Exemplo n.º 1
0
    def test_check_params(self):
        with self.assertRaises(ValueError):
            _ = FeatureSqueezing(clip_values=(0, 4), bit_depth=-1)

        with self.assertRaises(ValueError):
            _ = FeatureSqueezing(clip_values=(0, 4, 8))

        with self.assertRaises(ValueError):
            _ = FeatureSqueezing(clip_values=(4, 0))
def test_defences_predict(get_default_mnist_subset,
                          image_dl_estimator_defended, image_dl_estimator):
    (_, _), (x_test_mnist, y_test_mnist) = get_default_mnist_subset

    classifier, _ = image_dl_estimator_defended(
        one_classifier=True,
        defenses=["FeatureSqueezing", "JpegCompression", "SpatialSmoothing"])
    if classifier is not None:
        assert len(classifier.preprocessing_defences) == 3

        predictions_classifier = classifier.predict(x_test_mnist)

        # Apply the same defences by hand
        x_test_defense = x_test_mnist
        clip_values = (0, 1)
        fs = FeatureSqueezing(clip_values=clip_values, bit_depth=2)
        x_test_defense, _ = fs(x_test_defense, y_test_mnist)
        jpeg = JpegCompression(clip_values=clip_values, apply_predict=True)
        x_test_defense, _ = jpeg(x_test_defense, y_test_mnist)
        smooth = SpatialSmoothing()
        x_test_defense, _ = smooth(x_test_defense, y_test_mnist)
        # classifier, _ = get_image_classifier_list(one_classifier=True, from_logits=True)
        classifier, _ = image_dl_estimator(one_classifier=True)
        predictions_check = classifier._model.predict(x_test_defense)

        # Check that the prediction results match
        np.testing.assert_array_almost_equal(predictions_classifier,
                                             predictions_check,
                                             decimal=4)
Exemplo n.º 3
0
 def test_data_range(self):
     x = np.arange(5)
     preproc = FeatureSqueezing(clip_values=(0, 4), bit_depth=2)
     x_squeezed, _ = preproc(x)
     self.assertTrue(np.array_equal(x, np.arange(5)))
     self.assertTrue(
         np.allclose(x_squeezed, [0, 1.33, 2.67, 2.67, 4], atol=1e-1))
    def test_defences_predict(self):
        clip_values = (0, 1)
        fs = FeatureSqueezing(clip_values=clip_values, bit_depth=2)
        jpeg = JpegCompression(clip_values=clip_values, apply_predict=True)
        smooth = SpatialSmoothing()

        classifier_ = get_image_classifier_kr_tf()
        classifier = KerasClassifier(clip_values=clip_values,
                                     model=classifier_._model,
                                     preprocessing_defences=[fs, jpeg, smooth])
        self.assertEqual(len(classifier.preprocessing_defences), 3)

        predictions_classifier = classifier.predict(self.x_test_mnist)

        # Apply the same defences by hand
        x_test_defense = self.x_test_mnist
        x_test_defense, _ = fs(x_test_defense, self.y_test_mnist)
        x_test_defense, _ = jpeg(x_test_defense, self.y_test_mnist)
        x_test_defense, _ = smooth(x_test_defense, self.y_test_mnist)
        classifier = get_image_classifier_kr_tf()
        predictions_check = classifier._model.predict(x_test_defense)

        # Check that the prediction results match
        np.testing.assert_array_almost_equal(predictions_classifier,
                                             predictions_check,
                                             decimal=4)
    def test_pickle(self):
        filename = "my_classifier.p"
        full_path = os.path.join(ART_DATA_PATH, filename)
        folder = os.path.split(full_path)[0]
        if not os.path.exists(folder):
            os.makedirs(folder)

        fs = FeatureSqueezing(bit_depth=1, clip_values=(0, 1))
        keras_model = KerasClassifier(self.functional_model,
                                      clip_values=(0, 1),
                                      input_layer=1,
                                      output_layer=1,
                                      preprocessing_defences=fs)
        with open(full_path, "wb") as save_file:
            pickle.dump(keras_model, save_file)

        # Unpickle:
        with open(full_path, "rb") as load_file:
            loaded = pickle.load(load_file)

        np.testing.assert_equal(keras_model._clip_values, loaded._clip_values)
        self.assertEqual(keras_model._channels_first, loaded._channels_first)
        self.assertEqual(keras_model._use_logits, loaded._use_logits)
        self.assertEqual(keras_model._input_layer, loaded._input_layer)
        self.assertEqual(self.functional_model.get_config(),
                         loaded._model.get_config())
        self.assertTrue(
            isinstance(loaded.preprocessing_defences[0], FeatureSqueezing))

        os.remove(full_path)
Exemplo n.º 6
0
def test_defences_predict(get_default_mnist_subset, get_image_classifier_list):
    (x_train_mnist, y_train_mnist), (x_test_mnist,
                                     y_test_mnist) = get_default_mnist_subset

    clip_values = (0, 1)
    fs = FeatureSqueezing(clip_values=clip_values, bit_depth=2)
    jpeg = JpegCompression(clip_values=clip_values, apply_predict=True)
    smooth = SpatialSmoothing()
    classifier_, _ = get_image_classifier_list(one_classifier=True)
    classifier = KerasClassifier(clip_values=clip_values,
                                 model=classifier_.model,
                                 preprocessing_defences=[fs, jpeg, smooth])
    assert len(classifier.preprocessing_defences) == 3

    predictions_classifier = classifier.predict(x_test_mnist)

    # Apply the same defences by hand
    x_test_defense = x_test_mnist
    x_test_defense, _ = fs(x_test_defense, y_test_mnist)
    x_test_defense, _ = jpeg(x_test_defense, y_test_mnist)
    x_test_defense, _ = smooth(x_test_defense, y_test_mnist)
    classifier, _ = get_image_classifier_list(one_classifier=True)

    predictions_check = classifier.model.predict(x_test_defense)

    # Check that the prediction results match
    np.testing.assert_array_almost_equal(predictions_classifier,
                                         predictions_check,
                                         decimal=4)
Exemplo n.º 7
0
    def test_with_defences(self):
        (x_train, y_train), (x_test, y_test) = self.mnist

        # Get the trained Keras model
        model = self.classifier_k._model
        fs = FeatureSqueezing(bit_depth=1, clip_values=(0, 1))
        classifier = KerasClassifier(model=model,
                                     clip_values=(0, 1),
                                     preprocessing_defences=fs)

        # Create the classifier
        classifier = QueryEfficientGradientEstimationClassifier(
            classifier, 20, 1 / 64.0, round_samples=1 / 255.0)

        attack = FastGradientMethod(classifier, eps=1)
        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        self.assertFalse((x_train == x_train_adv).all())
        self.assertFalse((x_test == x_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))

        self.assertFalse((y_train == train_y_pred).all())
        self.assertFalse((y_test == test_y_pred).all())
Exemplo n.º 8
0
    def test_ones(self):
        m, n = 10, 2
        x = np.ones((m, n))

        for depth in range(1, 50):
            preproc = FeatureSqueezing(clip_values=(0, 1), bit_depth=depth)
            x_squeezed, _ = preproc(x)
            self.assertTrue((x_squeezed == 1).all())
Exemplo n.º 9
0
    def test_random(self):
        m, n = 1000, 20
        x = np.random.rand(m, n)
        x_original = x.copy()
        x_zero = np.where(x < 0.5)
        x_one = np.where(x >= 0.5)

        preproc = FeatureSqueezing(clip_values=(0, 1), bit_depth=1)
        x_squeezed, _ = preproc(x)
        self.assertTrue((x_squeezed[x_zero] == 0.0).all())
        self.assertTrue((x_squeezed[x_one] == 1.0).all())

        preproc = FeatureSqueezing(clip_values=(0, 1), bit_depth=2)
        x_squeezed, _ = preproc(x)
        self.assertFalse(
            np.logical_and(0.0 < x_squeezed, x_squeezed < 0.33).any())
        self.assertFalse(
            np.logical_and(0.34 < x_squeezed, x_squeezed < 0.66).any())
        self.assertFalse(
            np.logical_and(0.67 < x_squeezed, x_squeezed < 1.0).any())
        # Check that x has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_original - x))),
                               0.0,
                               delta=0.00001)
Exemplo n.º 10
0
def test_defences_predict(art_warning, get_default_mnist_subset,
                          image_dl_estimator_defended, image_dl_estimator):
    try:
        (_, _), (x_test_mnist, y_test_mnist) = get_default_mnist_subset

        classifier, _ = image_dl_estimator()
        y_check_clean = classifier.predict(x_test_mnist)
        clip_values = (0, 1)

        classifier_defended, _ = image_dl_estimator_defended(
            defenses=["FeatureSqueezing"])
        assert len(classifier_defended.preprocessing_defences) == 1
        y_defended = classifier_defended.predict(x_test_mnist)
        fs = FeatureSqueezing(clip_values=clip_values, bit_depth=2)
        x_test_defense, _ = fs(x_test_mnist, y_test_mnist)
        y_check = classifier.predict(x_test_defense)
        np.testing.assert_array_almost_equal(y_defended, y_check, decimal=4)
        np.testing.assert_raises(AssertionError, np.testing.assert_array_equal,
                                 y_check, y_check_clean)

        classifier_defended, _ = image_dl_estimator_defended(
            defenses=["JpegCompression"])
        assert len(classifier_defended.preprocessing_defences) == 1
        y_defended = classifier_defended.predict(x_test_mnist)
        jpeg = JpegCompression(
            clip_values=clip_values,
            apply_predict=True,
            channels_first=classifier_defended.channels_first)
        x_test_defense, _ = jpeg(x_test_mnist, y_test_mnist)
        y_check = classifier.predict(x_test_defense)
        np.testing.assert_array_almost_equal(y_defended, y_check, decimal=4)
        np.testing.assert_raises(AssertionError, np.testing.assert_array_equal,
                                 y_check, y_check_clean)

        classifier_defended, _ = image_dl_estimator_defended(
            defenses=["SpatialSmoothing"])
        assert len(classifier_defended.preprocessing_defences) == 1
        y_defended = classifier_defended.predict(x_test_mnist)
        smooth = SpatialSmoothing(
            channels_first=classifier_defended.channels_first)
        x_test_defense, _ = smooth(x_test_mnist, y_test_mnist)
        y_check = classifier.predict(x_test_defense)
        np.testing.assert_array_almost_equal(y_defended, y_check, decimal=4)
        np.testing.assert_raises(AssertionError, np.testing.assert_array_equal,
                                 y_check, y_check_clean)

    except ARTTestException as e:
        art_warning(e)
    def _image_dl_estimator_defended(one_classifier=False, **kwargs):
        sess = None
        classifier = None

        clip_values = (0, 1)
        fs = FeatureSqueezing(bit_depth=2, clip_values=clip_values)

        defenses = []
        if kwargs.get("defenses") is None:
            defenses.append(fs)
        else:
            if "FeatureSqueezing" in kwargs.get("defenses"):
                defenses.append(fs)
            if "JpegCompression" in kwargs.get("defenses"):
                defenses.append(
                    JpegCompression(clip_values=clip_values,
                                    apply_predict=True))
            if "SpatialSmoothing" in kwargs.get("defenses"):
                defenses.append(SpatialSmoothing())
            del kwargs["defenses"]

        if framework == "tensorflow2":
            classifier, _ = get_image_classifier_tf(**kwargs)

        if framework == "keras":
            classifier = get_image_classifier_kr(**kwargs)

        if framework == "kerastf":
            classifier = get_image_classifier_kr_tf(**kwargs)

        if framework == "pytorch":
            classifier = get_image_classifier_pt(**kwargs)
            for i, defense in enumerate(defenses):
                if "channels_first" in defense.params:
                    defenses[i].channels_first = classifier.channels_first

        if classifier is not None:
            classifier.set_params(preprocessing_defences=defenses)
        else:
            raise ARTTestFixtureNotImplemented(
                "no defended image estimator",
                image_dl_estimator_defended.__name__, framework,
                {"defenses": defenses})

        return classifier, sess
    def test_with_defences(self):
        (x_train, y_train), (x_test, y_test) = self.mnist

        # Get the ready-trained Keras model
        model = self.classifier_k._model
        fs = FeatureSqueezing(bit_depth=1, clip_values=(0, 1))
        classifier = KerasClassifier(model=model,
                                     clip_values=(0, 1),
                                     preprocessing_defences=fs)
        # Wrap the classifier
        classifier = QueryEfficientBBGradientEstimation(classifier,
                                                        20,
                                                        1 / 64.0,
                                                        round_samples=1 /
                                                        255.0)

        attack = FastGradientMethod(classifier, eps=1)
        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        self.assertFalse((x_train == x_train_adv).all())
        self.assertFalse((x_test == x_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))

        self.assertFalse((y_train == train_y_pred).all())
        self.assertFalse((y_test == test_y_pred).all())

        preds = classifier.predict(x_train_adv)
        acc = np.sum(np.argmax(preds, axis=1) == np.argmax(
            y_train, axis=1)) / y_train.shape[0]
        logger.info(
            "Accuracy on adversarial train examples with feature squeezing and limited query info: %.2f%%",
            (acc * 100))

        preds = classifier.predict(x_test_adv)
        acc = np.sum(np.argmax(preds, axis=1) == np.argmax(
            y_test, axis=1)) / y_test.shape[0]
        logger.info(
            "Accuracy on adversarial test examples with feature squeezing and limited query info: %.2f%%",
            (acc * 100))
Exemplo n.º 13
0
    def _image_dl_estimator_defended(one_classifier=False, **kwargs):
        sess = None
        classifier = None

        clip_values = (0, 1)
        fs = FeatureSqueezing(bit_depth=2, clip_values=clip_values)

        defenses = []
        if kwargs.get("defenses") is None:
            defenses.append(fs)
        else:
            if "FeatureSqueezing" in kwargs.get("defenses"):
                defenses.append(fs)
            if "JpegCompression" in kwargs.get("defenses"):
                defenses.append(
                    JpegCompression(clip_values=clip_values,
                                    apply_predict=True))
            if "SpatialSmoothing" in kwargs.get("defenses"):
                defenses.append(SpatialSmoothing())
            del kwargs["defenses"]

        if framework == "keras":
            kr_classifier = get_image_classifier_kr(**kwargs)
            # Get the ready-trained Keras model

            classifier = KerasClassifier(model=kr_classifier._model,
                                         clip_values=(0, 1),
                                         preprocessing_defences=defenses)

        if framework == "kerastf":
            kr_tf_classifier = get_image_classifier_kr_tf(**kwargs)
            classifier = KerasClassifier(model=kr_tf_classifier._model,
                                         clip_values=(0, 1),
                                         preprocessing_defences=defenses)

        if classifier is None:
            raise ARTTestFixtureNotImplemented(
                "no defended image estimator",
                image_dl_estimator_defended.__name__, framework,
                {"defenses": defenses})
        return classifier, sess
Exemplo n.º 14
0
    for i, idx_img in enumerate(idx_sample_imgs):
        ax[i][0].imshow(norm(X_clean[idx_img]))
        ax[i][0].axis('off')
        ax[i][0].set_title(label[np.argmax(labels[idx_img])])
        ax[i][1].imshow(norm(X_adv[idx_img]))
        ax[i][1].axis('off')
        ax[i][1].set_title(label[preds_adv[idx_img]])
        ax[i][2].imshow(norm(X_def[idx_img]))
        ax[i][2].axis('off')
        ax[i][2].set_title(label[preds_def[idx_img]])
    plt.savefig('assets/plot_mnist_' + method_type + '.png')

#### Adversarial defenses ###########
### PREPROCESS ###################
# Feature Squeezing https://arxiv.org/abs/1704.01155
preproc = FeatureSqueezing(clip_values=(0, 1), bit_depth=1)
X_def, _ = preproc(X_adv)
preds_X_def = np.argmax(classifier.predict(X_def), axis=1)
fooling_rate = np.sum(preds_X_def != np.argmax(y_test, axis=1)) / y_test.shape[0]
logger.info('Fooling rate after Feature Squeezing: %.2f%%', (fooling_rate  * 100))
img_plot(y_test, preds_x_test, preds_X_adv, preds_X_def, x_test, X_adv, X_def, "feature_squeezing")

# Spatial Smoothing https://arxiv.org/abs/1704.01155
spatial_smoothing = SpatialSmoothing(window_size=4)
X_def, _ = spatial_smoothing(X_adv)
preds_X_def = np.argmax(classifier.predict(X_def), axis=1)
fooling_rate = np.sum(preds_X_def != np.argmax(y_test, axis=1)) / y_test.shape[0]
logger.info('Fooling rate after Spatial Smoothing: %.2f%%', (fooling_rate  * 100))
img_plot(y_test, preds_x_test, preds_X_adv, preds_X_def, x_test, X_adv, X_def, "spatial_smoothing")

# Label Smoothing https://pdfs.semanticscholar.org/b5ec/486044c6218dd41b17d8bba502b32a12b91a.pdf
Exemplo n.º 15
0
def defencer(adv_data,
             defence_method,
             clip_values,
             eps=16,
             bit_depth=8,
             apply_fit=False,
             apply_predict=True):
    '''
    :param adv_data: np.ndarray | [N C H W ]
    :param defence_method: | str
    :param clip_values:Tuple of the form `(min, max)` representing the minimum and maximum values allowed
               for features. | `tuple`
    :param bit_depth: The number of bits per channel for encoding the data. | 'int'
    :param apply_fit:  True if applied during fitting/training. | bool
    :param apply_predict: True if applied during predicting. | bool
    :return: defended data | np.ndarray | [N C H W]
    '''

    # step 1. define a defencer
    if defence_method == "FeatureSqueezing":
        defence = FeatureSqueezing(clip_values=clip_values,
                                   bit_depth=bit_depth,
                                   apply_fit=apply_fit,
                                   apply_predict=apply_predict)
    elif defence_method == "PixelDefend":
        criterion = nn.CrossEntropyLoss()
        # fm = 64
        # pixel_cnn_model = nn.Sequential(
        #     MaskedConv2d('A', 3, fm, 7, 1, 3, bias=False), nn.BatchNorm2d(fm), nn.ReLU(True),
        #     MaskedConv2d('B', fm, fm, 7, 1, 3, bias=False), nn.BatchNorm2d(fm), nn.ReLU(True),
        #     MaskedConv2d('B', fm, fm, 7, 1, 3, bias=False), nn.BatchNorm2d(fm), nn.ReLU(True),
        #     MaskedConv2d('B', fm, fm, 7, 1, 3, bias=False), nn.BatchNorm2d(fm), nn.ReLU(True),
        #     MaskedConv2d('B', fm, fm, 7, 1, 3, bias=False), nn.BatchNorm2d(fm), nn.ReLU(True),
        #     MaskedConv2d('B', fm, fm, 7, 1, 3, bias=False), nn.BatchNorm2d(fm), nn.ReLU(True),
        #     MaskedConv2d('B', fm, fm, 7, 1, 3, bias=False), nn.BatchNorm2d(fm), nn.ReLU(True),
        #     MaskedConv2d('B', fm, fm, 7, 1, 3, bias=False), nn.BatchNorm2d(fm), nn.ReLU(True),
        #     nn.Conv2d(fm, 256, 1))
        pixel_cnn_model = Pixel_cnn_net().cuda()
        pixel_cnn_model = torch.load("models/pixel_cnn_epoch_29.pth")
        # pixel_cnn_model = PixelCNN().cuda()
        # print(pixel_cnn_model)
        optimizer = optim.Adam(pixel_cnn_model.parameters())
        pixel_cnn = PyTorchClassifier(
            model=pixel_cnn_model,
            clip_values=(0, 1),
            loss=criterion,
            optimizer=optimizer,
            input_shape=(3, 32, 32),
            nb_classes=10,
        )
        defence = PixelDefend(clip_values=clip_values,
                              eps=eps,
                              pixel_cnn=pixel_cnn,
                              apply_fit=apply_fit,
                              apply_predict=apply_predict)
        adv_data = np.transpose(adv_data, [0, 3, 2, 1])
    elif defence_method == "ThermometerEncoding":
        defence = ThermometerEncoding(clip_values=clip_values)
    elif defence_method == "TotalVarMin":
        defence = TotalVarMin(clip_values=clip_values)
    elif defence_method == "JPEGCompression":
        defence = JpegCompression(clip_values=clip_values)
    elif defence_method == "SpatialSmoothing":
        defence = SpatialSmoothing(clip_values=clip_values)

    adv_data = np.transpose(adv_data, [0, 3, 2, 1])
    # step2. defend
    # print(adv_data.shape)
    res = defence(adv_data)[0]
    res = np.transpose(res, [0, 3, 2, 1])
    # print(res.shape)
    return res
Exemplo n.º 16
0
    def _image_dl_estimator_defended(one_classifier=False, **kwargs):
        sess = None
        classifier_list = None

        clip_values = (0, 1)
        fs = FeatureSqueezing(bit_depth=2, clip_values=clip_values)

        defenses = []
        if kwargs.get("defenses") is None:
            defenses.append(fs)
        else:
            if "FeatureSqueezing" in kwargs.get("defenses"):
                defenses.append(fs)
            if "JpegCompression" in kwargs.get("defenses"):
                defenses.append(
                    JpegCompression(clip_values=clip_values,
                                    apply_predict=True))
            if "SpatialSmoothing" in kwargs.get("defenses"):
                defenses.append(SpatialSmoothing())
            del kwargs["defenses"]

        if framework == "keras":
            classifier = get_image_classifier_kr(**kwargs)
            # Get the ready-trained Keras model

            classifier_list = [
                KerasClassifier(model=classifier._model,
                                clip_values=(0, 1),
                                preprocessing_defences=defenses)
            ]

        if framework == "tensorflow":
            logging.warning(
                "{0} doesn't have a defended image classifier defined yet".
                format(framework))

        if framework == "pytorch":
            logging.warning(
                "{0} doesn't have a defended image classifier defined yet".
                format(framework))

        if framework == "scikitlearn":
            logging.warning(
                "{0} doesn't have a defended image classifier defined yet".
                format(framework))

        if framework == "kerastf":
            classifier = get_image_classifier_kr_tf(**kwargs)
            classifier_list = [
                KerasClassifier(model=classifier._model,
                                clip_values=(0, 1),
                                preprocessing_defences=defenses)
            ]

        if classifier_list is None:
            return None, None

        if one_classifier:
            return classifier_list[0], sess

        return classifier_list, sess