Exemplo n.º 1
0
def pyramidsAndStatistics(workspace):
    try:
        arcpy.BuildPyramidsandStatistics_management(workspace,
                                                    "INCLUDE_SUBDIRECTORIES",
                                                    "BUILD_PYRAMIDS",
                                                    "CALCULATE_STATISTICS")
    except arcpy.ExecuteError:
        print(arcpy.GetMessages(2))
    except Exception as ex:
        print(ex.args[0])
    def execute(self, parameters, messages):
        """The source code of your tool."""
        arcpy.env.overwriteOutput = True

        arcpy.AddMessage("Batch convert MXE to ArcGIS Raster")

        for param in parameters:
            arcpy.AddMessage("Parameter: %s = %s" % (param.name, param.valueAsText) )

        input_directory = parameters[0].valueAsText
        output_directory = parameters[1].valueAsText
        path_mxe = parameters[2].valueAsText

        if not os.path.exists(output_directory):
            os.makedirs(output_directory)

        command = 'java -cp "' + os.path.join(path_mxe, "maxent.jar") + '" density.Convert ' \
                  + str(input_directory) + " mxe " + output_directory + " asc"

        os.system(str(command))

        # Set environment settings
        env.workspace = output_directory
        rasterlist = arcpy.ListRasters("*")
        arcpy.AddMessage("There are " + str(len(rasterlist)) + " rasters to process.")

        for raster in rasterlist:

            if not arcpy.Exists(os.path.join(output_directory, raster[0:5])):
                arcpy.AddMessage("Converting " + str(raster) + ".")
                arcpy.ASCIIToRaster_conversion(os.path.join(output_directory, raster),
                                               os.path.join(output_directory, raster[0:5]), "FLOAT")

        arcpy.BuildPyramidsandStatistics_management(in_workspace=output_directory, include_subdirectories="NONE",
                                                    build_pyramids="BUILD_PYRAMIDS",
                                                    calculate_statistics="CALCULATE_STATISTICS", BUILD_ON_SOURCE="NONE",
                                                    block_field="", estimate_statistics="NONE", x_skip_factor="1",
                                                    y_skip_factor="1", ignore_values="", pyramid_level="-1",
                                                    SKIP_FIRST="NONE", resample_technique="NEAREST",
                                                    compression_type="DEFAULT", compression_quality="75",
                                                    skip_existing="SKIP_EXISTING")
        return
Exemplo n.º 3
0
#Inpath = env.workspace
#outpath="F:\\MissouriDo\\GeneralSearch\\EPA\Data_Weather\\AugResults.gdb"
#Results=outpath+"\\"+ "Outputs"

#Refresh gp object and permit overwriting
arcpy.env.overwriteOutput = True

###Remove problematic files
if os.path.exists("schema.ini"):
    os.remove("schema.ini")

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")

# build the pyramids and statitics to easy enable visoulize the raster
arcpy.BuildPyramidsandStatistics_management(arcpy.env.workspace)

print "#######################################################################################################################"
print "|The Spatail&Temporal Wetland Water Elevations and Volumes based on GREEN&AMPT Infiltration & Evapotranspiration Models|"
print "#######################################################################################################################"
print ""

################################################################
#Local variables
p = Raster("p")

to = Raster("to")
to = 0.0
t = Raster("to")
watermask3 = Raster("watermask3")
Exemplo n.º 4
0
def bal_cal(veg_class, slope, aspect, fdi):
    """
    Calculate the BAL based on the classified vegetation and the combined
    slope and vegetation according to an appropriate table in AS 3959 (2009)
    to determine the bushfire attack level (BAL).

    :param veg_class: `file` the input classified vegetation
    :param slope: `file` the input slope
    :param aspect: `file` the input aspect
    :param fdi: `int` the input FDI value
    """

    output_folder = os.path.dirname(veg_class)
    arcpy.env.overwriteOutput = True

    # set directory
    work_folder = output_folder
    os.chdir(work_folder)
    arcpy.env.workspace = work_folder

    # get veg raster size, format, projection, etc
    desc = arcpy.Describe(veg_class)
    extent = desc.extent
    lowleft_corner = arcpy.Point(extent.XMin, extent.YMin)
    pixel_w = desc.meanCellWidth
    pixel_h = desc.meanCellHeight
    sref = desc.spatialReference

    # load the raster into numpy array
    veg_data = arcpy.RasterToNumPyArray(veg_class, nodata_to_value=-99)
    slope_data = arcpy.RasterToNumPyArray(slope, nodata_to_value=-99)
    aspect_data = arcpy.RasterToNumPyArray(aspect, nodata_to_value=-99)

    # calculate the BAL for each direction in numpy array and get maximum of
    # 2 direction each time, until get the maximum of all directions
    dire = ['w', 'e', 'n', 's', 'nw', 'ne', 'se', 'sw']

    for one_dir in dire:
        bal_list = []
        outdata = convo(one_dir, veg_data, slope_data, aspect_data, pixel_w,
                        fdi)

        output_dir = 'bal_' + one_dir + '.img'

        if arcpy.Exists(output_dir):
            arcpy.Delete_management(output_dir)

        arcpy.NumPyArrayToRaster(outdata,
                                 lowleft_corner,
                                 pixel_w,
                                 pixel_h,
                                 value_to_nodata=-99).save(output_dir)

        arcpy.DefineProjection_management(output_dir, sref)

        if one_dir == 'w':
            bigger = outdata
            del outdata
            continue

        bal_list.append(bigger)
        bal_list.append(outdata)
        bigger = get_max_bal(bal_list)
        del outdata

    # get maximum BAL from the list
    arcpy.NumPyArrayToRaster(bigger,
                             lowleft_corner,
                             pixel_w,
                             pixel_h,
                             value_to_nodata=-99).save('bal_max.img')

    arcpy.DefineProjection_management('bal_max.img', sref)

    arcpy.BuildPyramidsandStatistics_management(output_folder, "#",
                                                "BUILD_PYRAMIDS",
                                                "CALCULATE_STATISTICS")

    # delete intermediate results
    if arcpy.Exists(veg_class):
        arcpy.Delete_management(veg_class)
    if arcpy.Exists(slope):
        arcpy.Delete_management(slope)
    if arcpy.Exists(aspect):
        arcpy.Delete_management(aspect)
    del veg_data, slope_data, aspect_data
    del bal_list, bigger
Exemplo n.º 5
0
    sys.exit()

# Process: Create Mosaic Dataset
arcpy.CreateMosaicDataset_management(m_location, mosaic_name, coords, "4",
                                     "16_BIT_UNSIGNED", "NONE", "")

print "Dataset de Mosaico ha sido creado"

# Process: Create Statistics

rasters = arcpy.ListRasters(Input_Data_Filter)

for raster in rasters:

    arcpy.BuildPyramidsandStatistics_management(
        Input_Rasters_Data_Folder, "INCLUDE_SUBDIRECTORIES", "BUILD_PYRAMIDS",
        "CALCULATE_STATISTICS", "NONE", "", "NONE", "1", "1", "", "-1", "NONE",
        "NEAREST", "DEFAULT", "75", "OVERWRITE")

    print "se han caculado estadisticas a la imagen" + (raster)

# Process: Add Rasters To Mosaic Dataset
arcpy.AddRastersToMosaicDataset_management(
    m_location + "\\" + mosaic_name, "Raster Dataset",
    Input_Rasters_Data_Folder, "UPDATE_CELL_SIZES", "UPDATE_BOUNDARY",
    "NO_OVERVIEWS", "", "0", "1500", "", Input_Data_Filter, "NO_SUBFOLDERS",
    "ALLOW_DUPLICATES", "BUILD_PYRAMIDS", "CALCULATE_STATISTICS",
    "NO_THUMBNAILS", "", "NO_FORCE_SPATIAL_REFERENCE", "ESTIMATE_STATISTICS")

print "Los rasters se han agregado"

m = m_location + "\\" + mosaic_name
    lidarlist = arcpy.ListRasters()

    arcpy.AddMessage("Setting null values...")

    for file in lidarlist:
        outSetNull = arcpy.sa.SetNull(file, file, "VALUE < -1355")
        outSetNull = arcpy.sa.SetNull(file, file, "VALUE > 29100")
        outsplit = file.split(".")
        outfilename = "stnull_" + outsplit[0] + ".tif"
        outfilepath = in_workspace + "/" + outfilename
        outSetNull.save(outfilepath)

    arcpy.AddMessage("Building pyramids and calculating statistics...")

    arcpy.BuildPyramidsandStatistics_management(in_workspace, "NONE",
                                                "BUILD_PYRAMIDS",
                                                "CALCULATE_STATISTICS")

    lidarstnull = arcpy.ListRasters(
        "stnull_*"
    )  # creates a list of rasters in the folder with _stnull suffix
    outraster = outrastername + ".tif"

    arcpy.AddMessage("Mosaicking images...")

    testraster = in_workspace + "/" + lidarstnull[
        0]  #chooses a raster to check for cell size and pixel type

    #reads pixel size from the test raster and stores as text for mosaic to new raster tool
    xcellsize = str(
        arcpy.GetRasterProperties_management(testraster, "CELLSIZEX"))
Exemplo n.º 7
0
def function(outputFolder,
             DEM,
             studyAreaMask,
             streamInput,
             minAccThresh,
             majAccThresh,
             smoothDropBuffer,
             smoothDrop,
             streamDrop,
             reconDEM,
             rerun=False):

    try:
        # Set environment variables
        arcpy.env.compression = "None"
        arcpy.env.snapRaster = DEM
        arcpy.env.extent = DEM
        arcpy.env.cellSize = arcpy.Describe(DEM).meanCellWidth

        ########################
        ### Define filenames ###
        ########################

        files = common.getFilenames('preprocess', outputFolder)

        rawDEM = files.rawDEM
        hydDEM = files.hydDEM
        hydFDR = files.hydFDR
        hydFDRDegrees = files.hydFDRDegrees
        hydFAC = files.hydFAC
        streamInvRas = files.streamInvRas  # Inverse stream raster - 0 for stream, 1 for no stream
        streams = files.streams
        streamDisplay = files.streamDisplay
        multRaster = files.multRaster
        hydFACInt = files.hydFACInt
        slopeRawDeg = files.slopeRawDeg
        slopeRawPer = files.slopeRawPer
        slopeHydDeg = files.slopeHydDeg
        slopeHydPer = files.slopeHydPer

        ###############################
        ### Set temporary variables ###
        ###############################

        prefix = os.path.join(arcpy.env.scratchGDB, "base_")

        cellSizeDEM = float(arcpy.env.cellSize)

        burnedDEM = prefix + "burnedDEM"
        streamAccHaFile = prefix + "streamAccHa"
        rawFDR = prefix + "rawFDR"
        allPolygonSinks = prefix + "allPolygonSinks"
        DEMTemp = prefix + "DEMTemp"
        hydFACTemp = prefix + "hydFACTemp"

        # Saved as .tif as did not save as ESRI grid on server
        streamsRasterFile = os.path.join(arcpy.env.scratchFolder,
                                         "base_") + "StreamsRaster.tif"

        ###############################
        ### Save DEM to base folder ###
        ###############################

        codeBlock = 'Save DEM'
        if not progress.codeSuccessfullyRun(codeBlock, outputFolder, rerun):

            # Save DEM to base folder as raw DEM with no compression
            pixelType = int(
                arcpy.GetRasterProperties_management(DEM,
                                                     "VALUETYPE").getOutput(0))

            if pixelType == 9:  # 32 bit float
                arcpy.CopyRaster_management(DEM,
                                            rawDEM,
                                            pixel_type="32_BIT_FLOAT")
            else:
                log.info("Converting DEM to 32 bit floating type")
                arcpy.CopyRaster_management(DEM, DEMTemp)
                arcpy.CopyRaster_management(Float(DEMTemp),
                                            rawDEM,
                                            pixel_type="32_BIT_FLOAT")

                # Delete temporary DEM
                arcpy.Delete_management(DEMTemp)

            # Calculate statistics for raw DEM
            arcpy.CalculateStatistics_management(rawDEM)

            progress.logProgress(codeBlock, outputFolder)

        ################################
        ### Create multiplier raster ###
        ################################

        codeBlock = 'Create multiplier raster'
        if not progress.codeSuccessfullyRun(codeBlock, outputFolder, rerun):

            Reclassify(rawDEM, "Value", RemapRange([[-999999.9, 999999.9, 1]]),
                       "NODATA").save(multRaster)
            progress.logProgress(codeBlock, outputFolder)

        codeBlock = 'Calculate slope in percent'
        if not progress.codeSuccessfullyRun(codeBlock, outputFolder, rerun):

            intSlopeRawPer = Slope(rawDEM, "PERCENT_RISE")
            intSlopeRawPer.save(slopeRawPer)
            del intSlopeRawPer

            log.info('Slope calculated in percent')

            progress.logProgress(codeBlock, outputFolder)

        if reconDEM is True:

            #######################
            ### Burn in streams ###
            #######################

            codeBlock = 'Burn in streams'
            if not progress.codeSuccessfullyRun(codeBlock, outputFolder,
                                                rerun):

                # Recondition DEM (burning stream network in using AGREE method)
                log.info("Burning streams into DEM.")
                reconditionDEM.function(rawDEM, streamInput, smoothDropBuffer,
                                        smoothDrop, streamDrop, burnedDEM)
                log.info("Completed stream network burn in to DEM")

                progress.logProgress(codeBlock, outputFolder)

            ##################
            ### Fill sinks ###
            ##################

            codeBlock = 'Fill sinks'
            if not progress.codeSuccessfullyRun(codeBlock, outputFolder,
                                                rerun):

                Fill(burnedDEM).save(hydDEM)

                log.info("Sinks in DEM filled")
                progress.logProgress(codeBlock, outputFolder)

            ######################
            ### Flow direction ###
            ######################

            codeBlock = 'Flow direction'
            if not progress.codeSuccessfullyRun(codeBlock, outputFolder,
                                                rerun):

                FlowDirection(hydDEM, "NORMAL").save(hydFDR)
                log.info("Flow Direction calculated")
                progress.logProgress(codeBlock, outputFolder)

            #################################
            ### Flow direction in degrees ###
            #################################

            codeBlock = 'Flow direction in degrees'
            if not progress.codeSuccessfullyRun(codeBlock, outputFolder,
                                                rerun):

                # Save flow direction raster in degrees (for display purposes)
                degreeValues = RemapValue([[1, 90], [2, 135], [4, 180],
                                           [8, 225], [16, 270], [32, 315],
                                           [64, 0], [128, 45]])
                Reclassify(hydFDR, "Value", degreeValues,
                           "NODATA").save(hydFDRDegrees)
                progress.logProgress(codeBlock, outputFolder)

            #########################
            ### Flow accumulation ###
            #########################

            codeBlock = 'Flow accumulation'
            if not progress.codeSuccessfullyRun(codeBlock, outputFolder,
                                                rerun):

                hydFACTemp = FlowAccumulation(hydFDR, "", "FLOAT")
                hydFACTemp.save(hydFAC)
                arcpy.sa.Int(Raster(hydFAC)).save(hydFACInt)  # integer version
                log.info("Flow Accumulation calculated")

                progress.logProgress(codeBlock, outputFolder)

            #######################
            ### Calculate slope ###
            #######################

            codeBlock = 'Calculate slope on burned DEM'
            if not progress.codeSuccessfullyRun(codeBlock, outputFolder,
                                                rerun):

                intSlopeHydDeg = Slope(hydDEM, "DEGREE")
                intSlopeHydDeg.save(slopeHydDeg)
                del intSlopeHydDeg

                intSlopeHydPer = Slope(hydDEM, "PERCENT_RISE")
                intSlopeHydPer.save(slopeHydPer)
                del intSlopeHydPer

                log.info('Slope calculated')

                progress.logProgress(codeBlock, outputFolder)

            ##########################
            ### Create stream file ###
            ##########################

            codeBlock = 'Create stream file'
            if not progress.codeSuccessfullyRun(codeBlock, outputFolder,
                                                rerun):

                # Create accumulation in metres
                streamAccHaFileInt = hydFACTemp * cellSizeDEM * cellSizeDEM / 10000.0
                streamAccHaFileInt.save(streamAccHaFile)
                del streamAccHaFileInt

                # Check stream initiation threshold reached
                streamYes = float(
                    arcpy.GetRasterProperties_management(
                        streamAccHaFile, "MAXIMUM").getOutput(0))

                if streamYes > float(minAccThresh):

                    reclassifyRanges = RemapRange(
                        [[-1000000, float(minAccThresh), 1],
                         [float(minAccThresh), 9999999999, 0]])

                    outLUCIstream = Reclassify(streamAccHaFile, "VALUE",
                                               reclassifyRanges)
                    outLUCIstream.save(streamInvRas)
                    del outLUCIstream
                    log.info("Stream raster for input to LUCI created")

                    # Create stream file for display
                    reclassifyRanges = RemapRange(
                        [[0, float(minAccThresh), "NODATA"],
                         [float(minAccThresh),
                          float(majAccThresh), 1],
                         [float(majAccThresh), 99999999999999, 2]])

                    streamsRaster = Reclassify(streamAccHaFile, "Value",
                                               reclassifyRanges, "NODATA")
                    streamOrderRaster = StreamOrder(streamsRaster, hydFDR,
                                                    "STRAHLER")
                    streamsRaster.save(streamsRasterFile)

                    # Create two streams feature classes - one for analysis and one for display
                    arcpy.sa.StreamToFeature(streamOrderRaster, hydFDR,
                                             streams, 'NO_SIMPLIFY')
                    arcpy.sa.StreamToFeature(streamOrderRaster, hydFDR,
                                             streamDisplay, 'SIMPLIFY')

                    # Rename grid_code column to 'Strahler'
                    for streamFC in [streams, streamDisplay]:

                        arcpy.AddField_management(streamFC, "Strahler", "LONG")
                        arcpy.CalculateField_management(
                            streamFC, "Strahler", "!GRID_CODE!", "PYTHON_9.3")
                        arcpy.DeleteField_management(streamFC, "GRID_CODE")

                    del streamsRaster
                    del streamOrderRaster

                    log.info("Stream files created")

                else:

                    warning = 'No streams initiated'
                    log.warning(warning)
                    common.logWarnings(outputFolder, warning)

                    # Create LUCIStream file from multiplier raster (i.e. all cells have value of 1 = no stream)
                    arcpy.CopyRaster_management(multRaster, streamInvRas)

                progress.logProgress(codeBlock, outputFolder)

        codeBlock = 'Clip data, build pyramids and generate statistics'
        if not progress.codeSuccessfullyRun(codeBlock, outputFolder, rerun):

            try:
                # Generate pyramids and stats
                arcpy.BuildPyramidsandStatistics_management(
                    outputFolder, "", "", "", "")
                log.info(
                    "Pyramids and Statistics calculated for all LUCI topographical information rasters"
                )

            except Exception:
                log.info("Warning - could not generate all raster statistics")

            progress.logProgress(codeBlock, outputFolder)

        # Reset snap raster
        arcpy.env.snapRaster = None

    except Exception:
        log.error("Error in preprocessing operations")
        raise
Exemplo n.º 8
0
r_2010 = Raster(td+'/popdensity_2010_mol.tif')
r_2015 = Raster(td+'/popdensity_2015_mol.tif')
cell_km2 = math.pow(float(arcpy.env.cellSize) / 1000, 2) # since original rasters were in population density (# people / km2)

# using output from model_equations.R
equations = {2005:"r_2005",
             2006:"0.8 * r_2005 + 0.2 * r_2010",
             2007:"0.6 * r_2005 + 0.4 * r_2010",
             2008:"0.4 * r_2005 + 0.6 * r_2010",
             2009:"0.2 * r_2005 + 0.8 * r_2010",
             2010:"r_2010",
             2011:"0.8 * r_2010 + 0.2 * r_2015",
             2012:"0.6 * r_2010 + 0.4 * r_2015",
             2013:"0.4 * r_2010 + 0.6 * r_2015",
             2014:"0.2 * r_2010 + 0.8 * r_2015",
             2015:"r_2015",}

# calculate number of people in a pixel (vs density) and extract sum per region
for yr in range(2005,2016):
    r_out = '%s/popdensity_%d_mol.tif'       % (dd, yr)
    d_out = '%s/rgn_popsum%d_inland25mi.dbf' % (dd, yr)
    arcpy.AddMessage('  %d interpolate and sum by region' % yr)
    
    r = eval('(%s) * %g' % (equations[yr], cell_km2))    
    r.save(r_out)    
    ZonalStatisticsAsTable(td+'/rgn_inland_25mi_mol.tif', 'VALUE', r, d_out, 'DATA', 'SUM')

# build pyramids
arcpy.AddMessage('build pyramids')
arcpy.BuildPyramidsandStatistics_management(dd, 'INCLUDE_SUBDIRECTORIES', 'BUILD_PYRAMIDS', 'CALCULATE_STATISTICS', skip_existing='SKIP_EXISTING')
    def execute(self, parameters, messages):

        t_start = time.clock()

        arcpy.env.overwriteOutput = True

        for param in parameters:
            arcpy.AddMessage("Parameter: %s = %s" %
                             (param.name, param.valueAsText))

        input_woa_netcdf = parameters[0].valueAsText
        variable_name = parameters[1].valueAsText
        depths = parameters[2].valueAsText
        interpolation_procedure = parameters[3].valueAsText
        interpolation_resolution = parameters[4].valueAsText
        extraction_extent = parameters[5].valueAsText
        output_directory = parameters[6].valueAsText
        coordinate_system = parameters[7].valueAsText
        createxyz = parameters[8].valueAsText
        cpu_cores_used = parameters[9].valueAsText

        if not os.path.exists(output_directory):
            os.makedirs(output_directory)

        if not os.path.exists(os.path.join(output_directory, "Projected")):
            os.makedirs(os.path.join(output_directory, "Projected"))

        if not os.path.exists(os.path.join(output_directory, "Geographic")):
            os.makedirs(os.path.join(output_directory, "Geographic"))

        arcpy.env.extent = extraction_extent

        arcpy.AddMessage("Extracting " + str(input_woa_netcdf) + ".")

        # Set environment variables and build other variables for processing
        arcpy.env.mask = ""
        arcpy.env.workspace = output_directory
        depth_range = load_depth_string(depths)

        arcpy.AddMessage("There are " + str(len(depth_range)) + " to process.")

        if int(cpu_cores_used) > int(multiprocessing.cpu_count()):
            cpu_cores_used = multiprocessing.cpu_count() - 1

        arcpy.AddMessage("Will use " + str(cpu_cores_used) +
                         " cores for processing")

        python_exe = os.path.join(sys.exec_prefix, 'pythonw.exe')
        multiprocessing.set_executable(python_exe)

        pool = multiprocessing.Pool(int(cpu_cores_used))
        func = partial(mpprocess_call, output_directory, variable_name,
                       input_woa_netcdf, interpolation_procedure,
                       interpolation_resolution, coordinate_system,
                       extraction_extent, createxyz)
        pool.map(func, depth_range)
        pool.close()
        pool.join()

        count = 0

        depth_range = load_depth_string(depths)

        for i in depth_range:
            try:
                output_geographic = os.path.join(
                    output_directory, "temp", "Geographic",
                    variable_name[0:4] + str(int(i)),
                    variable_name[0:4] + str(int(i)))
                if arcpy.Exists(output_geographic) and not arcpy.Exists(
                        os.path.join(output_directory, "Geographic",
                                     variable_name[0:4] + str(int(i)))):
                    shutil.copytree(
                        output_geographic,
                        os.path.join(output_directory, "Geographic",
                                     variable_name[0:4].lower() + str(int(i))))
            except:
                arcpy.AddMessage("Issue copying, geographic for depth " +
                                 str(int(i)))

            try:
                output_projected = os.path.join(
                    output_directory, "temp", "Projected",
                    variable_name[0:4] + str(int(i)),
                    variable_name[0:4] + str(int(i)))
                if arcpy.Exists(output_projected) and not arcpy.Exists(
                        os.path.join(output_directory, "Projected",
                                     variable_name[0:4] + str(int(i)))):
                    shutil.copytree(
                        output_projected,
                        os.path.join(
                            output_directory, "Projected",
                            str(variable_name[0:4].lower() + str(int(i)))))
            except:
                arcpy.AddMessage("Issue copying, projected for depth " +
                                 str(int(i)))

            try:
                if count == 0:
                    if os.path.exists(
                            os.path.join(output_directory, "temp", "Projected",
                                         variable_name[0:4] + str(int(i)),
                                         "xy_coords.yxz")):
                        shutil.copyfile(
                            os.path.join(output_directory, "temp", "Projected",
                                         variable_name[0:4] + str(int(i)),
                                         "xy_coords.yxz"),
                            os.path.join(output_directory, "Projected",
                                         "xy_coords.yxz"))
                        count = 1
            except:
                arcpy.AddMessage("Issue copying, xyz coordiantes for depth " +
                                 str(int(i)))

        arcpy.AddMessage("Making pyramids and statistics for outputs")
        arcpy.BuildPyramidsandStatistics_management(
            in_workspace=os.path.join(output_directory, "Geographic"),
            include_subdirectories="NONE",
            build_pyramids="BUILD_PYRAMIDS",
            calculate_statistics="CALCULATE_STATISTICS",
            BUILD_ON_SOURCE="NONE",
            block_field="",
            estimate_statistics="NONE",
            x_skip_factor="1",
            y_skip_factor="1",
            ignore_values="",
            pyramid_level="-1",
            SKIP_FIRST="NONE",
            resample_technique="NEAREST",
            compression_type="DEFAULT",
            compression_quality="75",
            skip_existing="SKIP_EXISTING")
        if len(coordinate_system) > 1:
            arcpy.BuildPyramidsandStatistics_management(
                in_workspace=os.path.join(output_directory, "Projected"),
                include_subdirectories="NONE",
                build_pyramids="BUILD_PYRAMIDS",
                calculate_statistics="CALCULATE_STATISTICS",
                BUILD_ON_SOURCE="NONE",
                block_field="",
                estimate_statistics="NONE",
                x_skip_factor="1",
                y_skip_factor="1",
                ignore_values="",
                pyramid_level="-1",
                SKIP_FIRST="NONE",
                resample_technique="NEAREST",
                compression_type="DEFAULT",
                compression_quality="75",
                skip_existing="SKIP_EXISTING")

        arcpy.AddMessage("Script complete in %s hours." % str(
            (time.clock() - t_start) / 3600))

        return
Exemplo n.º 10
0
print("Starting script at: {}".format(start_t))
today = datetime.datetime.today()
date = today.strftime('%Y%m%d')

# Create a list of the rasters in the in-workspace
print("Listing Geodatabases")
gdbs = arcpy.ListWorkspaces("*", "FileGDB")

# Loop through GeoDatabases, listing rasters within each to input in cell stats to create action area
for gdb in gdbs:
    t2 = datetime.datetime.now()
    arcpy.env.workspace = gdb
    arcpy.env.scratchWorkspace = gdb
    desc = arcpy.Describe(gdb)
    # Nomenclature for Action Areas (AA). Adding the '_dev' indicates that the AA included developed and right-of-way.
    # '_Ag' for only agricultural footprints, etc.
    aa = "{}_{}".format(desc.basename, date)
    uses = arcpy.ListRasters("*")
    print("Running Cell Statistics for {} at {}".format(
        gdb, datetime.datetime.now()))
    out = CellStatistics(uses, "MINIMUM")
    out.save(aa)
    print("Building pyramids")
    arcpy.BuildPyramidsandStatistics_management(aa)
    print("Completed Action Area for {} in: {}".format(
        desc.basename,
        datetime.datetime.now() - t2))

print("Completed Processing of all Action Areas in: {}".format(
    datetime.datetime.now() - start_t))
def build_pyramids(input_items, compression_method, compression_quality, resampling_method, show_progress=False):
    """Build raster pyramids."""
    processed = 0
    skipped = 0
    if show_progress:
        i = 1.
        count = len(input_items)
        status_writer.send_percent(0.0, _('Starting to process...'), 'build_raster_pyramids')

    for result in input_items:
        dsc = arcpy.Describe(result)
        if not hasattr(dsc, 'datasetType'):
            status_writer.send_state(status.STAT_WARNING, _('{0} is not a raster dataset type.').format(result))
            skipped += 1
            skipped_reasons[result] = _('is not a raster dataset type.')
            if show_progress:
                i += 1
            continue

        if not dsc.datasetType in ('RasterDataset', 'MosaicDataset', 'RasterCatalog'):
            status_writer.send_state(status.STAT_WARNING, _('{0} is not a raster dataset type.').format(result))
            skipped += 1
            skipped_reasons[result] = _('is not a raster dataset type.')
            if show_progress:
                i += 1
        else:
            try:
                # Build pyramids
                if dsc.datasetType in ('RasterCatalog', 'MosaicDataset'):
                    status_writer.send_status(_('Building pyramids for: {0}').format(result))
                    arcpy.BuildPyramidsandStatistics_management(
                        result,
                        calculate_statistics='NONE',
                        resample_technique=resampling_options[resampling_method],
                        compression_type=compression_method,
                        compression_quality=compression_quality
                    )
                # ArcGIS 10.1 bug - Pyramids are not build beyond the first level for rasters in SDE.
                # See: https://geonet.esri.com/thread/71775
                else:
                    arcpy.BuildPyramids_management(
                        result,
                        resample_technique=resampling_options[resampling_method],
                        compression_type=compression_method,
                        compression_quality=compression_quality
                    )
                if show_progress:
                    status_writer.send_percent(i / count,
                                               _('Built Pyramids for: {0}').format(dsc.name),
                                               'build_raster_pyramids')
                    i += 1
                else:
                    status_writer.send_status(_('Built Pyramids for: {0}').format(dsc.name))
                processed += 1
            except arcpy.ExecuteError as ee:
                status_writer.send_state(status.STAT_WARNING,
                                         _('Failed to build pyramids for: {0}. {1}').format(result, ee))
                skipped_reasons[result] = ee.message
                skipped += 1
                if show_progress:
                    i += 1
        continue
    return processed, skipped
Exemplo n.º 12
0
        countyname, "#", "DEFINE_MISSING_TILES", "GENERATE_OVERVIEWS",
        "GENERATE_MISSING_IMAGES", "REGENERATE_STALE_IMAGES")

    # Replace a layer/table view name with a path to a dataset (which can be a layer file) or create the layer/table view within the script
    # The following inputs are layers or table views: countyname
    print "Calculating statistics"
    arcpy.CalculateStatistics_management(
        basedir + countyname_with_spaces + "\\" + countyname + ".gdb\\" +
        countyname, "1", "1", "#", "OVERWRITE", "Feature Set")

    # Replace a layer/table view name with a path to a dataset (which can be a layer file) or create the layer/table view within the script
    # The following inputs are layers or table views: countyname
    print "Calc stats 1"
    arcpy.BuildPyramidsandStatistics_management(
        basedir + countyname_with_spaces + "\\" + countyname + ".gdb\\" +
        countyname, "INCLUDE_SUBDIRECTORIES", "NONE", "CALCULATE_STATISTICS",
        "NONE", "#", "NONE", "1", "1", "#", "-1", "NONE", "NEAREST", "DEFAULT",
        "75", "SKIP_EXISTING")

    # Replace a layer/table view name with a path to a dataset (which can be a layer file) or create the layer/table view within the script
    # The following inputs are layers or table views: countyname
    print "Building pyramids"
    arcpy.BuildPyramidsandStatistics_management(
        basedir + countyname_with_spaces + "\\" + countyname + ".gdb\\" +
        countyname, "INCLUDE_SUBDIRECTORIES", "BUILD_PYRAMIDS", "NONE",
        "BUILD_ON_SOURCE", "#", "NONE", "1", "1", "#", "-1", "NONE", "NEAREST",
        "DEFAULT", "75", "SKIP_EXISTING")

    # Replace a layer/table view name with a path to a dataset (which can be a layer file) or create the layer/table view within the script
    # The following inputs are layers or table views: countyname
    print "Calc stats 2"
Exemplo n.º 13
0
    def execute(self, parameters, messages):

        t_start = time.clock()

        arcpy.env.overwriteOutput = True

        for param in parameters:
            arcpy.AddMessage("Parameter: %s = %s" % (param.name, param.valueAsText))

        input_woa_netcdf = parameters[0].valueAsText
        variable_name = parameters[1].valueAsText
        lat_name = parameters[2].valueAsText
        lon_name = parameters[3].valueAsText
        depth_name = parameters[4].valueAsText
        depths = parameters[5].valueAsText
        interpolation_procedure = parameters[6].valueAsText
        interpolation_resolution = parameters[7].valueAsText
        extraction_extent = parameters[8].valueAsText
        temporary_directory = parameters[9].valueAsText
        output_directory = parameters[10].valueAsText
        coordinate_system = parameters[11].valueAsText
        createxyz = parameters[12].valueAsText

        if not os.path.exists(output_directory):
            os.makedirs(output_directory)

        if not os.path.exists(os.path.join(output_directory, "Projected")):
            os.makedirs(os.path.join(output_directory, "Projected"))

        if not os.path.exists(os.path.join(output_directory, "Geographic")):
            os.makedirs(os.path.join(output_directory, "Geographic"))

        if not os.path.exists(temporary_directory):
            os.makedirs(temporary_directory)

        arcpy.env.extent = extraction_extent

        arcpy.AddMessage("Extracting " + str(input_woa_netcdf) + ".")

        # Set environment variables and build other variables for processing
        arcpy.env.mask = ""
        arcpy.env.workspace = temporary_directory
        depth_range = load_depth_string(depths)

        # Process goes: 1) Convert depth layer to a point file. 2) Interpolate to selected resolution using your selected
        # interpolation procedure, 3) Save that layer back into a layer with the name of the variable, plus the
        # actual depth value associated with it, you will end up with a specified direction of n rasters (n = number of
        # depth layers.

        # First lets give an indication of the magnitude of this analysis
        arcpy.AddMessage("There are " + str(len(depth_range)) + " depths to process.")

        count_geo = 0
        count_proj = 0

        for i in depth_range:
            arcpy.AddMessage("Working on " + str(int(i)))

            # Set some values that we will use to extract data from the NetCDF file
            out_temp_layer = os.path.join(output_directory, "out.shp")

            dimensionValues = str(depth_name) + " " + str(int(i))

            arcpy.env.outputCoordinateSystem = arcpy.SpatialReference(4326)

            # 1 Extract layer to a temporary feature class
            arcpy.MakeNetCDFFeatureLayer_md(in_netCDF_file=input_woa_netcdf, variable=variable_name, x_variable=str(lon_name),
                                            y_variable=str(lat_name),
                                            out_feature_layer=out_temp_layer,
                                            row_dimension=str(lat_name) + ";" + str(lon_name),
                                            z_variable="", m_variable="", dimension_values=dimensionValues,
                                            value_selection_method="BY_VALUE")

            # 2 Interpolate to higher resolution and 3 save to output directory
            if interpolation_procedure == "IDW":
                arcpy.AddMessage("Interpolating " + str(int(i)) + " using IDW")
                arcpy.gp.Idw_sa(out_temp_layer, variable_name,
                                os.path.join(output_directory, "Geographic", variable_name[0:4] + str(int(i))),
                                interpolation_resolution, "2", "VARIABLE 10", "")
            elif interpolation_procedure == "Spline":
                arcpy.AddMessage("Interpolating " + str(int(i)) + " using Spline")
                arcpy.gp.Spline_sa(out_temp_layer, variable_name,
                                   os.path.join(output_directory, "Geographic", variable_name[0:4] + str(int(i))),
                                   interpolation_resolution, "TENSION", "0.1", "10")
                arcpy.Delete_management(os.path.join(output_directory, "out.shp"))
            elif interpolation_procedure == "Kriging":
                arcpy.AddMessage("Interpolating " + str(int(i)) + " using Ordinary Kriging")
                arcpy.gp.Kriging_sa(out_temp_layer, variable_name,
                                    os.path.join(output_directory, "Geographic", variable_name[0:4] + str(int(i))),
                                    "Spherical " + str(interpolation_resolution), interpolation_resolution,
                                    "VARIABLE 10", "")

            elif interpolation_procedure == "Natural Neighbor":
                arcpy.AddMessage("Interpolating " + str(int(i)) + " using Natural Neighbor")
                arcpy.NaturalNeighbor_3d(out_temp_layer, variable_name,
                                         os.path.join(output_directory, "Geographic", variable_name[0:4] + str(int(i))),
                                         interpolation_resolution)

            elif interpolation_procedure == "Natural Neighbor and IDW":
                arcpy.AddMessage("Interpolating " + str(int(i)) + " using Natural Neighbor and IDW")

                if not os.path.exists(os.path.join(output_directory, "temp", "idw")):
                    os.makedirs(os.path.join(output_directory, "temp", "idw"))

                if not os.path.exists(os.path.join(output_directory, "temp", "nat")):
                    os.makedirs(os.path.join(output_directory, "temp", "nat"))

                arcpy.NaturalNeighbor_3d(out_temp_layer, variable_name,
                                         os.path.join(output_directory, "temp", "nat", variable_name[0:4] + str(int(i))),
                                         interpolation_resolution)

                arcpy.gp.Idw_sa(out_temp_layer, variable_name,
                                os.path.join(output_directory, "temp", "idw", variable_name[0:4] + str(int(i))),
                                interpolation_resolution, "2", "VARIABLE 10", "")

                input_rasters = [os.path.join(output_directory, "temp", "nat", variable_name[0:4] + str(int(i))),
                                 os.path.join(output_directory, "temp", "idw", variable_name[0:4] + str(int(i)))]

                arcpy.MosaicToNewRaster_management(input_rasters=input_rasters,
                                                   output_location=os.path.join(out_dir, "Geographic"),
                                                   raster_dataset_name_with_extension=str(i),
                                                   coordinate_system_for_the_raster="",
                                                   pixel_type="8_BIT_UNSIGNED", cellsize="",
                                                   number_of_bands="1", mosaic_method="FIRST", mosaic_colormap_mode="FIRST")

            elif interpolation_procedure == "None":
                arcpy.AddMessage("Making a raster for " + str(int(i)))
                arcpy.MakeNetCDFRasterLayer_md(in_netCDF_file=input_woa_netcdf, variable=variable_name,
                                               x_dimension=lon_name, y_dimension=lat_name,
                                               out_raster_layer=variable_name[0:4] + str(int(i)),
                                               band_dimension="", dimension_values="",
                                               value_selection_method="BY_VALUE")
                arcpy.CopyRaster_management(variable_name[0:4] + str(int(i)),
                                            os.path.join(output_directory, "Geographic", variable_name[0:4] + str(int(i))),
                                            "", "", "", "NONE", "NONE", "")

            if len(coordinate_system) > 1:
                arcpy.AddMessage("Reprojecting " + variable_name[0:4] + str(int(i)) + ".")
                arcpy.ProjectRaster_management(os.path.join(output_directory, "Geographic", variable_name[0:4] + str(int(i))),
                                               os.path.join(output_directory, "Projected", variable_name[0:4] + str(int(i))),
                                               coordinate_system, "NEAREST", "#", "#", "#", "#")

            arcpy.AddMessage("Generating master file for trilinear interpolation")

            if createxyz == "Only Geographic" or createxyz == "Both":
                if not os.path.exists(os.path.join(output_directory, "Geographic_yxz")):
                    os.makedirs(os.path.join(output_directory, "Geographic_yxz"))
                raster_to_xyz(os.path.join(output_directory, "Geographic", variable_name[0:4] + str(int(i))),
                              variable_name[0:4] + str(int(i)),
                              os.path.join(output_directory, "Geographic_yxz"), 349000000.0)
                depth = int(filter(str.isdigit, str(i)))

                if count_geo == 0:
                    df = pd.read_csv(os.path.join(output_directory, "Geographic_yxz", variable_name[0:4] + str(int(i)) + ".yxz"),
                                     header=0, names=["y", "x", "z"], sep=" ", dtype={"y": np.float64,  "x": np.float64, "z": np.float64})
                    master = df[["x", "y", "z"]].copy()
                    master.columns = ["x", "y", int(depth)]
                    master.to_pickle(os.path.join(output_directory, "Geographic_yxz", "master.pkl"))
                    os.remove(os.path.join(output_directory, "Geographic_yxz", variable_name[0:4] + str(int(i)) + ".yxz"))
                    del df, master
                    gc.collect()
                    count_geo = 1
                if count_geo == 1:
                    master = pd.read_pickle(os.path.join(output_directory, "Geographic_yxz", "master.pkl"))
                    df = pd.read_csv(os.path.join(output_directory, "Geographic_yxz", variable_name[0:4] + str(int(i)) + ".yxz"),
                                     header=0, names=["y", "x", "z"], sep=" ", dtype={"y": np.float64,  "x": np.float64, "z": np.float64})
                    master[int(depth)] = df["z"].copy()
                    master.to_pickle(os.path.join(output_directory, "Geographic_yxz", "master.pkl"))
                    os.remove(os.path.join(output_directory, "Geographic_yxz", variable_name[0:4] + str(int(i)) + ".yxz"))
                    del df, master
                    gc.collect()

            if createxyz == "Only Projected" or createxyz == "Both":
                if not os.path.exists(os.path.join(output_directory, "Projected_yxz")):
                    os.makedirs(os.path.join(output_directory, "Projected_yxz"))
                raster_to_xyz(os.path.join(output_directory, "Projected", variable_name[0:4] + str(int(i))),
                              variable_name[0:4] + str(int(i)),
                              os.path.join(output_directory, "Projected_yxz"), 349000000.0)

                depth = int(filter(str.isdigit, str(i)))

                if count_proj == 0:
                    df = pd.read_csv(os.path.join(output_directory, "Projected_yxz", variable_name[0:4] + str(int(i)) + ".yxz"),
                                     header=0, names=["y", "x", "z"], sep=" ", dtype={"y": np.float64,  "x": np.float64, "z": np.float64})
                    master = df[["x", "y"]].copy()
                    master.columns = ["x", "y"]
                    master = np.round(master, 4)
                    master.to_pickle(os.path.join(output_directory, "Projected_yxz", "xy_coords.pkl"))
                    master.to_pickle(os.path.join(output_directory, "Projected", "xy_coords.pkl"))
                    del master
                    gc.collect()
                    master_z = df[["z"]].copy()
                    master_z.columns = [int(depth)]
                    master_z = np.round(master_z, 4)
                    master_z.to_pickle(os.path.join(output_directory, "Projected_yxz", str(int(i)) + ".pkl"))
                    os.remove(os.path.join(output_directory, "Projected_yxz", variable_name[0:4] + str(int(i)) + ".yxz"))
                    del df, master_z
                    gc.collect()
                    count_proj = 1
                elif count_proj == 1:
                    df = pd.read_csv(os.path.join(output_directory, "Projected_yxz", variable_name[0:4] + str(int(i)) + ".yxz"),
                                     header=0, names=["y", "x", "z"], sep=" ", dtype={"y": np.float64,  "x": np.float64, "z": np.float64})
                    master_z = df[["z"]].copy()
                    master_z.columns = [int(depth)]
                    master_z = np.round(master_z, 4)
                    master_z.to_pickle(os.path.join(output_directory, "Projected_yxz", str(int(i)) + ".pkl"))
                    os.remove(os.path.join(output_directory, "Projected_yxz", variable_name[0:4] + str(int(i)) + ".yxz"))
                    del df, master_z
                    gc.collect()

        arcpy.AddMessage("Making pyramids and statistics for outputs")
        arcpy.BuildPyramidsandStatistics_management(in_workspace=os.path.join(output_directory, "Geographic"), include_subdirectories="NONE",
                                                    build_pyramids="BUILD_PYRAMIDS",
                                                    calculate_statistics="CALCULATE_STATISTICS", BUILD_ON_SOURCE="NONE",
                                                    block_field="", estimate_statistics="NONE", x_skip_factor="1",
                                                    y_skip_factor="1", ignore_values="", pyramid_level="-1",
                                                    SKIP_FIRST="NONE", resample_technique="NEAREST",
                                                    compression_type="DEFAULT", compression_quality="75",
                                                    skip_existing="SKIP_EXISTING")
        if len(coordinate_system) > 1:
            arcpy.BuildPyramidsandStatistics_management(in_workspace=os.path.join(output_directory, "Projected"), include_subdirectories="NONE",
                                                        build_pyramids="BUILD_PYRAMIDS",
                                                        calculate_statistics="CALCULATE_STATISTICS", BUILD_ON_SOURCE="NONE",
                                                        block_field="", estimate_statistics="NONE", x_skip_factor="1",
                                                        y_skip_factor="1", ignore_values="", pyramid_level="-1",
                                                        SKIP_FIRST="NONE", resample_technique="NEAREST",
                                                        compression_type="DEFAULT", compression_quality="75",
                                                        skip_existing="SKIP_EXISTING")

        arcpy.AddMessage("Script complete in %s seconds." % (time.clock() - t_start))

        return
    """-------- RUN SELECTED PROCESSES ------------------------------------------"""
    if processesToRun == 'All':
        processesToRun = ['Freq', 'LCBinary', 'LCSum','School', 'GreenP', 'ImpP', 'Parks', 'NrRd', 'WVW', 'WVT', 'RB', 'GUIDOS_Prep', 'GUIDOS', 'GSTCnWR', 'IntDen', 'Floodplains', 'NrRdRsch', 'Metadata']

    """ Make Sure the Processes Listed are Real """
    for process in processesToRun:
        if process not in ['Freq', 'LCBinary', 'LCSum','School', 'GreenP', 'ImpP', 'Parks', 'NrRd', 'WVW', 'WVT', 'RB', 'GUIDOS_Prep', 'GUIDOS', 'GSTCnWR', 'IntDen', 'Floodplains', 'NrRdRsch', 'Metadata']:
            print 'One of the processes you listed is not acutally a process. Please correct and rerun.'
            exit()


    if 'Freq' in processesToRun:
        import Frequent_V2
        Frequent_V2.freq(city, inDir, workFld)
        arcpy.BuildPyramidsandStatistics_management(workFld + '/' + city + '_Freq.gdb')

    if 'GUIDOS_Prep' in processesToRun:
        import GUIDOS_Prep
        GUIDOS_Prep.Guidos_Prep(city, inDir, workFld)
        arcpy.BuildPyramidsandStatistics_management(workFld + '/' + city + '_Split')

    if 'LCBinary' in processesToRun:
        import LCBinary
        LCBinary.LCBin(city, inDir, workFld)
        arcpy.BuildPyramidsandStatistics_management(workFld + '/' + city + '_Freq.gdb')

    if 'LCSum' in processesToRun:
        import LCSum
        LCSum.LCSum(city, inDir, workFld)