Exemplo n.º 1
0
def test_smoke(data, trend, lags, leads, common, max_lag, method):
    y, x = data
    if common:
        leads = lags
    mod = DynamicOLS(y, x, trend, lags, leads, common, max_lag, max_lag,
                     method)
    mod.fit()
Exemplo n.º 2
0
def test_smoke_fit(data, cov_type, kernel, bandwidth, force_int, df_adjust):
    y, x = data
    mod = DynamicOLS(y, x, "ct", 3, 5, False)
    res = mod.fit(cov_type, kernel, bandwidth, force_int, df_adjust)
    assert isinstance(res.leads, int)
    assert isinstance(res.lags, int)
    assert isinstance(res.bandwidth, (int, float))
    assert isinstance(res.params, pd.Series)
    assert isinstance(res.cov_type, str)
    assert isinstance(res.resid, pd.Series)
    assert isinstance(res.cov, pd.DataFrame)
    assert isinstance(res.kernel, str)
    assert isinstance(res.summary().as_text(), str)
    assert isinstance(res.summary(True).as_text(), str)
Exemplo n.º 3
0
def test_kernels_eviews(trivariate_data, config):
    y, x = trivariate_data
    kernel = config[0]
    ser = float(config[1])
    lrvar = config[2]
    bw = 9 if kernel == "parzen" else 10
    res = DynamicOLS(y, x).fit(kernel=kernel, bandwidth=bw, df_adjust=True)
    assert_allclose(res.residual_variance, ser**2.0, rtol=1e-5)
    assert_allclose(res.long_run_variance, lrvar, rtol=1e-5)
Exemplo n.º 4
0
def test_error(trivariate_data):
    y, x = trivariate_data
    if isinstance(x, pd.DataFrame):
        y = y.iloc[:20]
        x = x.iloc[:20]
    else:
        y = y[:20]
        x = x[:20]
    with pytest.raises(ValueError, match="max_lag and max_lead are too large"):
        DynamicOLS(y, x, max_lag=10, max_lead=10)
Exemplo n.º 5
0
def test_auto_eviews(trivariate_data, config):
    y, x = trivariate_data
    leads, lags = config[0]
    expected = np.array(config[1])
    params = expected[:, 0]
    se = expected[:, 1]
    res = DynamicOLS(y, x).fit(bandwidth=1, df_adjust=True)
    assert res.leads == leads
    assert res.lags == lags
    assert_allclose(res.params, params, rtol=1e-4)
    assert_allclose(res.std_errors, se, rtol=1e-4)
Exemplo n.º 6
0
def test_basic(trivariate_data):
    # Tested against Eviews. Note: bandwidth is 1 less than Eviews bandwidth (2)
    y, x = trivariate_data
    res = DynamicOLS(y, x, leads=1, lags=1).fit(bandwidth=1, df_adjust=True)
    assert_allclose(res.params, [-11.65535, 2.301629, 91.65392], rtol=1e-4)
    assert_allclose(res.std_errors, [0.102846, 0.017243, 1.341955], rtol=1e-4)
    assert_allclose(res.tvalues, [-113.3279, 133.4834, 68.29882], rtol=1e-4)
    assert_allclose(res.pvalues, [0.0000, 0.0000, 0.0000], atol=1e-5)
    assert_allclose(res.long_run_variance, 39.35663, rtol=1e-4)
    assert_allclose(np.sqrt(res.residual_variance), 4.759419, rtol=1e-4)
    assert_allclose(res.rsquared, 0.998438, atol=1e-5)
    assert_allclose(res.rsquared_adj, 0.998425, atol=1e-5)
Exemplo n.º 7
0
def test_direct_eviews(trivariate_data, config):
    # Tested against Eviews. Note: bandwidth is 1 less than Eviews bandwidth (2)
    y, x = trivariate_data
    leads, lags = config[0]
    expected = np.array(config[1])
    params = expected[:, 0]
    se = expected[:, 1]
    res = DynamicOLS(y, x, leads=leads, lags=lags).fit(bandwidth=1,
                                                       df_adjust=True)
    assert res.leads == leads
    assert res.lags == lags
    assert_allclose(res.params, params, rtol=1e-4)
    assert_allclose(res.std_errors, se, rtol=1e-4)
Exemplo n.º 8
0
def test_auto_trends_eviews(trivariate_data, config):
    y, x = trivariate_data
    trend = config[0]
    leads, lags = config[1]
    expected = np.array(config[2])
    params = expected[:, 0]
    se = expected[:, 1]
    final_resid = config[3]
    r2 = config[4]
    res = DynamicOLS(y, x, trend=trend).fit(bandwidth=1, df_adjust=True)
    assert res.leads == leads
    assert res.lags == lags
    # Trends not checked since trends intrepreted differently
    assert_allclose(res.params.iloc[:2], params[:2], rtol=1e-4)
    assert_allclose(res.std_errors[:2], se[:2], rtol=1e-4)
    # Check resid to verify equivalent
    assert_allclose(res.resid.iloc[-1], final_resid, rtol=1e-4)
    assert_allclose(res.rsquared, r2, rtol=1e-5)
Exemplo n.º 9
0
def test_invalid_fit_options(data):
    y, x = data
    with pytest.raises(ValueError, match="kernel is not a "):
        DynamicOLS(y, x).fit(kernel="unknown")
    with pytest.raises(ValueError, match="Unknown cov_type"):
        DynamicOLS(y, x).fit(cov_type="unknown")
Exemplo n.º 10
0
def test_invalid_input(data):
    y, x = data
    with pytest.raises(ValueError, match="method must be one of"):
        DynamicOLS(y, x, method="unknown")
    with pytest.raises(ValueError, match="Unknown trend. Must be one"):
        DynamicOLS(y, x, trend="cttt")
Exemplo n.º 11
0
def test_mismatch_lead_lag(data):
    y, x = data
    with pytest.raises(ValueError, match="common is specified but leads"):
        DynamicOLS(y, x, "c", 4, 5, True)
    with pytest.raises(ValueError, match="common is specified but max_lead"):
        DynamicOLS(y, x, max_lag=6, max_lead=7, common=True)
Exemplo n.º 12
0
def test_hac_eviews(trivariate_data, config):
    y, x = trivariate_data
    res = DynamicOLS(y, x).fit(bandwidth=9, df_adjust=True, cov_type="robust")
    expected = np.array(config)
    se = expected[:, 1]
    assert_allclose(res.std_errors, se, rtol=1e-4)