Exemplo n.º 1
0
class MontagePlotsSchema(ArgSchema):
    collection_path = InputFile(required=True,
                                description="point matches from here")
    resolved_path = InputFile(required=True,
                              description="resolved tiles from here")
    save_json_path = OutputFile(
        required=True,
        missing=None,
        default=None,
        description=("save residuals to this path if not None"))
    save_plot_path = OutputFile(
        required=True,
        missing=None,
        default=None,
        description=("save plot to this path if not None"))
    make_plot = Boolean(required=True,
                        missing=True,
                        default=True,
                        description=("make a plot?"))
    show = Boolean(required=True,
                   missing=True,
                   default=True,
                   description=("show on screen?"))
    pdf_out = OutputFile(required=True,
                         missing=None,
                         default=None,
                         description="where to write the pdf output")
Exemplo n.º 2
0
class InputParameters(ArgSchema):
    reconstructions = Nested(
        Reconstruction,
        description="The morphological reconstructions to be processed",
        required=True,
        many=True
    ) 
    heavy_output_path = OutputFile(
        description=(
            "features whose results are heavyweight data (e.g. the numpy "
            "arrays returned by layer histograms features) are stored here."
        ),
        required=True
    )
    feature_set = String(
        description="select the basic set of features to calculate",
        required=False,
        default="aibs_default"
    )
    only_marks = List(
        String,
        cli_as_single_argument=True,
        description=(
            "restrict calculated features to those with this set of marks"
        ), 
        required=False
    )
    required_marks = String(
        description=(
            "Error (vs. skip) if any of these marks fail validation"
        ), 
        required=False,
        many=True
    )
    output_table_path = OutputFile(
        description=(
            "this module writes outputs to a json specified as --output_json. "
            "If you want to store outputs in a different format "
            "(.csv is supported currently), specify this parameter"
        ),
        required=False
    )
    num_processes = Int(
        description=(
            "Run a multiprocessing pool with this many processes. "
            "Default is min(number of cpus, number of swcs). "
            "Setting num_processes to 1 will avoid a pool."
        ),
        required=False,
        default=None,
        allow_none=True
    )
    global_parameters = Nested(
        GlobalParameters, 
        description=(
            "provide additional configuration to this feature extraction run. "
            "This configuration will be applied to all morphologies processed."
        ), 
        required=False
    )
Exemplo n.º 3
0
class PipelineParameters(ArgSchema):
    input_nwb_file = InputFile(description="input nwb file", required=True)
    stimulus_ontology_file = OutputFile(description="blash", required=False)
    input_h5_file = InputFile(desription="input h5 file", required=False)
    output_nwb_file = OutputFile(description="output nwb file", required=True)
    qc_fig_dir = OutputFile(description="output qc figure directory",
                            required=False)
    qc_criteria = Nested(QcCriteria, required=True)
    manual_sweep_states = Nested(ManualSweepState, required=False, many=True)
Exemplo n.º 4
0
class FeatureExtractionParameters(ArgSchema):
    input_nwb_file = InputFile(description="input nwb file", required=True)
    stimulus_ontology_file = InputFile(description="stimulus ontology JSON",
                                       required=False)
    output_nwb_file = OutputFile(description="output nwb file", required=True)
    qc_fig_dir = OutputFile(description="output qc figure directory",
                            required=False)
    sweep_features = Nested(FxSweepFeatures, many=True)
    cell_features = Nested(CellFeatures, required=True)
class ImportTrakEM2AnnotationParameters(RenderTrakEM2Parameters):
    EMstack = Str(required=True,
                  description='stack to look for trakem2 patches in')
    trakem2project = InputFile(required=True,
                               description='trakem2 file to read in')
    output_annotation_file = OutputFile(
        required=True, description="place to save annotation output")
    output_bounding_box_file = OutputFile(
        required=True, description="place to save bounding box output")
Exemplo n.º 6
0
class NwayMatchingOutputSchema(NwayMatchingOutputNoPlotsSchema):
    nway_match_fraction_plot = OutputFile(
        required=True,
        description="Path of match fraction plot *.png")
    nway_warp_overlay_plot = OutputFile(
        required=True,
        description="Path of warp overlay plot *.png")
    nway_warp_summary_plot = OutputFile(
        required=True,
        description="Path of warp summary plot *.png")
Exemplo n.º 7
0
class SweepExtractionParameters(ArgSchema):
    input_nwb_file = InputFile(description="input nwb file", required=True)
    stimulus_ontology_file = OutputFile(description="stimulus ontology JSON",
                                        required=False)
    update_ontology = Boolean(
        description=
        "update stimulus ontology file from LIMS (if path is provided)",
        default=True)
    # TODO: these values below seem unused
    manual_seal_gohm = Float(description="blah")
    manual_initial_access_resistance_mohm = Float(description="blah")
    manual_initial_input_mohm = Float(description="blah")
    output_json = OutputFile(description="output feature json file",
                             required=True)
Exemplo n.º 8
0
class MorphologySummaryParameters(ArgSchema):

    pia_transform = Dict(description="input pia transform", required=True)
    relative_soma_depth = Float(desription="input relative soma depth",
                                required=False)
    soma_depth = Float(description="input soma depth", required=True)
    swc_file = InputFile(description="input swc file", required=True)
    thumbnail_file = OutputFile(description="output thumbnail file",
                                required=True)
    cortex_thumbnail_file = OutputFile(
        description="output cortex thumbnail file", required=True)
    normal_depth_thumbnail_file = OutputFile(
        description="output normal depth thumbnail file", required=True)
    high_resolution_thumbnail_file = OutputFile(
        description="output high resolution cortex thumbnail file",
        required=True)
Exemplo n.º 9
0
class OutputParameters(DefaultSchema):
    inputs = Nested(
        PiaWmStreamlineSchema,
        description="The parameters argued to this executable",
        required=True
    )
    depth_field_file = OutputFile(
        required=True,
        description='location of depth field xarray')

    gradient_field_file = OutputFile(
        required=True,
        description='location of gradient field xarray')
    translation = NumpyArray(
        required=False,
        description='translation if applied')
Exemplo n.º 10
0
class output_stack(db_params):
    output_file = OutputFile(
        required=False,
        missing=None,
        default=None,
        description=("json or json.gz serialization of input stack"
                     "ResolvedTiles."))
    compress_output = Boolean(
        required=False,
        default=True,
        missing=True,
        description=("if writing file, compress with gzip."))
    collection_type = String(default='stack',
                             description="'stack' or 'pointmatch'")
    use_rest = Boolean(
        default=False,
        description=("passed as kwarg to "
                     "renderapi.client.import_tilespecs_parallel"))

    @mm.post_load
    def validate_file(self, data):
        if data['db_interface'] == 'file':
            if data['output_file'] is None:
                raise mm.ValidationError("with db_interface 'file', "
                                         "'output_file' must be a file")

    @mm.post_load
    def validate_data(self, data):
        if 'name' in data:
            if len(data['name']) != 1:
                raise mm.ValidationError("only one input or output "
                                         "stack name is allowed")
Exemplo n.º 11
0
class LensQuiverSchema(ArgSchema):
    transform_list = List(InputFile,
                          required=True,
                          description=("list of paths to transforms "
                                       " or resolved tiles"))
    subplot_shape = List(Int,
                         required=True,
                         missing=[1, 1],
                         default=[1, 1],
                         description="sets the subplots for multiple plots")
    n_grid_pts = Int(required=True,
                     missing=20,
                     default=20,
                     description="number of pts per axis for quiver grid")
    fignum = Int(required=True,
                 missing=None,
                 default=None,
                 description="passed to plt.subplots to number the figure")
    arrow_scale = Float(required=True,
                        missing=1.0,
                        default=1.0,
                        description="relative scale of arrows to axes")
    show = Boolean(required=True,
                   missing=True,
                   default=True,
                   description=("show on screen?"))
    pdf_out = OutputFile(required=True,
                         missing='./lens_corr_plots.pdf',
                         default='./lens_corr_plots.pdf',
                         description="where to write the pdf output")
Exemplo n.º 12
0
class QcParameters(ArgSchema):
    stimulus_ontology_file = InputFile(description="blash", required=False)
    qc_criteria = Nested(QcCriteria, required=True)
    sweep_features = Nested(QcSweepFeatures, many=True, required=True)
    cell_features = Nested(CellFeatures)
    output_json = OutputFile(description="output feature json file",
                             required=True)
Exemplo n.º 13
0
class PipelineParameters(ArgSchema):
    input_nwb_file = InputFile(description="input nwb file", required=True)
    stimulus_ontology_file = OutputFile(description="blash", required=False)
    update_ontology = Boolean(
        description=
        "update stimulus ontology file from LIMS (if path is provided)",
        default=True)
    output_nwb_file = OutputFile(description="output nwb file", required=True)
    output_json = OutputFile(description="output feature json file",
                             required=True)
    qc_fig_dir = OutputFile(description="output qc figure directory",
                            required=False)
    qc_criteria = Nested(QcCriteria, required=True)
    manual_sweep_states = Nested(ManualSweepState, required=False, many=True)
    write_spikes = Boolean(description="Flag for writing spike times",
                           required=False)
Exemplo n.º 14
0
class DepthEstimationParams(DefaultSchema):
    hi_noise_thresh = Float(required=True,
                            default=50.0,
                            help='Max RMS noise for including channels')
    lo_noise_thresh = Float(required=True,
                            default=3.0,
                            help='Min RMS noise for including channels')

    save_figure = Bool(required=True, default=True)
    figure_location = OutputFile(required=True, default=None)

    smoothing_amount = Int(
        required=True,
        default=5,
        help='Gaussian smoothing parameter to reduce channel-to-channel noise')
    power_thresh = Float(
        required=True,
        default=2.5,
        help=
        'Ignore threshold crossings if power is above this level (indicates channels are in the brain)'
    )
    diff_thresh = Float(
        required=True,
        default=-0.07,
        help='Threshold to detect large increases is power at brain surface')
    freq_range = NumpyArray(
        required=True,
        default=[0, 10],
        help='Frequency band for detecting power increases')
    max_freq = Int(required=True,
                   default=150,
                   help='Maximum frequency to plot')
    channel_range = NumpyArray(
        required=True,
        default=[370, 380],
        help='Channels assumed to be out of brain, but in saline')
    n_passes = Int(
        required=True,
        default=10,
        help='Number of times to compute offset and surface channel')
    skip_s_per_pass = Int(
        required=True,
        default=100,
        help='Number of seconds between data chunks used on each pass')
    start_time = Float(
        required=True,
        default=0,
        help='First time (in seconds) for computing median offset')
    time_interval = Float(required=True,
                          default=5,
                          help='Number of seconds for computing median offset')

    nfft = Int(required=True,
               default=4096,
               help='Length of FFT used for calculations')

    air_gap = Int(
        required=True,
        default=100,
        help='Approximate number of channels between brain surface and air')
Exemplo n.º 15
0
class DoMeshLensCorrectionOutputSchema(DefaultSchema):
    output_json = Str(
        required=True,
        description="path to lens correction file")
    maskUrl = OutputFile(
        required=True,
        description="path to mask generated")
Exemplo n.º 16
0
class FilterSchema(RenderParameters, ZValueParameters, ProcessPoolParameters):
    input_stack = Str(
        required=True,
        description='stack with stage-aligned coordinates')
    input_match_collection = Str(
        required=True,
        description='Name of the montage point match collection')
    output_match_collection = Str(
        required=True,
        default=None,
        missing=None,
        description='Name of the montage point match collection to write to')
    resmax = Float(
        required=True,
        description=("maximum value in "
                     "pixels for average residual in tile pair"))
    transmax = Float(
        required=True,
        description=("maximum value in "
                     "pixels for translation relative to stage coords"))
    filter_output_file = OutputFile(
        required=True,
        description="location of json file with filter output")
    inverse_weighting = Bool(
        required=True,
        default=False,
        missing=False,
        description='new weights weighted inverse to counts per tile-pair')
Exemplo n.º 17
0
class GenerateEMTileSpecsParameters(ArgSchema):
    metafile = InputFile(
        required=True,
        description="metadata file containing TEMCA acquisition data")
    maskUrl = InputFile(required=False,
                        default=None,
                        missing=None,
                        description="absolute path to image mask to apply")
    image_directory = InputDir(
        required=False,
        description=("directory used in determining absolute paths to images. "
                     "Defaults to parent directory containing metafile "
                     "if omitted."))
    maximum_intensity = Int(
        required=False,
        default=255,
        description=("intensity value to interpret as white"))
    minimum_intensity = Int(
        required=False,
        default=0,
        description=("intensity value to interpret as black"))
    z = Float(required=False, default=0, description=("z value"))
    sectionId = Str(
        required=False,
        description=("sectionId to apply to tiles during ingest.  "
                     "If unspecified will default to a string "
                     "representation of the float value of z_index."))
    output_path = OutputFile(required=False,
                             description="directory for output files")
    compress_output = Boolean(
        required=False,
        missing=True,
        default=True,
        escription=("tilespecs will be .json or .json.gz"))
Exemplo n.º 18
0
class PostProcessROIsInputSchema(ArgSchema):
    suite2p_stat_path = Str(
        required=True,
        validate=lambda x: Path(x).exists(),
        description=("Path to s2p output stat file containing ROIs generated "
                     "during source extraction"))
    motion_corrected_video = Str(
        required=True,
        validate=lambda x: Path(x).exists(),
        description=("Path to motion corrected video file *.h5"))
    motion_correction_values = InputFile(
        required=True,
        description=("Path to motion correction values for each frame "
                     "stored in .csv format. This .csv file is expected to"
                     "have a header row of either:\n"
                     "['framenumber','x','y','correlation','kalman_x',"
                     "'kalman_y']\n['framenumber','x','y','correlation',"
                     "'input_x','input_y','kalman_x',"
                     "'kalman_y','algorithm','type']"))
    output_json = OutputFile(
        required=True, description=("Path to a file to write output data."))
    maximum_motion_shift = Float(
        missing=30.0,
        required=False,
        allow_none=False,
        description=("The maximum allowable motion shift for a frame in pixels"
                     " before it is considered an anomaly and thrown out of "
                     "processing"))
    abs_threshold = Float(
        missing=None,
        required=False,
        allow_none=True,
        description=("The absolute threshold to binarize ROI masks against. "
                     "If not provided will use quantile to generate "
                     "threshold."))
    binary_quantile = Float(
        missing=0.1,
        validate=Range(min=0, max=1),
        description=("The quantile against which an ROI is binarized. If not "
                     "provided will use default function value of 0.1."))
    npixel_threshold = Int(
        default=50,
        required=False,
        description=("ROIs with fewer pixels than this will be labeled as "
                     "invalid and small size."))
    aspect_ratio_threshold = Float(
        default=0.2,
        required=False,
        description=("ROIs whose aspect ratio is <= this value are "
                     "not recorded. This captures a large majority of "
                     "Suite2P-created artifacts from motion border"))
    morphological_ops = Bool(
        default=True,
        required=False,
        description=("whether to perform morphological operations after "
                     "binarization. ROIs that are washed away to empty "
                     "after this operation are eliminated from the record. "
                     "This can apply to ROIs that were previously labeled "
                     "as small size, for example."))
Exemplo n.º 19
0
class AnnotationParameters(DefaultSchema):
    annotate_movie = Bool(default=False,
                          description="Flag for whether or not to annotate")
    output_file = OutputFile(default="./annotated.avi")
    fourcc = Str(description=("FOURCC string for video encoding. On Windows "
                              "H264 is not available by default, so it will "
                              "need to be installed or a different codec "
                              "used."))
Exemplo n.º 20
0
class SweepExtractionParameters(ArgSchema):
    input_nwb_file = InputFile(description="input nwb file", required=True)
    stimulus_ontology_file = OutputFile(
        description="stimulus ontology JSON", required=False
    )
    manual_seal_gohm = Float(description="blah")
    manual_initial_access_resistance_mohm = Float(description="blah")
    manual_initial_input_mohm = Float(description="blah")
Exemplo n.º 21
0
class NwayDiagnosticSchema(ArgSchema):
    output_pdf = OutputFile(
        required=True,
        description="path to output pdf")
    use_input_dir = fields.Bool(
        required=False,
        missing=False,
        default=False,
        descriptip="output to same directory as input")
Exemplo n.º 22
0
class Nwb2SinkTarget(DefaultSchema):
    """Configure an output target for an Nwb2 Sink
    """
    output_path = OutputFile(
        description=(
            "Output path to which file with attached metadata will be written"
        ),
        required=True
    )
Exemplo n.º 23
0
class DandiSinkTarget(DefaultSchema):
    """Specify an output target for a DANDI metadata sink
    """
    output_path = OutputFile(
        description=(
            "Outputs will be written here. Currently only yaml is "
            "supported"
        )
    )
Exemplo n.º 24
0
class OutputParameters(DefaultSchema):
    inputs = Nested(
        ApplyAffineSchema,
        description="The parameters argued to this executable",
        required=True
    )
    transformed_swc = OutputFile(
        required=True,
        description='location of the transformed swc')
Exemplo n.º 25
0
class DataFilterSchema(ArgSchema):
    dset1 = Nested(DataLoaderSchema)
    dset_soma = Nested(DataLoaderSchema)
    dset2 = Nested(DataLoaderSchema)
    output_file = OutputFile(required=False,
                             missing=None,
                             default=None,
                             description="where to write output file")
    header = Str(required=True,
                 default="opt",
                 description="specifies which data to use, i.e. opt/em")
Exemplo n.º 26
0
class OutputImage(DefaultSchema):
    input_path = InputFile(description="The base image was read from here",
                           required=True)
    output_path = OutputFile(description="The overlay was written to here",
                             required=True)
    downsample = Int(
        description=(
            "The base image was downsampled by this factor along each axis"),
        required=True,
    )
    overlay_type = String(
        description="This image has this kind of overlay",
        required=True,
    )
Exemplo n.º 27
0
class Image(DefaultSchema):
    input_path = InputFile(description="Read the image from here",
                           required=True)
    output_path = OutputFile(
        description="Write outputs to (siblings of) this path", required=True)
    downsample = Int(
        description=("Downsample the image by this amount on each dimension "
                     "(currently this is just a decimation, hence Int)."),
        required=True,
        default=8)
    overlay_types = List(
        String,
        description=("produce these types of overlays for this image. "
                     "See ImageOutputter for options"),
        required=True,
        default=["before", "after"])
Exemplo n.º 28
0
class ApplyAffineSchema(ArgSchema):
    """Arg Schema for apply_affine_transform module"""
    affine_dict = Nested(AffineDictSchema,
                         required=False,
                         description='Dictionary defining an affine transform')
    affine_list = List(Float,
                       required=False,
                       cli_as_single_argument=True,
                       description='List defining an affine transform')
    input_swc = InputFile(required=True,
                          description='swc file to be transformed')

    output_swc = OutputFile(required=True,
                            description='Output swc filepath')

    @mm.validates_schema
    def validate_schema_input(self, data):
        validate_input_affine(data)
Exemplo n.º 29
0
class ViewMatchesSchema(ArgSchema):
    collection_path = InputFile(
        required=False,
        description="if specified, will read collection from here")
    collection_basename = Str(
        required=True,
        missing="collection.json",
        default="collection.json",
        description=("basename for collection file if collection_path"
                     " not specified. will also check for .json.gz"))
    data_dir = InputDir(
        required=True,
        description=("directory containing image files. Will also be dir"
                     " dir for collection path, if not otherwise specified"))
    resolved_tiles = List(
        Str,
        required=True,
        missing=["resolvedtiles.json.gz", "resolvedtiles_input.json.gz"],
        description=("will take the transform from the first file"
                     " matching this list, if possible"))
    transform_file = InputFile(
        required=False,
        description=("if provided, will get lens correction transform "
                     " from here"))
    view_all = Boolean(
        required=True,
        missing=False,
        default=False,
        description=("will plot all the pair matches. can be useful "
                     "for lens correction to file. probably not desirable "
                     "for montage"))
    show = Boolean(required=True,
                   missing=True,
                   default=True,
                   description=("show on screen?"))
    match_index = Int(required=True,
                      missing=0,
                      default=0,
                      description=("which index of self.matches to plot"))
    pdf_out = OutputFile(required=True,
                         missing='./view_matches_output.pdf',
                         default='./view_matches_output.pdf',
                         description="where to write the pdf output")
Exemplo n.º 30
0
class InputParameters(ArgSchema):
    swc_path = InputFile(description="path to input swc (csv) file",
                         required=True)
    depth = Nested(DepthField,
                   description=("A transform which can be evaluated at the "
                                "location of each node in the input swc"),
                   required=True,
                   many=False)
    layers = Nested(Layer,
                    description="specification of layer bounds",
                    many=True,
                    required=True)
    step_size = Float(description=(
        "size of each step, in the same units as the depth field and swc"),
                      required=True,
                      default=1.0)
    output_path = OutputFile(description="write (csv) outputs here",
                             required=True)
    max_iter = Int(description="how many steps to take before giving up",
                   required=True,
                   default=1000)