Exemplo n.º 1
0
def supervised_loss_arrow(arrow: Arrow,
                          DiffArrow=SquaredDifference) -> CompositeArrow:
    """
    Creates an arrow that  computes |f(y) - x|
    Args:
        Arrow: f: Y -> X - The arrow to modify
        DiffArrow: d: X x X - R - Arrow for computing difference
    Returns:
        f: Y/Theta x .. Y/Theta x X -> |f^{-1}(y) - X| x X
        Arrow with same input and output as arrow except that it takes an
        addition input with label 'train_output' that should contain examples
        in Y, and it returns an additional error output labelled
        'supervised_error' which is the |f(y) - x|
    """
    c = CompositeArrow(name="%s_supervised" % arrow.name)
    # Pipe all inputs of composite to inputs of arrow

    # Make all in_ports of inverse inputs to composition
    for in_port in arrow.in_ports():
        c_in_port = c.add_port()
        make_in_port(c_in_port)
        if is_param_port(in_port):
            make_param_port(c_in_port)
        c.add_edge(c_in_port, in_port)

    # find difference between inputs to inverse and outputs of fwd
    # make error port for each
    for i, out_port in enumerate(arrow.out_ports()):
        if is_error_port(out_port):
            # if its an error port just pass through
            error_port = c.add_port()
            make_out_port(error_port)
            make_error_port(error_port)
            transfer_labels(out_port, error_port)
            c.add_edge(out_port, error_port)
        else:
            # If its normal outport then pass through
            c_out_port = c.add_port()
            make_out_port(c_out_port)
            c.add_edge(out_port, c_out_port)

            # And compute the error
            diff = DiffArrow()
            in_port = c.add_port()
            make_in_port(in_port)
            add_port_label(in_port, "train_output")
            c.add_edge(in_port, diff.in_port(0))
            c.add_edge(out_port, diff.in_port(1))
            error_port = c.add_port()
            make_out_port(error_port)
            make_error_port(error_port)
            add_port_label(error_port, "supervised_error")
            c.add_edge(diff.out_port(0), error_port)

    assert c.is_wired_correctly()
    return c
Exemplo n.º 2
0
def inv_fwd_loss_arrow(arrow: Arrow,
                       inverse: Arrow,
                       DiffArrow=SquaredDifference) -> CompositeArrow:
    """
    Arrow wihch computes |f(f^-1(y)) - y|
    Args:
        arrow: Forward function
    Returns:
        CompositeArrow
    """
    c = CompositeArrow(name="%s_inv_fwd_loss" % arrow.name)

    # Make all in_ports of inverse inputs to composition
    for inv_in_port in inverse.in_ports():
        in_port = c.add_port()
        make_in_port(in_port)
        if is_param_port(inv_in_port):
            make_param_port(in_port)
        c.add_edge(in_port, inv_in_port)

    # Connect all out_ports of inverse to in_ports of f
    for i, out_port in enumerate(inverse.out_ports()):
        if not is_error_port(out_port):
            c.add_edge(out_port, arrow.in_port(i))
            c_out_port = c.add_port()
            # add edge from inverse output to composition output
            make_out_port(c_out_port)
            c.add_edge(out_port, c_out_port)

    # Pass errors (if any) of parametric inverse through as error_ports
    for i, out_port in enumerate(inverse.out_ports()):
        if is_error_port(out_port):
            error_port = c.add_port()
            make_out_port(error_port)
            make_error_port(error_port)
            add_port_label(error_port, "sub_arrow_error")
            c.add_edge(out_port, error_port)

    # find difference between inputs to inverse and outputs of fwd
    # make error port for each
    for i, out_port in enumerate(arrow.out_ports()):
        diff = DiffArrow()
        c.add_edge(c.in_port(i), diff.in_port(0))
        c.add_edge(out_port, diff.in_port(1))
        error_port = c.add_port()
        make_out_port(error_port)
        make_error_port(error_port)
        add_port_label(error_port, "inv_fwd_error")
        c.add_edge(diff.out_port(0), error_port)

    assert c.is_wired_correctly()
    return c
Exemplo n.º 3
0
def comp(fwd: Arrow, right_inv: Arrow, DiffArrow=SquaredDifference):
    """Compositon: Pipe output of forward model into input of right inverse
    Args:
        fwd: X -> Y
        right_inv: Y -> X x Error
    Returns:
        X -> X
    """
    c = CompositeArrow(name="fwd_to_right_inv")

    # Connect left boundar to fwd
    for in_port in fwd.in_ports():
        c_in_port = c.add_port()
        make_in_port(c_in_port)
        c.add_edge(c_in_port, in_port)
        transfer_labels(in_port, c_in_port)

    # Connect fwd to right_inv
    for i, out_port in enumerate(fwd.out_ports()):
        c.add_edge(out_port, right_inv.in_port(i))

    # connect right_inv to right boundary
    for out_port in right_inv.out_ports():
        c_out_port = c.add_port()
        make_out_port(c_out_port)
        if is_error_port(out_port):
            make_error_port(c_out_port)

        c.add_edge(out_port, c_out_port)
        transfer_labels(out_port, c_out_port)

    # Find difference between X and right_inv(f(x))
    right_inv_out_ports = list(filter(lambda port: not is_error_port(port),
                                      right_inv.out_ports()))  # len(X)
    assert len(right_inv_out_ports) == len(c.in_ports())
    for i, in_port in enumerate(c.in_ports()):
        diff = DiffArrow()
        c.add_edge(in_port, diff.in_port(0))
        c.add_edge(right_inv_out_ports[i], diff.in_port(1))
        error_port = c.add_port()
        make_out_port(error_port)
        make_error_port(error_port)
        add_port_label(error_port, "supervised_error")
        c.add_edge(diff.out_port(0), error_port)

    assert c.is_wired_correctly()
    return c