def handler(event, context):
    start_time = time.time()

    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    tmp_bucket = event['tmp_bucket']
    merged_bucket = event['merged_bucket']
    num_classes = event['num_classes']
    num_features = event['num_features']
    num_epochs = event['num_epochs']
    learning_rate = event['learning_rate']
    batch_size = event['batch_size']

    print('bucket = {}'.format(bucket))
    print("file = {}".format(key))
    print('tmp bucket = {}'.format(tmp_bucket))
    print('merged bucket = {}'.format(merged_bucket))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print('num classes = {}'.format(num_classes))
    print('num features = {}'.format(num_features))
    print('num epochs = {}'.format(num_epochs))
    print('learning rate = {}'.format(learning_rate))
    print("batch size = {}".format(batch_size))

    s3 = boto3.client('s3')

    feature_file_name = "features_{}_{}.npy".format(worker_index, num_workers)
    label_file_name = "labels_{}_{}.npy".format(worker_index, num_workers)

    # read file from s3
    s3.download_file(bucket, feature_file_name, local_dir + str(feature_file_name))
    features_matrix = np.load(local_dir + str(feature_file_name))
    print("read features matrix cost {} s".format(time.time() - start_time))
    print("feature matrix shape = {}, dtype = {}".format(features_matrix.shape, features_matrix.dtype))
    print("feature matrix sample = {}".format(features_matrix[0]))
    row_features = features_matrix.shape[0]
    col_features = features_matrix.shape[1]

    s3.download_file(bucket, label_file_name, local_dir + str(label_file_name))
    labels_matrix = np.load(local_dir + str(label_file_name))
    print("read label matrix cost {} s".format(time.time() - start_time))
    print("label matrix shape = {}, dtype = {}".format(labels_matrix.shape, labels_matrix.dtype))
    print("label matrix sample = {}".format(labels_matrix[0:10]))
    row_labels = labels_matrix.shape[0]

    if row_features != row_labels:
        raise AssertionError("row of feature matrix is {}, but row of label matrix is {}."
                             .format(row_features, row_labels))

    parse_start = time.time()
    dataset = DenseDatasetWithNP(col_features, features_matrix, labels_matrix)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)

    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s, dataset size = {}"
          .format(time.time() - preprocess_start, dataset_size))

    model = LogisticRegression(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    train_start = time.time()
    for epoch in range(num_epochs):
        epoch_start = time.time()
        epoch_loss = 0
        for batch_index, (items, labels) in enumerate(train_loader):
            #   print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index))
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            loss.backward()

            # print("forward and backward cost {} s".format(time.time() - batch_start))
            w_grad = model.linear.weight.grad.data.numpy()
            w_grad_shape = w_grad.shape
            b_grad = model.linear.bias.grad.data.numpy()
            b_grad_shape = b_grad.shape

            w_b_grad = np.concatenate((w_grad.flatten(), b_grad.flatten()))
            cal_time = time.time() - batch_start

            sync_start = time.time()
            postfix = "{}_{}".format(epoch, batch_index)
            w_b_grad_merge = reduce_batch(w_b_grad, tmp_bucket, merged_bucket,
                                          num_workers, worker_index, postfix)
            w_grad_merge = \
                w_b_grad_merge[:w_grad_shape[0] * w_grad_shape[1]].reshape(w_grad_shape) / float(num_workers)
            b_grad_merge = \
                w_b_grad_merge[w_grad_shape[0] * w_grad_shape[1]:].reshape(b_grad_shape[0]) / float(num_workers)

            model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
            model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))
            sync_time = time.time() - sync_start

            optimizer.step()

            # Test the Model
            test_start = time.time()
            correct = 0
            total = 0
            test_loss = 0
            for items, labels in validation_loader:
                items = Variable(items.view(-1, num_features))
                labels = Variable(labels)
                outputs = model(items)
                test_loss += criterion(outputs, labels).data
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum()
            test_time = time.time() - test_start

            print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
                  'batch cost %.4f s: cal cost %.4f s communication cost %.4f s test cost %.4f s, '
                  'accuracy of the model on the %d test samples: %d %%, loss = %f'
                  % (epoch + 1, num_epochs, batch_index + 1, len(train_indices) / batch_size,
                     time.time() - train_start, loss.data, time.time() - epoch_start,
                     time.time() - batch_start, cal_time, sync_time, test_time,
                     len(val_indices), 100 * correct / total, test_loss / total))

        if worker_index == 0:
            delete_expired_merged_batch(merged_bucket, epoch, batch_index)

        # Test the Model
        test_start = time.time()
        correct = 0
        total = 0
        test_loss = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)
            outputs = model(items)
            test_loss += criterion(outputs, labels).data
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()

        print('Epoch: %d, time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f'
              % (epoch, time.time() - train_start, len(val_indices), 100 * correct / total, test_loss / total))

    if worker_index == 0:
        clear_bucket(merged_bucket)
        clear_bucket(tmp_bucket)

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
Exemplo n.º 2
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    merged_bucket = event['merged_bucket']
    num_classes = event['num_classes']
    num_features = event['num_features']
    pos_tag = event['pos_tag']
    num_epochs = event['num_epochs']
    learning_rate = event['learning_rate']
    batch_size = event['batch_size']
    elasti_location = event['elasticache']
    endpoint = memcached_init(elasti_location)

    print('bucket = {}'.format(bucket))
    print("file = {}".format(key))
    print('merged bucket = {}'.format(merged_bucket))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print('num epochs = {}'.format(num_epochs))
    print('learning rate = {}'.format(learning_rate))
    print("batch size = {}".format(batch_size))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))

    parse_start = time.time()
    dataset = DenseLibsvmDataset(file, num_features, pos_tag)

    totol_count = dataset.__len__()
    pos_count = 0
    for i in range(totol_count):
        if dataset.__getitem__(i)[1] == 1:
            pos_count += 1
    print("{} positive observations out of {}".format(pos_count, totol_count))

    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = SVM(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    train_start = time.time()
    for epoch in range(num_epochs):
        epoch_start = time.time()
        epoch_loss = 0
        cal_time = 0
        sync_time = 0
        for batch_index, (items, labels) in enumerate(train_loader):
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            epoch_loss += loss.data
            loss.backward()

            w_grad = model.linear.weight.grad.data.numpy()
            w_grad_shape = w_grad.shape
            b_grad = model.linear.bias.grad.data.numpy()
            b_grad_shape = b_grad.shape

            w_b_grad = np.concatenate((w_grad.flatten(), b_grad.flatten()))
            cal_time += time.time() - batch_start

            sync_start = time.time()
            postfix = "{}_{}".format(epoch, batch_index)
            w_b_grad_merge = reduce_batch(endpoint, w_b_grad, merged_bucket,
                                          num_workers, worker_index, postfix)
            w_grad_merge = \
                w_b_grad_merge[:w_grad_shape[0] * w_grad_shape[1]].reshape(w_grad_shape) / float(num_workers)
            b_grad_merge = \
                w_b_grad_merge[w_grad_shape[0] * w_grad_shape[1]:].reshape(b_grad_shape[0]) / float(num_workers)

            model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
            model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))
            sync_time += time.time() - sync_start

            optimizer.step()

            # print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
            #       'batch cost %.4f s: cal cost %.4f s communication cost %.4f s, '
            #       % (epoch + 1, num_epochs, batch_index, len(train_indices) / batch_size,
            #          time.time() - train_start, loss.data, time.time() - epoch_start,
            #          time.time() - batch_start, cal_time, sync_time))

        # Test the Model
        test_start = time.time()
        correct = 0
        total = 0
        test_loss = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)
            outputs = model(items)
            test_loss += criterion(outputs, labels).data
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
        test_time = time.time() - test_start

        print(
            'Epoch %d has %d batches, time = %.4f, epoch cost %.4f s: '
            'computation cost %.4f s communication cost %.4f s, '
            'train loss = %.4f, test cost %.4f s, accuracy of the model on the %d test samples: %d %%, loss = %f'
            % (epoch, batch_index, time.time() - train_start, time.time() -
               epoch_start, cal_time, sync_time, epoch_loss, test_time,
               len(val_indices), 100 * correct / total, test_loss / total))

    if worker_index == 0:
        clear_bucket(endpoint)

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
Exemplo n.º 3
0
def train(epoch, net, trainloader, optimizer, device, worker_index, num_worker,
          endpoint, sync_mode, sync_step):

    net.train()

    epoch_start = time.time()

    epoch_sync_time = 0
    num_batch = 0

    train_acc = Accuracy()
    train_loss = Average()

    for batch_idx, (inputs, targets) in enumerate(trainloader):

        # print("------worker {} epoch {} batch {}------".format(worker_index, epoch+1, batch_idx+1))
        batch_start = time.time()

        inputs, targets = inputs.to(device), targets.to(device)
        outputs = net(inputs)
        loss = F.cross_entropy(outputs, targets)

        optimizer.zero_grad()
        loss.backward()
        # print("forward and backward cost {} s".format(time.time()-batch_start))

        if sync_mode == 'model_avg':
            # apply local gradient to local model
            optimizer.step()
            # average model
            if (batch_idx + 1) % sync_step == 0:
                sync_start = time.time()
                #################################reduce_broadcast####################################
                print("starting model average")
                weights = [param.data.numpy() for param in net.parameters()]
                # print("[Worker {}] Gradients before sync = {}".format(worker_index, gradients[0][0]))

                sync_start = time.time()
                postfix = "{}_{}".format(epoch, batch_idx)
                data = pickle.dumps(weights)
                merged_value = reduce_batch(endpoint, data, merged_bucket,
                                            num_worker, worker_index, postfix)

                # print("[Worker {}] Gradients after sync = {}".format(worker_index, merged_value[0][0]))
                for layer_index, param in enumerate(net.parameters()):
                    param.data = torch.from_numpy(merged_value[layer_index])
                # gradients = [param.grad.data.numpy() for param in net.parameters()]
                # print("[Worker {}] Gradients after sync = {}".format(worker_index, gradients[0][0]))
                # print("synchronization cost {} s".format(time.time() - sync_start))
                epoch_sync_time += time.time() - sync_start

        if sync_mode == 'grad_avg':
            sync_start = time.time()

            #################################scatter_reduce####################################
            # get gradients and flatten it to a 1-D array
            # gradients = [param.grad.data.numpy() for param in net.parameters()]
            # print("[Worker {}] Gradients before sync = {}".format(worker_index, gradients[0][0]))
            # param_dic = {}
            # for index, param in enumerate(net.parameters()):
            #     param_dic[index] = [param.grad.data.numpy().size, param.grad.data.numpy().shape]
            #     if index == 0:
            #         flattened_param = param.grad.data.numpy().flatten()
            #     else:
            #         flattened_param = np.concatenate((flattened_param, param.grad.data.numpy().flatten()))
            # comm_start = time.time()

            # # merge gradients
            # file_postfix = "{}_{}".format(epoch, batch_idx)
            # merged_value = scatter_reduce(flattened_param, tmp_bucket, merged_bucket, num_worker, worker_index, file_postfix)
            # merged_value /= float(num_worker)
            # # print("scatter_reduce cost {} s".format(time.time() - comm_start))

            # # update the model gradients by layers
            # offset = 0
            # for layer_index, param in enumerate(net.parameters()):
            #     layer_size = param_dic[layer_index][0]
            #     layer_shape = param_dic[layer_index][1]
            #     layer_value = merged_value[offset : offset + layer_size].reshape(layer_shape)
            #     param.grad.data = torch.from_numpy(layer_value)
            #     offset += layer_size

            # if worker_index == 0:
            #     delete_expired_merged(merged_bucket, epoch, batch_idx)
            #################################scatter_reduce####################################

            #################################reduce_broadcast####################################
            gradients = [param.grad.data.numpy() for param in net.parameters()]
            # print("[Worker {}] Gradients before sync = {}".format(worker_index, gradients[0][0]))

            data = pickle.dumps(gradients)
            merged_value = reduce_batch(endpoint, data, merged_bucket,
                                        num_worker, worker_index, postfix)

            # print("[Worker {}] Gradients after sync = {}".format(worker_index, merged_value[0][0]))
            for layer_index, param in enumerate(net.parameters()):
                param.grad.data = torch.from_numpy(merged_value[layer_index])
            # gradients = [param.grad.data.numpy() for param in net.parameters()]
            # print("[Worker {}] Gradients after sync = {}".format(worker_index, gradients[0][0]))
            # print("synchronization cost {} s".format(time.time() - sync_start))
            #################################reduce_broadcast####################################
            epoch_sync_time += time.time() - sync_start
            optimizer.step()

        if sync_mode == 'cen':
            optimizer.step()

        train_acc.update(outputs, targets)
        train_loss.update(loss.item(), inputs.size(0))

        if num_batch % 10 == 0:
            print("Epoch {} Batch {} training Loss:{}, Acc:{}".format(
                epoch + 1, num_batch, train_loss, train_acc))
        num_batch += 1

    epoch_time = time.time() - epoch_start
    print(
        "Epoch {} has {} batches, time = {} s, sync time = {} s, cal time = {} s"
        .format(epoch + 1, num_batch, epoch_time, epoch_sync_time,
                epoch_time - epoch_sync_time))

    return train_loss, train_acc
Exemplo n.º 4
0
def handler(event, context):
    try:
        start_time = time.time()
        bucket_name = event['bucket_name']
        worker_index = event['rank']
        num_workers = event['num_workers']
        key = event['file']
        merged_bucket = event['merged_bucket']
        num_features = event['num_features']
        learning_rate = event["learning_rate"]
        batch_size = event["batch_size"]
        num_epochs = event["num_epochs"]
        validation_ratio = event["validation_ratio"]
        elasti_location = event['elasticache']
        endpoint = memcached_init(elasti_location)

        # read file from s3
        file = get_object(bucket_name, key).read().decode('utf-8').split("\n")
        print("read data cost {} s".format(time.time() - start_time))

        parse_start = time.time()
        dataset = SparseDatasetWithLines(file, num_features)
        print("parse data cost {} s".format(time.time() - parse_start))

        preprocess_start = time.time()
        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(validation_ratio * dataset_size))
        if shuffle_dataset:
            np.random.seed(random_seed)
            np.random.shuffle(indices)
        train_indices, val_indices = indices[split:], indices[:split]

        train_set = [dataset[i] for i in train_indices]
        val_set = [dataset[i] for i in val_indices]

        print("preprocess data cost {} s".format(time.time() -
                                                 preprocess_start))
        lr = LogisticRegression(train_set, val_set, num_features, num_epochs,
                                learning_rate, batch_size)

        # Training the Model
        train_start = time.time()
        for epoch in range(num_epochs):
            epoch_start = time.time()
            num_batches = math.floor(len(train_set) / batch_size)
            print(f"worker {worker_index} epoch {epoch}")
            for batch_idx in range(num_batches):
                batch_start = time.time()
                batch_ins, batch_label = lr.next_batch(batch_idx)
                batch_grad = torch.zeros(lr.n_input, 1, requires_grad=False)
                batch_bias = np.float(0)
                train_loss = Loss()
                train_acc = Accuracy()

                for i in range(len(batch_ins)):
                    z = lr.forward(batch_ins[i])
                    h = lr.sigmoid(z)
                    loss = lr.loss(h, batch_label[i])
                    #print("z= {}, h= {}, loss = {}".format(z, h, loss))
                    train_loss.update(loss, 1)
                    train_acc.update(h, batch_label[i])
                    g = lr.backward(batch_ins[i], h.item(), batch_label[i])
                    batch_grad.add_(g)
                    batch_bias += np.sum(h.item() - batch_label[i])
                batch_grad = batch_grad.div(len(batch_ins))
                batch_bias = batch_bias / len(batch_ins)
                batch_grad.mul_(-1.0 * learning_rate)
                lr.grad.add_(batch_grad)
                lr.bias = lr.bias - batch_bias * learning_rate

                sync_start = time.time()
                np_grad = lr.grad.numpy().flatten()
                np_bias = np.array(lr.bias, dtype=np_grad.dtype)
                w_and_b = np.concatenate((np_grad, np_bias))
                postfix = "{}_{}".format(epoch, batch_idx)
                w_b_merge = reduce_batch(endpoint, w_and_b, merged_bucket,
                                         num_workers, worker_index, postfix)
                lr.grad, lr.bias = w_b_merge[:-1].reshape(num_features, 1) / float(num_workers), \
                                   float(w_b_merge[-1]) / float(num_workers)
                sync_time = time.time() - sync_start
                print("synchronization cost {}s, batch takes {}s".format(
                    sync_time,
                    time.time() - batch_start))

                if (batch_idx + 1) % 10 == 0:
                    print("Epoch: {}/{}, Step: {}/{}, Loss: {}".format(
                        epoch + 1, num_epochs, batch_idx + 1, num_batches,
                        train_loss))

            cal_time = time.time() - epoch_start
            test_start = time.time()
            val_loss, val_acc = lr.evaluate()
            test_time = time.time() - test_start

            print(
                'Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %s, Accuracy: %s, epoch cost %.4f, '
                'cal cost %.4f s, sync cost %.4f s, test cost %.4f s, '
                'test accuracy: %s %%, test loss: %s' %
                (epoch + 1, num_epochs, batch_idx + 1,
                 num_batches, time.time() - train_start, train_loss, train_acc,
                 time.time() - epoch_start, cal_time, sync_time, test_time,
                 val_acc, val_loss))

        if worker_index == 0:
            clear_bucket(endpoint)
        print("elapsed time = {} s".format(time.time() - start_time))

    except Exception as e:
        print("Error {}".format(e))
Exemplo n.º 5
0
def handler(event, context):
    try:
        start_time = time.time()
        bucket_name = event['bucket_name']
        worker_index = event['rank']
        num_workers = event['num_workers']
        key = event['file']
        merged_bucket = event['merged_bucket']
        num_features = event['num_features']
        learning_rate = event["learning_rate"]
        batch_size = event["batch_size"]
        num_epochs = event["num_epochs"]
        validation_ratio = event["validation_ratio"]
        elasti_location = event['elasticache']
        endpoint = memcached_init(elasti_location)

        # Reading data from S3
        print(f"Reading training data from bucket = {bucket_name}, key = {key}")
        file = get_object(bucket_name, key).read().decode('utf-8').split("\n")
        print("read data cost {} s".format(time.time() - start_time))

        parse_start = time.time()
        dataset = SparseDatasetWithLines(file, num_features)
        print("parse data cost {} s".format(time.time() - parse_start))

        preprocess_start = time.time()
        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(validation_ratio * dataset_size))
        if shuffle_dataset:
            np.random.seed(random_seed)
            np.random.shuffle(indices)
        train_indices, val_indices = indices[split:], indices[:split]

        train_set = [dataset[i] for i in train_indices]
        val_set = [dataset[i] for i in val_indices]

        print("preprocess data cost {} s".format(time.time() - preprocess_start))
        svm = SparseSVM(train_set, val_set, num_features, num_epochs, learning_rate, batch_size)

        # Training the Model
        for epoch in range(num_epochs):
            epoch_start = time.time()
            num_batches = math.floor(len(train_set) / batch_size)
            print("worker {} epoch {}".format(worker_index, epoch))
            for batch_idx in range(num_batches):
                batch_start = time.time()
                batch_ins, batch_label = svm.next_batch(batch_idx)
                acc = svm.one_epoch(batch_idx, epoch)
                cal_time = time.time() - batch_start

                sync_start = time.time()
                np_w = svm.weights.numpy().flatten()
                postfix = "{}_{}".format(epoch, batch_idx)
                w_merge = reduce_batch(endpoint, np_w, merged_bucket, num_workers, worker_index, postfix)
                svm.weights = torch.from_numpy(w_merge).reshape(num_features, 1)
                sync_time = time.time() - sync_start
                print("computation takes {}s, synchronization cost {}s, batch takes {}s"
                      .format(cal_time, sync_time, time.time() - batch_start))

                if (batch_idx + 1) % 10 == 0:
                    print("Epoch: {}/{}, Step: {}/{}, train acc: {}"
                          .format(epoch + 1, num_epochs, batch_idx + 1, num_batches, acc))

            val_acc = svm.evaluate()
            print("Epoch takes {}s, validation accuracy: {}".format(time.time() - epoch_start, val_acc))

        if worker_index == 0:
            clear_bucket(endpoint)
        print("elapsed time = {} s".format(time.time() - start_time))

    except Exception as e:
        print("Error {}".format(e))