalf or x1p == Lhalf)
        self.assertTrue([x0d, x1p] == Lhalfs)

        Chalf = [(s.prox, s.dist)
                 for s in place.segments([A.cable(0, 0., 0.5)])]
        self.assertEqual([(x0p, x0d)], Chalf)

        Chalf_all = [(s.prox, s.dist)
                     for s in place.all_segments([A.cable(0, 0., 0.5)])]
        self.assertEqual([(x0p, x0d), (x1p, x1p)], Chalf_all)
Exemplo n.º 17
0
    def create_arbor_cell(self, cell, gid, pop_id, index):

        if cell.arbor_cell == "cable_cell":

            default_tree = arbor.segment_tree()
            radius = (evaluate(cell.parameters["radius"],
                               self.nl_network.parameters)
                      if "radius" in cell.parameters else 3)

            default_tree.append(
                arbor.mnpos,
                arbor.mpoint(-1 * radius, 0, 0, radius),
                arbor.mpoint(radius, 0, 0, radius),
                tag=1,
            )

            labels = arbor.label_dict({
                "soma": "(tag 1)",
                "center": "(location 0 0.5)"
            })

            labels["root"] = "(root)"

            decor = arbor.decor()

            v_init = (evaluate(cell.parameters["v_init"],
                               self.nl_network.parameters)
                      if "v_init" in cell.parameters else -70)
            decor.set_property(Vm=v_init)

            decor.paint('"soma"', arbor.density(cell.parameters["mechanism"]))

            decor.place('"center"', arbor.spike_detector(0), "detector")

            for ip in self.input_info:
                if self.input_info[ip][0] == pop_id:
                    print_v("Stim: %s (%s) being placed on %s" %
                            (ip, self.input_info[ip], pop_id))
                    for il in self.input_lists[ip]:
                        cellId, segId, fract, weight = il
                        if cellId == index:
                            if self.input_info[ip][
                                    1] == 'i_clamp':  # TODO: remove hardcoding of this...
                                ic = arbor.iclamp(
                                    self.nl_network.parameters["input_del"],
                                    self.nl_network.parameters["input_dur"],
                                    self.nl_network.parameters["input_amp"],
                                )
                                print_v("Stim: %s on %s" % (ic, gid))
                                decor.place('"center"', ic, "iclamp")

            # (2) Mark location for synapse at the midpoint of branch 1 (the first dendrite).
            labels["synapse_site"] = "(location 0 0.5)"
            # (4) Attach a single synapse.
            decor.place('"synapse_site"', arbor.synapse("expsyn"), "syn")

            default_cell = arbor.cable_cell(default_tree, labels, decor)

            print_v("Created a new cell for gid %i: %s" % (gid, cell))
            print_v("%s" % (default_cell))

            return default_cell
Exemplo n.º 18
0
#!/usr/bin/env python3

import arbor
import pandas, seaborn  # You may have to pip install these.

# (1) Create a morphology with a single (cylindrical) segment of length=diameter=6 μm
tree = arbor.segment_tree()
tree.append(arbor.mnpos,
            arbor.mpoint(-3, 0, 0, 3),
            arbor.mpoint(3, 0, 0, 3),
            tag=1)

# (2) Define the soma and its center
labels = arbor.label_dict({'soma': '(tag 1)', 'center': '(location 0 0.5)'})

# (3) Create cell and set properties
cell = arbor.cable_cell(tree, labels)
cell.set_properties(Vm=-40)
cell.paint('"soma"', 'hh')
cell.place('"center"', arbor.iclamp(10, 2, 0.8))
cell.place('"center"', arbor.spike_detector(-10))

# (4) Make single cell model.
m = arbor.single_cell_model(cell)

# (5) Attach voltage probe sampling at 10 kHz (every 0.1 ms).
m.probe('voltage', '"center"', frequency=10000)

# (6) Run simulation for 30 ms of simulated activity.
m.run(tfinal=30)
Exemplo n.º 19
0
            d = seg.dist
            sections += 'Segment(({}, {}, {}), ({}, {}, {}), {})'.format(p.x, p.y, p.radius, d.x, d.y, d.radius, seg.tag)
            last_dist = seg.dist
        sections += ']'

        string += '\n    [{}],'.format(sections)
    string += ']\n'
    string += '{} = representation.make_morph(tmp)\n\n'.format(name)
    return string

# Describe the morphologies

mnpos = arbor.mnpos

# The morphology used for all of the region/locset illustrations
label_tree = arbor.segment_tree()
label_tree.append(mnpos, mpoint(0,   0.0, 0, 2.0), mpoint( 4,  0.0, 0, 2.0), tag=1)
label_tree.append(0,     mpoint(4,   0.0, 0, 0.8), mpoint( 8,  0.0, 0, 0.8), tag=3)
label_tree.append(1,     mpoint(8,   0.0, 0, 0.8), mpoint(12, -0.5, 0, 0.8), tag=3)
label_tree.append(2,     mpoint(12, -0.5, 0, 0.8), mpoint(20,  4.0, 0, 0.4), tag=3)
label_tree.append(3,     mpoint(20,  4.0, 0, 0.4), mpoint(26,  6.0, 0, 0.2), tag=3)
label_tree.append(2,     mpoint(12, -0.5, 0, 0.5), mpoint(19, -3.0, 0, 0.5), tag=3)
label_tree.append(5,     mpoint(19, -3.0, 0, 0.5), mpoint(24, -7.0, 0, 0.2), tag=3)
label_tree.append(5,     mpoint(19, -3.0, 0, 0.5), mpoint(23, -1.0, 0, 0.2), tag=3)
label_tree.append(7,     mpoint(23, -1.0, 0, 0.2), mpoint(26, -2.0, 0, 0.2), tag=3)
label_tree.append(mnpos, mpoint(0,   0.0, 0, 2.0), mpoint(-7,  0.0, 0, 0.4), tag=2)
label_tree.append(9,     mpoint(-7,  0.0, 0, 0.4), mpoint(-10, 0.0, 0, 0.4), tag=2)

label_morph = arbor.morphology(label_tree)

# The label morphology with some gaps (at start of dendritic tree and remove the axon hillock)