Exemplo n.º 1
0
    results_folder : str, optional
        Folder where results are, by default './results'
    """
    print("STAGE: ANALYZE")
    print(f"Generating plots for {results_folder}")
    (Path(results_folder) / 'example.png').touch()
    print()


@argbind.bind(without_prefix=True, positional=True)
def run(stage: str):
    """Run stages.

    Parameters
    ----------
    stages : str
        Stage to run
    """
    with output():
        if stage not in STAGES:
            raise ValueError(
                f"Requested stage {stage} not in known stages {STAGES}")
        stage_fn = globals()[stage]
        stage_fn()


if __name__ == "__main__":
    args = argbind.parse_args()
    with argbind.scope(args):
        run()
Exemplo n.º 2
0
def forward():
    run = argbind.bind(open_link, positional=True, without_prefix=True)
    args = argbind.parse_args()
    with argbind.scope(args):
        run()
Exemplo n.º 3
0
class MyClass:
    def __init__(self, x: str = "from default"):
        self.x = x
        print(self.x)

def my_func(x: int = 100):
    print(x)
    return x

if __name__ == "__main__":
    import argbind
    
    BoundClass = argbind.bind(MyClass, 'pattern')
    bound_fn = argbind.bind(my_func)

    argbind.parse_args() # add for help text, though it isn't used here.

    args = {
      'MyClass.x': 'from binding',
      'pattern/MyClass.x': 'from binding in scoping pattern',
      'my_func.x': 123,
      'args.debug': True # for printing arguments passed to each function
    }

    # Original objects are not affected by ArgBind
    print("Original object output")
    with argbind.scope(args):
        MyClass() # prints "from default"
        my_func() # prints 100
    print()
    
Exemplo n.º 4
0
def main():
    args = argbind.parse_args()
    with argbind.scope(args):
        arg = Args()
        signal.signal(signal.SIGINT, clean_up)
        app.run(debug=True, host=arg.host, port=arg.port)
Exemplo n.º 5
0
    ASGD, Adadelta, Adagrad, AdamW, Adamax, LBFGS, NAdam, RAdam, RMSprop,
    Rprop, SGD, SparseAdam
]


class holder:
    def __init__(self):
        for o in optimizers:
            setattr(self, o.__name__, o)


optim = holder()

args = {
    "lr": 2e-4,
    "args.debug": True,
}

if __name__ == "__main__":
    argbind.parse_args()

    net = torch.nn.Linear(1, 1)
    for fn_name in dir(optim):
        if fn_name == "Optimizer":
            continue
        fn = getattr(optim, fn_name)
        if hasattr(fn, "step"):
            args[f"{fn_name}.lr"] = args["lr"]
            with argbind.scope(args):
                fn(net.parameters())