Exemplo n.º 1
0
def df_from_model(model):
    r_t = model.trace['r_t']
    mean = np.mean(r_t, axis=0)
    median = np.median(r_t, axis=0)
    hpd_90 = az.hdi(r_t, .9)
    hpd_50 = az.hdi(r_t, .5)

    approx_positives = model.trace['approx_positives']
    median_approx_pos = np.median(approx_positives, axis=0)
    hpd_90_approx_pos = az.hdi(approx_positives, .9)

    cases = model.trace['cases']
    median_cases = np.median(cases, axis=0)
    hpd_90_cases = az.hdi(cases, .9)

    idx = pd.MultiIndex.from_product([[model.region], model.trace_index],
                                     names=['region', 'date'])

    df = pd.DataFrame(data=np.c_[mean, median, hpd_90, hpd_50,
                                 median_approx_pos, hpd_90_approx_pos,
                                 median_cases, hpd_90_cases],
                      index=idx,
                      columns=[
                          'mean', 'median', 'lower_90', 'upper_90', 'lower_50',
                          'upper_50', 'median_approx_pos',
                          'lower_90_approx_pos', 'upper_90_approx_pos',
                          'median_cases', 'lower_90_cases', 'upper_90_cases'
                      ])
    return df
    def reportar_intervalos(self, discard, thin, hdi=True):
        '''
		Imprimer los valores de los parámetros, tanto los valores más
		probables, como las incertezas a uno y dos sigmas.
		'''
        sns.set(style='darkgrid', palette="muted", color_codes=True)
        sns.set_context("paper",
                        font_scale=1.2,
                        rc={
                            "font.size": 10,
                            "axes.labelsize": 12
                        })

        if isinstance(self.sampler,
                      np.ndarray) == True:  #Es una cadenas procesada
            samples = self.sampler
            len_chain, ndim = samples.shape
        else:
            samples = self.sampler.get_chain(discard=discard,
                                             flat=True,
                                             thin=thin)
            len_chain, nwalkers, ndim = self.sampler.get_chain().shape

        labels = self.labels
        for i in range(ndim):
            mean = np.mean(samples[:, i])
            one_s = 68
            two_s = 95

            if hdi == True:
                one_sigma = az.hdi(samples, hdi_prob=one_s / 100)[i]
                two_sigma = az.hdi(samples, hdi_prob=two_s / 100)[i]
            else:
                one_sigma = [
                    scoreatpercentile(samples[:, i], 100 - one_s),
                    scoreatpercentile(samples[:, i], one_s)
                ]
                two_sigma = [
                    scoreatpercentile(samples[:, i], 100 - two_s),
                    scoreatpercentile(samples[:, i], two_s)
                ]

            q1 = np.diff([one_sigma[0], mean, one_sigma[1]])
            q2 = np.diff([two_sigma[0], mean, two_sigma[1]])
            #print(one_sigma,two_sigma)
            if np.abs(one_sigma[0]) < 10**(-2):  #Reporto intervalo inferior
                txt = "\mathrm{{{0}}} < {1:.3f}({2:.3f})"
                txt = txt.format(labels[i], mean + q1[1], mean + q2[1])

            else:
                txt = "\mathrm{{{3}}} = {0:.3f}_{{-{1:.3f}({4:.3f})}}^{{+{2:.3f}({5:.3f})}}"
                txt = txt.format(mean, q1[0], q1[1], labels[i], q2[0], q2[1])
            display(Math(txt))
Exemplo n.º 3
0
def mcmc_stats(runs, burnin, prob, batch):
    """
        入力
        runs:   モンテカルロ標本
        burnin: バーンインの回数
        prob:   区間確率 (0 < prob < 1)
        batch:  乱数系列の分割数
        出力
        事後統計量のデータフレーム
    """
    traces = runs[burnin:, :]
    n = traces.shape[0] // batch
    k = traces.shape[1]
    alpha = 100 * (1.0 - prob)
    post_mean = np.mean(traces, axis=0)
    post_median = np.median(traces, axis=0)
    post_sd = np.std(traces, axis=0)
    mc_err = [az.mcse(traces[:, i].reshape((n, batch), order='F')).item(0) \
              for i in range(k)]
    ci_lower = np.percentile(traces, 0.5 * alpha, axis=0)
    ci_upper = np.percentile(traces, 100 - 0.5 * alpha, axis=0)
    hpdi = az.hdi(traces, prob)
    rhat = [az.rhat(traces[:, i].reshape((n, batch), order='F')).item(0) \
            for i in range(k)]
    stats = np.vstack((post_mean, post_median, post_sd, mc_err, ci_lower,
                       ci_upper, hpdi.T, rhat)).T
    stats_string = [
        '平均', '中央値', '標準偏差', '近似誤差', '信用区間(下限)', '信用区間(上限)', 'HPDI(下限)',
        'HPDI(上限)', '$\\hat R$'
    ]
    param_string = ['平均 $\\mu$', '分散 $\\sigma^2$']
    return pd.DataFrame(stats, index=param_string, columns=stats_string)
Exemplo n.º 4
0
    def hdi(self, var_name: str, credible_mass: float = 0.95):
        """Calculate the highest posterior density interval (HDI)

        This function calculates a *credible interval* which contains the
        ``credible_mass`` most likely values of the parameter, given the data.
        Also known as an HPD interval.

        Parameters
        ----------
        var_name : str
            Name of variable.
        credible_mass : float
            The HDI will cover credible_mass * 100% of the probability mass.
            Default: 0.95, i.e. a 95% HDI.

        Returns
        -------
        (float, float)
            The endpoints of the HPD
        """
        check_credible_mass(credible_mass)

        az_major, az_minor, *_ = arviz.__version__.split('.')
        if (int(az_major), int(az_minor)) >= (0, 8):
            return tuple(arviz.hdi(self.trace[var_name], hdi_prob=credible_mass))
        else:
            return tuple(arviz.hpd(self.trace[var_name], credible_interval=credible_mass))
Exemplo n.º 5
0
    def _contour_two_detectors(self,
                               levels=[0.68],
                               colors=["green"],
                               ax=None,
                               **kwargs):

        dt = self._dt[0]

        assert len(levels) == len(colors)

        dkey = list(self._universe.detectors.keys())

        d1 = self._universe.detectors[dkey[0]]
        d2 = self._universe.detectors[dkey[1]]

        for i, level in enumerate(levels):

            dt1, dt2 = av.hdi(dt, hdi_prob=level)

            compute_annulus_from_time_delay(dt1 * u.s,
                                            dt2 * u.s,
                                            d1,
                                            d2,
                                            color=colors[i],
                                            ax=ax,
                                            **kwargs)
Exemplo n.º 6
0
def summarize_inference_data(inference_data: az.InferenceData):
    """ Summarizes an inference_data object into the form that we publish on
        rt.live """
    posterior = inference_data.posterior
    hdi_mass = 80
    hpdi = az.hdi(posterior.r_t, hdi_prob=hdi_mass / 100).r_t

    observed_positive = inference_data.constant_data.observed_positive.to_series()
    scale_to_positives = lambda data: observed_positive.mean() / np.mean(data) * data
    tests = inference_data.constant_data.tests.to_series()
    normalized_positive = observed_positive / tests.clip(0.1 * tests.max())

    summary = pd.DataFrame(
        data={
            "mean": posterior.r_t.mean(["draw", "chain"]),
            "median": posterior.r_t.median(["chain", "draw"]),
            f"lower_{hdi_mass}": hpdi[:, 0],
            f"upper_{hdi_mass}": hpdi[:, 1],
            "infections": scale_to_positives(
                posterior.infections.mean(["draw", "chain"])
            ),
            "test_adjusted_positive": scale_to_positives(
                posterior.test_adjusted_positive.mean(["draw", "chain"])
            ),
            "test_adjusted_positive_raw": scale_to_positives(normalized_positive),
            "positive": observed_positive,
            "tests": tests,
        },
        index=pd.Index(posterior.date.values, name="date"),
    )
    return summary
Exemplo n.º 7
0
 def _calculate_hdi_and_map(self, d, mean, interval):
     # Calculate HDI interval and MAP
     q = az.hdi(d, hdi_prob=interval)
     m = _calculate_map(d)
     q = np.array([q[0], m, q[1]])
     if mean is True:
         q = np.append(q, np.mean(d))
     return q
def _get_intervals(draws, method, bounds):
    # Derives HDI or credible intervals for plotting purposes
    if method == "hdi":
        il = az.hdi(draws, bounds)
    elif method == "quantile":
        il = np.quantile(draws, bounds)
    x, kde_density = _calculate_kde(draws, num=100)
    subx = x[(x > il[0]) & (x < il[1])]
    kde_density = kde_density[(x > il[0]) & (x < il[1])]
    return {"x": subx, "y": kde_density}
Exemplo n.º 9
0
def make_plot(trace):
    plot_training_data()
    # plot logistic curve
    theta = trace['θ'].mean(axis=0)
    idx = np.argsort(x_c)
    plt.plot(x_c[idx], theta[idx], color='C2', lw=3)
    az.plot_hdi(x_c, trace['θ'], color='C2')

    # plot decision boundary
    plt.vlines(trace['bd'].mean(), 0, 1, color='k')
    bd_hpd = az.hdi(trace['bd'])
    plt.fill_betweenx([0, 1], bd_hpd[0], bd_hpd[1], color='k', alpha=0.5)
Exemplo n.º 10
0
def mk_hpd(obs_positive_trace,data):

    obs_positive_trace_hpd = az.hdi(obs_positive_trace["pi"],hdi_prob=0.68)
    hpd_low=obs_positive_trace_hpd[:,0]
    hpd_high=obs_positive_trace_hpd[:,1]

    data['true_incidence']=[obs_positive_trace['pi'][:,i].mean() for i in data.index]
    data['true_positive']=data.total*data.true_incidence

    data['true_positive_low']=data.total.values*hpd_low
    data['true_positive_high']=data.total.values*hpd_high

    return data
Exemplo n.º 11
0
def summarize_median_and_hdi(
    samples,
    prefix: str,
    hdi_prob: typing.Union[float, typing.Iterable[float]] = 0.9
) -> typing.Dict[str, float]:
    """ Extract median, lower and upper bound and return it as a dict.

    Parameters
    ----------
    samples : array-like
        samples to summarize (N_samples,) or (N_dates, N_samples)
    prefix : str
        name of the quantity
    hdi_prob : float, iterable
        see arviz.hdi
        If multiple HDI probs are passed, each will get its own entry in the resulting dict.
        Numpy arrays are automatically converted to lists, to avoid problems in JSON serialization.

    Returns
    -------
    summary : dict
        a dict with median, lower and upper HDI(s)
    """
    samples = numpy.array(samples).T
    result = {prefix: numpy.median(samples, axis=0)}
    if numpy.isscalar(hdi_prob):
        hdi = arviz.hdi(samples, hdi_prob=hdi_prob).T
        result[f'{prefix}_lower'] = hdi[0]
        result[f'{prefix}_upper'] = hdi[1]
    else:
        for hp in hdi_prob:
            hdi = arviz.hdi(samples, hdi_prob=hp).T
            result[f'{prefix}_lower_{hp}'] = hdi[0]
            result[f'{prefix}_upper_{hp}'] = hdi[1]
    # convert numpy arrays to lists, to avoid problems in json serialization
    for k, v in result.items():
        if numpy.shape(v):
            result[k] = list(v)
    return result
Exemplo n.º 12
0
def cal_HPD_CI(df, burn_in=2000):
    """
    get HPD CI through mcmc.txt directly instead of reading the log/out file.
    Only calculate high density probility 95%. 
    Args:
        df (pd.DataFrame): [description]
        burn_in (int, optional): [description]. Defaults to 2000.
    """
    col2CI = {}
    for colname, col in df.iteritems():
        vals = col.values[burn_in:]
        col2CI[colname] = az.hdi(vals, hdi_prob=.95)
    return col2CI
def plot_simulated_vs_actual_histogram_test(
    observed_histograms: np.array,
    posterior_samples: np.array,
    products_to_test: np.array,
    plot_histograms: bool = False,
    return_raw_simulations: bool = True,
) -> np.ndarray:
    print(posterior_samples.shape)
    products_to_test = products_to_test.astype("int")
    simulated_histograms = np.zeros((posterior_samples.shape[0], len(products_to_test), 5))
    # Get the total number of reviews of the products we want to test
    # We will simulate as many reviews for each products as exist in their observed histograms
    # total_reviews = np.sum(observed_histograms[products_to_test, :], axis=1)

    params = {"review_prior": np.ones(5), "tendency_to_rate": 0.05, "simulation_type": "histogram"}
    simulator = simulator_class.DoubleRhoSimulator(params)
    # Take posterior samples of the products we want to test
    # We will simulate distributions using these posterior samples as parameters
    parameters = np.swapaxes(posterior_samples[:, products_to_test, :], 0, 1).reshape((-1, 2))
    # We need to expand total reviews to be same number as the number of simulations to be run
    # total_reviews = np.tile(total_reviews[:, None], (1, posterior_samples.shape[0])).flatten()
    simulator.simulation_parameters = {"rho": parameters}

    with tqdm_joblib(tqdm(desc="Simulations", total=parameters.shape[0])) as progress_bar:
        simulations = Parallel(n_jobs=mp.cpu_count())(
            delayed(simulator.simulate_review_histogram)(i) for i in range(parameters.shape[0])
        )
    simulations = np.array(simulations)
    simulated_histograms[:, :, :] = simulations.reshape((-1, len(products_to_test), 5), order="F")
    simulated_histograms /= np.sum(simulated_histograms, axis=-1)[:, :, None]

    if plot_histograms:
        for i in range(len(products_to_test)):
            plt.figure()
            plt.plot(
                np.arange(5) + 1,
                observed_histograms[i, :] / np.sum(observed_histograms[i, :]),
                linewidth=4.0,
                color="black",
            )
            # Get the HPDs of the simulated histograms
            hpd = arviz.hdi(simulated_histograms[:, i, :], hdi_prob=0.95)
            plt.fill_between(np.arange(5) + 1, hpd[:, 0], hpd[:, 1], color="black", alpha=0.4)
            plt.ylim([0, 1])

    if return_raw_simulations:
        return simulations
    else:
        return simulated_histograms
def review_histogram_correlation(
        observed_histograms: np.ndarray,
        simulated_histograms: np.ndarray) -> np.ndarray:
    # Calculates the pearson/linear correlation between observed and simulated review histograms
    # Each histogram is 5 numbers (1 for each rating) - this calculates the correlation between those 5
    # numbers in the observed and simulated histograms
    # Calculates 3 corr. coeffs. in each comparison, using the mean, and the 95% HPD limits of the
    # simulated histograms respectively
    assert (
        observed_histograms.shape[0] == simulated_histograms.shape[1]), f"""
    Observed histograms have {observed_histograms.shape[0]} products
    while simulated histograms have {simulated_histograms.shape[1]} products. Need to be equal
    """
    assert (
        observed_histograms.shape[1] == 5
    ), f"Observed review histograms need to be 5D, found shape {observed_histograms.shape} instead"
    assert (
        simulated_histograms.shape[2] == 5
    ), f"Simulated review histograms need to be 5D, found shape {simulated_histograms.shape} instead"
    # Calculate mean and 95% HPD of the simulated histograms
    simulation_mean = np.mean(simulated_histograms, axis=0)
    assert (observed_histograms.shape == simulation_mean.shape), f"""
    Mean of all simulated histograms for the products should have the same shape
    as the set of observed histograms of products
    """
    hpd = np.array([
        arviz.hdi(simulated_histograms[:, i, :], hdi_prob=0.95)
        for i in range(observed_histograms.shape[0])
    ])
    assert hpd.shape == observed_histograms.shape + tuple((2, )), f"""
    Shape of hpd array should be {observed_histograms.shape + (2,)}, found {hpd.shape} instead
    """
    # Will store correlations in the order of HPD_0, mean, HPD_1
    correlations = []
    for product in range(hpd.shape[0]):
        r_0, p_0 = pearsonr(observed_histograms[product, :], hpd[product, :,
                                                                 0])
        r_mean, p_mean = pearsonr(observed_histograms[product, :],
                                  simulation_mean[product, :])
        r_1, p_1 = pearsonr(observed_histograms[product, :], hpd[product, :,
                                                                 1])
        correlations.append([r_0, r_mean, r_1])

    return np.array(correlations)
    def pystan_adjust(self, model_params: Dict, execution_params: Dict = {}) -> Union[Tuple, pystan.StanModel]:
        credible_interval_size = execution_params.get('credible_interval_size', 0.95)

        # Validate model_params using marshmallow
        try:
            ModelParamsSchema().load(model_params)
        except ValidationError as err:
            print("Error: ", err.messages)
            return None, None, None

        satisfactory_model_found = False
        n_trials = 0

        while not satisfactory_model_found:
            # If number of attempts exceeded, return Nones
            n_trials += 1
            if n_trials >= self.trials_lim:
                print('no models met the HMC diagnostics in {trials_lim} trials')
                return None, None, None

            # Attempt to fit a model
            try:
                summary_df_parsed, hmc_diagnostics_passed = self.fit_one_pystan_model(model_params)
            except ZeroDivisionError:
                return None, None, None

            # get model result
            model_result = summary_df_parsed['50%']
            lower, upper = arviz.hdi(summary_df_parsed['samples'], credible_interval_size)
            best_fit = summary_df_parsed['fit']

            try:
                raw_prev = model_params['y_prev_obs'] / model_params['n_prev_obs']
                bounded = result_is_bounded(model_result, raw_prev)
            except (ZeroDivisionError, ValueError):
                return None, None, None

            satisfactory_model_found = bounded and hmc_diagnostics_passed

        if self.return_fit:
            return best_fit
        else:
            return lower, model_result, upper
Exemplo n.º 16
0
# load idata #
m_idata = az.from_netcdf("../models_python/idata_covariation_generic.nc")

### meta-data ###
model_type = "covariation"
prior_level = "generic"
kind = "individual"
ID = 0

for ID in idx_unique:
    # only relevant idx
    ID_tmp = m_idata.posterior_predictive.sel(idx=ID)

    # small and large
    small = az.hdi(ID_tmp, hdi_prob=0.8)["y_pred"]
    large = az.hdi(ID_tmp, hdi_prob=0.95)["y_pred"]

    # y values for the right idx
    y = train[train["idx"] == ID].y.values

    # plot
    fig, ax = plt.subplots(figsize=(10, 7))
    ax.scatter(t_unique, y, color="darkorange", s=50)
    ax.vlines(t_unique,
              small.sel(hdi="lower"),
              small.sel(hdi="higher"),
              color="orange",
              alpha=0.5,
              linewidth=15)
    ax.vlines(t_unique,
Exemplo n.º 17
0
post_summary.minmax
post_summary.mean
post_summary.variance

sum(posterior[p_grid < 0.5])
sum(post_sample < 0.5)/len(post_sample)
len(post_sample[(post_sample>.5) & (post_sample<.75)])/len(post_sample)

np.percentile(post_sample, q = (20, 50, 80))
interval = np.percentile(post_sample, q = (25, 75))
section = np.arange(interval[0], interval[1], 1/100)

plt.plot(p_grid, post_density(p_grid), 'k-')
plt.fill_between(section, post_density(section))
plt.title('50% Percentile Interval')
plt.xlabel('proportion water')
plt.ylabel('Density')
plt.show()

np.argmax(posterior)
p_grid[np.argmax(posterior)]

# highest posterior density interval [outsourcing :)]
hdi(post_sample, alpha=0.5)

# maybe include exmple with loss function 

### 3.3: Sampling to simulate prediction

# (nothing new here)
Exemplo n.º 18
0
def statistical_analysis(serial, bl, opt):
    # Inspired by https://docs.pymc.io/notebooks/BEST.html
    y = create_pd_data_frame(serial, bl, opt)

    μ_m = y.value.mean()
    μ_s = y.value.std()
    σ_low = µ_s / 1000
    σ_high = µ_s * 1000

    with pm.Model() as model:
        serial_mean = pm.Normal('serial_mean', mu=µ_m, sd=1000 * µ_s)
        serial_std = pm.Uniform('serial_std',
                                lower=µ_s / 1000,
                                upper=1000 * µ_s)
        λ_serial = serial_std**-2

        bl_mean = pm.Normal('bl_mean', mu=μ_m, sd=1000 * μ_s)
        bl_std = pm.Uniform('bl_std', lower=µ_s / 1000, upper=1000 * µ_s)
        λ_bl = bl_std**-2

        opt_mean = {}
        opt_std = {}
        λ_opt = {}

        for f in opt:
            opt_mean[f] = pm.Normal('opt_{}_mean'.format(f),
                                    mu=μ_m,
                                    sd=1000 * μ_s)
            opt_std[f] = pm.Uniform('opt_{}_std'.format(f),
                                    lower=µ_s / 1000,
                                    upper=1000 * µ_s)
            λ_opt[f] = opt_std[f]**-2

        ν = pm.Exponential('ν_minus_one', 1 / 29.) + 1

        dist_serial = pm.StudentT('serial',
                                  nu=ν,
                                  mu=serial_mean,
                                  lam=λ_serial,
                                  observed=serial)
        dist_bl = pm.StudentT('bl', nu=ν, mu=bl_mean, lam=λ_bl, observed=bl)

        dist_opt = {}
        for f in opt:
            dist_opt[f] = pm.StudentT('opt_{}'.format(f),
                                      nu=ν,
                                      mu=opt_mean[f],
                                      lam=λ_opt[f],
                                      observed=opt[f])

        dmean_serial_bl = pm.Deterministic('dmean_serial_bl',
                                           serial_mean - bl_mean)

        dmean_bl_opt = {}
        for f in opt:
            dmean_bl_opt[f] = pm.Deterministic('dmean_bl_opt_{}'.format(f),
                                               bl_mean - opt_mean[f])

        speedup_bl = pm.Deterministic('speedup_bl', serial_mean / bl_mean)

        speedup_opt = {}
        improv_opt = {}
        for f in opt:
            speedup_opt = pm.Deterministic('speedup_opt_{}'.format(f),
                                           serial_mean / opt_mean[f])
            improv_opt = pm.Deterministic('improv_opt_{}'.format(f),
                                          bl_mean / opt_mean[f])

        trace = pm.sample(draws=3000, tune=2000)

        res1 = [('serial', 'serial_mean'), ('bl', 'bl_mean')]
        res2 = [('bl', 'speedup_bl')]
        res3 = []
        res4 = [('bl', 'dmean_serial_bl')]

        for f in opt:
            res1 += [('opt_{}'.format(f), 'opt_{}_mean'.format(f))]
            res2 += [('opt_{}'.format(f), 'speedup_opt_{}'.format(f))]
            res3 += [('opt_{}'.format(f), 'improv_opt_{}'.format(f))]
            res4 += [('opt_{}'.format(f), 'dmean_bl_opt_{}'.format(f))]

        runtime = {}
        for r in res1:
            tr = trace[r[1]]
            hdi = az.hdi(tr)
            runtime[r[0]] = (hdi[0], tr.mean(), hdi[1])

        speedup = {}
        for r in res2:
            tr = trace[r[1]]
            hdi = az.hdi(tr)
            speedup[r[0]] = (hdi[0], tr.mean(), hdi[1])

        improv = {}
        for r in res3:
            tr = trace[r[1]]
            hdi = az.hdi(tr)
            improv[r[0]] = (hdi[0], tr.mean(), hdi[1])

        prob = {}
        for r in res4:
            tr = trace[r[1]]
            prob[r[0]] = (tr > 0).sum() / len(tr)

    return (runtime, speedup, improv, prob)
Exemplo n.º 19
0
def test_time_varying_model():

    np.random.seed(1039)

    data = gen_toy_data()

    formula_str = "1 + C(weekday)"
    X_df = patsy.dmatrix(formula_str, data, return_type="dataframe")
    X_np = X_df.values

    xi_shape = X_np.shape[1]

    xi_0_true = np.array([2.0, -2.0, 2.0, -2.0, 2.0, -2.0,
                          2.0]).reshape(xi_shape, 1)
    xi_1_true = np.array([2.0, -2.0, 2.0, -2.0, 2.0, -2.0,
                          2.0]).reshape(xi_shape, 1)

    xis_rv_true = np.stack([xi_0_true, xi_1_true], axis=1)

    with pm.Model(**TV_CONFIG) as sim_model:
        _ = create_dirac_zero_hmm(X_np,
                                  mu=1000,
                                  xis=xis_rv_true,
                                  observed=np.zeros(X_np.shape[0]))

    sim_point = pm.sample_prior_predictive(samples=1, model=sim_model)

    y_t = sim_point["Y_t"].squeeze().astype(int)

    split = int(len(y_t) * 0.7)

    train_y, test_V = y_t[:split], sim_point["V_t"].squeeze()[split:]
    train_X, test_X = X_np[:split, :], X_np[split:, :]

    X = shared(train_X, name="X", borrow=True)
    Y = shared(train_y, name="y_t", borrow=True)

    with pm.Model() as model:
        xis_rv = pm.Normal("xis", 0, 10, shape=xis_rv_true.shape)
        _ = create_dirac_zero_hmm(X, 1000, xis_rv, Y)

    number_of_draws = 500

    with model:
        steps = [
            FFBSStep([model.V_t]),
            pm.NUTS(
                vars=[
                    model.gamma_0,
                    model.Gamma,
                ],
                target_accept=0.90,
            ),
        ]

    with model:
        posterior_trace = pm.sample(
            draws=number_of_draws,
            step=steps,
            random_seed=100,
            return_inferencedata=True,
            chains=1,
            cores=1,
            progressbar=True,
            idata_kwargs={"dims": {
                "Y_t": ["date"],
                "V_t": ["date"]
            }},
        )

    # Update the shared variable values
    Y.set_value(np.ones(test_X.shape[0], dtype=Y.dtype))
    X.set_value(test_X)

    model.V_t.distribution.shape = (test_X.shape[0], )

    hdi_data = az.hdi(posterior_trace, hdi_prob=0.95,
                      var_names=["xis"]).to_dataframe()
    hdi_data = hdi_data.unstack(level="hdi")

    xis_true_flat = xis_rv_true.squeeze().flatten()
    check_idx = ~np.in1d(np.arange(len(xis_true_flat)),
                         np.arange(3, len(xis_true_flat), step=4))
    assert np.all(
        xis_true_flat[check_idx] <= hdi_data["xis",
                                             "higher"].values[check_idx])
    assert np.all(
        xis_true_flat[check_idx] >= hdi_data["xis", "lower"].values[check_idx])

    trace = posterior_trace.posterior.drop_vars(["Gamma", "V_t"])

    with aesara.config.change_flags(compute_test_value="off"):
        adds_pois_ppc = pm.sample_posterior_predictive(
            trace, var_names=["V_t", "Y_t", "Gamma"], model=model)

    assert (np.abs(adds_pois_ppc["V_t"] - test_V) /
            test_V.shape[0]).mean() < 1e-2
Exemplo n.º 20
0
df = sns.load_dataset('iris')
iris = df.query("species == ('setosa', 'versicolor')")
y = pd.Categorical(iris['species']).codes
x = iris[iris.columns[:-1]].values
x = x[:, 0] - x[:, 0].mean()
print(x)
with pm.Model() as model:
    alpha = pm.Normal('alpha', 0, 10)
    beta = pm.Normal('beta', 0, 10)
    mu = alpha + pm.math.dot(x, beta)
    p = pm.Deterministic('p', pm.math.sigmoid(mu))
    y_lik = pm.Bernoulli('y_lik', p=p, observed=y)
    b = pm.Deterministic('b', -alpha / beta)
    trace_m = pm.sample(draws=1000, cores=1, chains=3, random_seed=1)
    pp = pm.sample_posterior_predictive(trace_m)

_, ax = plt.subplots(figsize=(12, 8))
xs = np.linspace(x.min(), x.max(), 1000)
theta = trace_m['p'].mean(axis=0)
sns.lineplot(xs,
             1 / (1 + np.exp(-(trace_m['alpha'].mean(axis=0) +
                               trace_m['beta'].mean(axis=0) * xs))),
             ax=ax)
plt.vlines(trace_m['b'].mean(axis=0), 0, 1)
az.plot_hdi(x, trace_m['p'], ax=ax)
hdi = az.hdi(trace_m['b'], hdi_prob=0.98)
plt.fill_betweenx([0, 1], hdi[0], hdi[1], color='k', alpha=0.5)
sns.scatterplot(x, y, ax=ax)
plt.xlabel('sepal_length')
plt.show()
Exemplo n.º 21
0
fh.plot_hdi(t=t_test,
            y=y_test,
            n_idx=n_idx_test,
            m_idata=m_idata,
            model_type="covariation",
            prior_level="generic",
            kind="predictions")

model_type = "covariation"
prior_level = "generic"

# plot hdi for individual aliens
for ID in idx_unique_test:
    # only relevant idx
    ID_tmp = m_idata.predictions.sel(idx=ID)

    # small and large hdi interval
    hdi1 = az.hdi(ID_tmp, hdi_prob=0.8)["y_pred"]
    hdi2 = az.hdi(ID_tmp, hdi_prob=0.95)["y_pred"]

    # y values for the right idx
    y = test[test["idx"] == ID].y.values

    fh.hdi_ID(t_unique=t_unique_test,
              y=y,
              hdi1=hdi1,
              hdi2=hdi2,
              model_type=model_type,
              prior_level=prior_level,
              type="test",
              ID=ID)
            "fs_cos_2": daypart_fs_cos_2[test_index],
            "fs_cos_3": daypart_fs_cos_3[test_index],
            "fs_cos_4": daypart_fs_cos_4[test_index],
            "fs_cos_5": daypart_fs_cos_5[test_index],
            "cooling_temp": outdoor_temp_c[test_index],
            "heating_temp": outdoor_temp_h[test_index]
        })

        posterior_hdi = pm.sample_posterior_predictive(partial_pooling_trace,
                                                       keep_size=True)
        posterior = pm.sample_posterior_predictive(partial_pooling_trace)

    # Calculate predictions and HDI

    predictions = np.exp(posterior['y'].mean(0))
    hdi_data = az.hdi(posterior_hdi)
    lower_bound = np.array(np.exp(
        hdi_data.to_array().sel(hdi='lower'))).flatten()
    higher_bound = np.array(np.exp(
        hdi_data.to_array().sel(hdi='higher'))).flatten()

    # Calculate cvrmse and coverage of the HDI
    mse = mean_squared_error(df.total_electricity[test_index], predictions)
    rmse = sqrt(mse)
    cvrmse = rmse / df.total_electricity.mean()
    coverage = sum((lower_bound <= df.total_electricity[test_index])
                   & (df.total_electricity[test_index] <= higher_bound)
                   ) * 100 / len(test_index)

    partial_pooling_cv_accuracy.append(cvrmse)
    coverage_list.append(coverage)
Exemplo n.º 23
0
    def optimum_intervals(
        self,
        hdi_prob=0.95,
        multimodal=True,
        opt_samples=200,
        space_samples=500,
        only_mean=True,
        random_state=None,
    ):
        """Estimate highest density intervals for the optimum.

        Employs Thompson sampling to obtain samples from the optimum distribution.
        For each dimension separately, it will then estimate highest density
        intervals.

        Parameters
        ----------
        hdi_prob : float, default=0.95
            The total probability each interval should cover.
        multimodal : bool, default=True
            If True, more than one interval can be returned for one parameter.
        opt_samples : int, default=200
            Number of samples to generate from the optimum distribution.
        space_samples : int, default=500
            Number of samples to cover the optimization space with.
        only_mean : bool, default=True
            If True, it will only sample optima from the mean Gaussian process.
            This is usually faster, but can underestimate the uncertainty.
            If False, it will also sample the hyperposterior of the kernel parameters.
        random_state : int, RandomState instance or None, optional (default: None)
            The generator used to initialize the centers. If int, random_state is
            the seed used by the random number generator; If RandomState instance,
            random_state is the random number generator; If None, the random number
            generator is the RandomState instance used by `np.random`.

        Returns
        -------
        intervals : list of ndarray
            Outputs an array of size (n_modes, 2) for each dimension in the
            optimization space.

        Raises
        ------
        NotImplementedError
            If the user calls the function on an optimizer containing at least one
            categorical parameter.
        """
        if self.space.is_partly_categorical:
            raise NotImplementedError(
                "Highest density interval not implemented for categorical parameters."
            )
        X = self.space.rvs(n_samples=space_samples, random_state=random_state)
        X = self.space.transform(X)
        optimum_samples = self.gp.sample_y(X,
                                           sample_mean=only_mean,
                                           n_samples=opt_samples,
                                           random_state=random_state)
        X_opt = X[np.argmin(optimum_samples, axis=0)]

        intervals = []
        for i, col in enumerate(X_opt.T):
            raw_interval = hdi(col, hdi_prob=hdi_prob, multimodal=multimodal)
            intervals.append(
                self.space.dimensions[i].inverse_transform(raw_interval))
        return intervals
Exemplo n.º 24
0
    def get_predictions(self, trace, empirical=True, return_summary_stats=True, thin=5):
        test_data = self.create_test_matrix(empirical=empirical)
        test_data.index.name = 'test_values'
        pred = self.model.predict(trace, 'mean', test_data, inplace=False,)[
            'posterior']['chose_risky_mean'].to_dataframe()
        pred.index = pred.index.set_names('test_values', -1)
        pred = pred.join(test_data).loc[(
            slice(None), slice(None, None, thin)), :]

        if return_summary_stats:
            m = pred.groupby(['subject', 'x', 'risky_first', 'n_safe'])[
                ['chose_risky_mean']].mean()
            ci = pred.groupby(['subject', 'x', 'risky_first', 'n_safe'])['chose_risky_mean'].apply(lambda x: pd.Series(az.hdi(x.values),
                                                                                                                       index=['lower', 'higher'])).unstack()

            m = m.join(ci)
            return m

        else:
            return pred
def plot_test_parameter_recovery(
    parameters: np.array,
    num_posterior_samples: int,
    simulator_type: str,
    simulation_type: str,
    plot_posteriors: bool = False,
    get_stats: bool = False,
    param_posterior_prob_band: Optional[float] = None,
) -> np.ndarray:
    # Simulate review histograms using provided parameters
    params = {"review_prior": np.ones(5), "tendency_to_rate": 0.05, "simulation_type": simulation_type}
    simulator = simulator_class.DoubleRhoSimulator(params)
    simulator.simulation_parameters = {"rho": parameters}
    with tqdm_joblib(tqdm(desc="Simulations", total=parameters.shape[0])) as progress_bar:
        simulations = Parallel(n_jobs=mp.cpu_count())(
            delayed(simulator.simulate_review_histogram)(i) for i in range(parameters.shape[0])
        )
    simulations = np.array(simulations)

    # The parameter prior doesn't matter here as it will be overridden by that of the loaded inference object
    parameter_prior = sbi.utils.BoxUniform(
        low=torch.tensor([0.0, 0.0]).type(torch.FloatTensor), high=torch.tensor([4.0, 4.0]).type(torch.FloatTensor)
    )
    inferrer = inference_class.HistogramInference(parameter_prior=parameter_prior)
    inferrer.load_simulator(dirname=ARTIFACT_PATH, simulator_type=simulator_type, simulation_type=simulation_type)
    inferrer.load_inference(dirname=ARTIFACT_PATH)
    posterior_samples = inferrer.get_posterior_samples(simulations, num_samples=num_posterior_samples)

    # Plot the posterior samples inferred for the simulated data
    # We will plot upto 4 plots in one row of the panel
    if plot_posteriors:
        if len(parameters) <= 4:
            fig, ax = plt.subplots(1, len(parameters), squeeze=False)
        else:
            fig, ax = plt.subplots((len(parameters) + 1) // 4, 4, squeeze=False)
        row_index = 0
        for i in range(len(parameters)):
            if len(parameters) > 4:
                row_index = i // 4
            ax[row_index, i % 4].hist(
                posterior_samples[:, i, 0], color="black", alpha=0.5, bins=10, label=r"$\rho_{-}$"
            )
            ax[row_index, i % 4].axvline(x=parameters[i, 0], linewidth=3.0, color="black", linestyle="--")
            ax[row_index, i % 4].hist(posterior_samples[:, i, 1], color="red", alpha=0.5, bins=10, label=r"$\rho_{+}$")
            ax[row_index, i % 4].axvline(x=parameters[i, 1], linewidth=3.0, color="red", linestyle="--")
            ax[row_index, i % 4].set_xlim([0, 4])
            ax[row_index, i % 4].set_xticks([0, 1, 2, 3, 4])
            ax[row_index, i % 4].legend()
        # add a big axis, hide frame
        fig.add_subplot(111, frameon=False)
        # hide tick and tick label of the big axis
        plt.tick_params(labelcolor="none", top=False, bottom=False, left=False, right=False)
        plt.xlabel(r"$\rho_{-}, \rho_{+}$")
        plt.ylabel("Number of samples")

    # If asked, print how many of the provided parameters are recovered by the inference engine
    # i.e, how often do the supplied parameters lie within the 95% HPD of the posterior
    if get_stats:
        f = open(ARTIFACT_PATH / "stats_parameter_recovery.txt", "w")
        assert (
            posterior_samples.shape == (num_posterior_samples,) + parameters.shape
        ), f"""
        Expected shape {(num_posterior_samples,) + parameters.shape} for array of posterior samples,
        but got {posterior_samples.shape} instead
        """
        # First get the HPD of each recovered posterior distribution
        hpd = np.array([arviz.hdi(posterior_samples[:, i, :], hdi_prob=0.95) for i in range(parameters.shape[0])])
        assert hpd.shape == parameters.shape + (2,), f"Found shape {hpd.shape} for hpd"
        # See how many of the supplied rho_- and rho_+ are contained in these HPDs
        contained_rho_0 = [
            True if (parameters[i, 0] < hpd[i, 0, 1] and parameters[i, 0] > hpd[i, 0, 0]) else False
            for i in range(parameters.shape[0])
        ]
        contained_rho_1 = [
            True if (parameters[i, 1] < hpd[i, 1, 1] and parameters[i, 1] > hpd[i, 1, 0]) else False
            for i in range(parameters.shape[0])
        ]
        print(
            f"""
        rho- is recovered {np.sum(contained_rho_0)} times out of {parameters.shape[0]}
        = {100*(np.sum(contained_rho_0) / parameters.shape[0]):0.2f}%"
        """,
            file=f,
        )
        print(
            f"""
        rho+ is recovered {np.sum(contained_rho_1)} times out of {parameters.shape[0]}
        = {100*(np.sum(contained_rho_1) / parameters.shape[0]):0.2f}%"
        """,
            file=f,
        )
        print("=======================================================", file=f)
        # Now get the probability that the posterior distribution puts in a band/region around
        # the passed parameter values. For good parameter recovery, this number should be high
        assert (
            param_posterior_prob_band is not None
        ), f"""
        Posterior probability band around parameter values need to be passed if stats are needed
        """
        param_band_low = parameters - param_posterior_prob_band
        param_band_high = parameters + param_posterior_prob_band
        rho_0_probs = (posterior_samples[:, :, 0] >= param_band_low[None, :, 0]) * (
            posterior_samples[:, :, 0] <= param_band_high[None, :, 0]
        )
        rho_0_probs = np.mean(rho_0_probs, axis=0)
        rho_1_probs = (posterior_samples[:, :, 1] >= param_band_low[None, :, 1]) * (
            posterior_samples[:, :, 1] <= param_band_high[None, :, 1]
        )
        rho_1_probs = np.mean(rho_1_probs, axis=0)
        print(
            f"""
        In {100*np.mean(rho_0_probs>=0.5):0.2f}% of cases, the inferred posterior places more than 50% probability
        in a band of {2*param_posterior_prob_band} around the true value of rho-
        """,
            file=f,
        )
        print(
            f"""
        In {100*np.mean(rho_1_probs>=0.5):0.2f}% of cases, the inferred posterior places more than 50% probability
        in a band of {2*param_posterior_prob_band} around the true value of rho+
        """,
            file=f,
        )
        f.close()
        # Finally, plot the distribution of the posterior probability the inference engine places in a
        # band around the true value of rho- and rho+
        plt.figure()
        plt.hist(rho_0_probs, alpha=0.5, label=r"$\rho_{-}$")
        plt.hist(rho_1_probs, alpha=0.5, label=r"$\rho_{+}$")
        plt.legend()
        plt.title(
            f"Posterior probability placed by inference engine in a band of {2*param_posterior_prob_band}"
            + f"\n around the true value of the parameters ({parameters.shape[0]} trials)",
            fontsize=24.0,
        )

    return posterior_samples
Exemplo n.º 26
0
    trace_0 = pm.sample(1000)

varnames = ['α', 'β', 'bd']
az.summary(trace_0, varnames)

theta = trace_0['θ'].mean(axis=0)
idx = np.argsort(x_c)

plt.figure()
# plot logistic curve
plt.plot(x_c[idx], theta[idx], color='C2', lw=3)
az.plot_hdi(x_c, trace_0['θ'], color='C2')

# plot decision boundary
plt.vlines(trace_0['bd'].mean(), 0, 1, color='k')
bd_hpd = az.hdi(trace_0['bd'])
plt.fill_betweenx([0, 1], bd_hpd[0], bd_hpd[1], color='k', alpha=0.5)

# plot jittered data
plt.scatter(x_c,
            np.random.normal(y_0, 0.02),
            marker='.',
            color=[f'C{x}' for x in y_0])

plt.xlabel(x_n)
plt.ylabel('p(y=1)', rotation=0)
# use original scale for xticks
locs, _ = plt.xticks()
plt.xticks(locs, np.round(locs + xmean, 1))
#plt.xticks(x_c[idx], np.round(x_0[idx], 1))
plt.tight_layout()
Exemplo n.º 27
0
    fp = logistic(pred_samples['f_pred'])
    fp_mean = np.mean(fp, 0)

    ax.plot(X_new[:, 0], fp_mean)
    # plot the data (with some jitter) and the true latent function
    ax.scatter(x_1,
               np.random.normal(y, 0.02),
               marker='.',
               color=[f'C{x}' for x in y])

    az.plot_hdi(X_new[:, 0], fp, color='C2')

    db = np.array([find_midpoint(f, X_new[:, 0], 0.5) for f in fp])
    db_mean = db.mean()
    db_hpd = az.hdi(db)
    ax.vlines(db_mean, 0, 1, color='k')
    ax.fill_betweenx([0, 1], db_hpd[0], db_hpd[1], color='k', alpha=0.5)
    ax.set_xlabel('sepal_length')
    ax.set_ylabel('θ', rotation=0)
    pml.savefig('gp_classify_iris1.pdf', dpi=300)

# Change kernel to be sum of SE and linear, to improve tail behavior

with pm.Model() as model_iris2:
    #ℓ = pm.HalfCauchy("ℓ", 1)
    ℓ = pm.Gamma('ℓ', 2, 0.5)
    c = pm.Normal('c', x_1.min())
    τ = pm.HalfNormal('τ', 5)
    cov = (pm.gp.cov.ExpQuad(1, ℓ) + τ * pm.gp.cov.Linear(1, c) +
           pm.gp.cov.WhiteNoise(1E-5))
Exemplo n.º 28
0
def bayesian_model_comparison(df):
    # Preprocess
    df["log_v"] = log_electricity = np.log(df["total_electricity"]).values
    total_electricity = df.total_electricity.values

    # Create local variables (assign daypart, cluster and weekday values need to start from 0)
    # clusters are use profile categories, heat_clusters and cool_clusters indicate days having similar
    # temperature dependence (likely to modify this in the new version of the preprocessing)

    df.t = pd.to_datetime(pd.Series(df.t))
    df.s = df.s - 1
    df.weekday = df.weekday - 1
    clusters = df.s
    unique_clusters = clusters.unique()
    dayparts = df.daypart
    weekdays = df.weekday
    unique_dayparts = dayparts.unique()
    unique_weekdays = weekdays.unique()
    n_hours = len(df.index)
    outdoor_temp_c = df.outdoor_temp_c
    outdoor_temp_h = df.outdoor_temp_h
    outdoor_temp_lp_c = df.outdoor_temp_lp_c
    outdoor_temp_lp_h = df.outdoor_temp_lp_h
    daypart_fs_sin_1 = df.daypart_fs_sin_1
    daypart_fs_sin_2 = df.daypart_fs_sin_2
    daypart_fs_sin_3 = df.daypart_fs_sin_3
    daypart_fs_cos_1 = df.daypart_fs_cos_1
    daypart_fs_cos_2 = df.daypart_fs_cos_2
    daypart_fs_cos_3 = df.daypart_fs_cos_3

    # create coords for pymc3
    coords = {"obs_id": np.arange(total_electricity.size)}
    coords["profile_cluster"] = unique_clusters
    coords["daypart"] = unique_dayparts
    coords["weekday"] = unique_weekdays

    # Create kfold cross-validation splits

    kf = KFold(n_splits=5)
    kf.get_n_splits(df)

    # Create arrays to save model results
    partial_pool_cvrmse_list = []
    no_pool_cvrmse_list = []
    complete_pool_cvrmse_list = []

    partial_pool_coverage_list = []
    no_pool_coverage_list = []
    complete_pool_coverage_list = []

    for train_index, test_index in kf.split(df):
        coords = {"obs_id": np.arange(total_electricity[train_index].size)}
        coords["profile_cluster"] = unique_clusters
        coords["daypart"] = unique_dayparts
        coords["weekday"] = unique_weekdays

        # Partial Pooling

        with pm.Model(coords=coords) as partial_pooling:
            profile_cluster_idx = pm.Data("profile_cluster_idx",
                                          clusters[train_index],
                                          dims="obs_id")
            daypart = pm.Data("daypart", dayparts[train_index], dims="obs_id")
            weekday = pm.Data("weekday", weekdays[train_index], dims="obs_id")

            fs_sin_1 = pm.Data("fs_sin_1",
                               daypart_fs_sin_1[train_index],
                               dims="obs_id")
            fs_sin_2 = pm.Data("fs_sin_2",
                               daypart_fs_sin_2[train_index],
                               dims="obs_id")
            fs_sin_3 = pm.Data("fs_sin_3",
                               daypart_fs_sin_3[train_index],
                               dims="obs_id")

            fs_cos_1 = pm.Data("fs_cos_1",
                               daypart_fs_cos_1[train_index],
                               dims="obs_id")
            fs_cos_2 = pm.Data("fs_cos_2",
                               daypart_fs_cos_2[train_index],
                               dims="obs_id")
            fs_cos_3 = pm.Data("fs_cos_3",
                               daypart_fs_cos_3[train_index],
                               dims="obs_id")

            # cooling_temp = pm.Data("cooling_temp", outdoor_temp_c[train_index], dims="obs_id")
            # heating_temp = pm.Data("heating_temp", outdoor_temp_h[train_index], dims="obs_id")
            cooling_temp_lp = pm.Data("cooling_temp_lp",
                                      outdoor_temp_lp_c[train_index],
                                      dims="obs_id")
            heating_temp_lp = pm.Data("heating_temp_lp",
                                      outdoor_temp_lp_h[train_index],
                                      dims="obs_id")

            # Hyperpriors:
            bf = pm.Normal("bf", mu=0.0, sigma=1.0)
            sigma_bf = pm.Exponential("sigma_bf", 1.0)
            a = pm.Normal("a", mu=0.0, sigma=1.0)
            sigma_a = pm.Exponential("sigma_a", 1.0)

            # btc = pm.Normal("btc", mu=0.0, sigma=1.0, dims="daypart")
            # bth = pm.Normal("bth", mu=0.0, sigma=1.0, dims="daypart")

            btclp = pm.Normal("btclp", mu=0.0, sigma=1.0, dims="daypart")
            bthlp = pm.Normal("bthlp", mu=0.0, sigma=1.0, dims="daypart")

            # Varying intercepts
            a_cluster = pm.Normal("a_cluster",
                                  mu=a,
                                  sigma=sigma_a,
                                  dims=("daypart", "profile_cluster"))

            # Varying slopes:
            bs1 = pm.Normal("bs1",
                            mu=bf,
                            sigma=sigma_bf,
                            dims=("profile_cluster"))
            bs2 = pm.Normal("bs2",
                            mu=bf,
                            sigma=sigma_bf,
                            dims=("profile_cluster"))
            bs3 = pm.Normal("bs3",
                            mu=bf,
                            sigma=sigma_bf,
                            dims=("profile_cluster"))

            bc1 = pm.Normal("bc1",
                            mu=bf,
                            sigma=sigma_bf,
                            dims=("profile_cluster"))
            bc2 = pm.Normal("bc2",
                            mu=bf,
                            sigma=sigma_bf,
                            dims=("profile_cluster"))
            bc3 = pm.Normal("bc3",
                            mu=bf,
                            sigma=sigma_bf,
                            dims=("profile_cluster"))

            # Expected value per county:
            mu = a_cluster[daypart, profile_cluster_idx] + bs1[profile_cluster_idx] * fs_sin_1 + \
                 bs2[profile_cluster_idx] * fs_sin_2 + bs3[profile_cluster_idx] * fs_sin_3 + \
                 bc1[profile_cluster_idx] * fs_cos_1 + bc2[profile_cluster_idx] * fs_cos_2 + \
                 bc3[profile_cluster_idx] * fs_cos_3 + \
                 btclp[daypart] * cooling_temp_lp + \
                 bthlp[daypart] * heating_temp_lp
            # btc[daypart] * cooling_temp + bth[daypart] * heating_temp + \

            # Model error:
            sigma = pm.Exponential("sigma", 1.0)

            # Likelihood
            y = pm.Normal("y",
                          mu,
                          sigma=sigma,
                          observed=log_electricity[train_index],
                          dims="obs_id")

        # Fitting
        with partial_pooling:
            approx = pm.fit(
                n=50000,
                method='fullrank_advi',
                callbacks=[CheckParametersConvergence(tolerance=0.01)])
            partial_pooling_trace = approx.sample(1000)

        # Sampling from the posterior setting test data to check the predictions on unseen data

        with partial_pooling:
            pm.set_data({
                "profile_cluster_idx": clusters[test_index],
                "daypart": dayparts[test_index],  # "weekday":weekdays,
                "fs_sin_1": daypart_fs_sin_1[test_index],
                "fs_sin_2": daypart_fs_sin_2[test_index],
                "fs_sin_3": daypart_fs_sin_3[test_index],
                "fs_cos_1": daypart_fs_cos_1[test_index],
                "fs_cos_2": daypart_fs_cos_2[test_index],
                "fs_cos_3": daypart_fs_cos_3[test_index],
                # "cooling_temp":outdoor_temp_c, "heating_temp": outdoor_temp_h,
                "cooling_temp_lp": outdoor_temp_lp_c[test_index],
                "heating_temp_lp": outdoor_temp_lp_h[test_index]
            })

            partial_pool_posterior_hdi = pm.sample_posterior_predictive(
                partial_pooling_trace, keep_size=True)
            partial_pool_posterior = pm.sample_posterior_predictive(
                partial_pooling_trace)
            partial_pool_prior = pm.sample_prior_predictive(150)

        # Calculate predictions and HDI

        partial_pool_predictions = np.exp(partial_pool_posterior['y'].mean(0))
        hdi_data = az.hdi(partial_pool_posterior_hdi)
        partial_pool_lower_bound = np.array(
            np.exp(hdi_data.to_array().sel(hdi='lower'))).flatten()
        partial_pool_higher_bound = np.array(
            np.exp(hdi_data.to_array().sel(hdi='higher'))).flatten()

        # Calculate cvrmse and coverage of the HDI
        partial_pool_mse = mean_squared_error(df.total_electricity[test_index],
                                              partial_pool_predictions)
        partial_pool_rmse = sqrt(partial_pool_mse)
        partial_pool_cvrmse = partial_pool_rmse / df.total_electricity.mean()
        partial_pool_coverage = sum(
            (partial_pool_lower_bound <= df.total_electricity[test_index])
            & (df.total_electricity[test_index] <= partial_pool_higher_bound)
        ) * 100 / len(test_index)

        partial_pool_cvrmse_list.append(partial_pool_cvrmse)
        partial_pool_coverage_list.append(partial_pool_coverage)

        # No Pooling

        with pm.Model(coords=coords) as no_pooling:
            profile_cluster_idx = pm.Data("profile_cluster_idx",
                                          clusters[train_index],
                                          dims="obs_id")
            daypart = pm.Data("daypart", dayparts[train_index], dims="obs_id")
            weekday = pm.Data("weekday", weekdays[train_index], dims="obs_id")

            fs_sin_1 = pm.Data("fs_sin_1",
                               daypart_fs_sin_1[train_index],
                               dims="obs_id")
            fs_sin_2 = pm.Data("fs_sin_2",
                               daypart_fs_sin_2[train_index],
                               dims="obs_id")
            fs_sin_3 = pm.Data("fs_sin_3",
                               daypart_fs_sin_3[train_index],
                               dims="obs_id")

            fs_cos_1 = pm.Data("fs_cos_1",
                               daypart_fs_cos_1[train_index],
                               dims="obs_id")
            fs_cos_2 = pm.Data("fs_cos_2",
                               daypart_fs_cos_2[train_index],
                               dims="obs_id")
            fs_cos_3 = pm.Data("fs_cos_3",
                               daypart_fs_cos_3[train_index],
                               dims="obs_id")

            # cooling_temp = pm.Data("cooling_temp", outdoor_temp_c[train_index], dims="obs_id")
            # heating_temp = pm.Data("heating_temp", outdoor_temp_h[train_index], dims="obs_id")
            cooling_temp_lp = pm.Data("cooling_temp_lp",
                                      outdoor_temp_lp_c[train_index],
                                      dims="obs_id")
            heating_temp_lp = pm.Data("heating_temp_lp",
                                      outdoor_temp_lp_h[train_index],
                                      dims="obs_id")

            # Priors:
            a_cluster = pm.Normal("a_cluster",
                                  mu=0.0,
                                  sigma=1.0,
                                  dims=("daypart", "profile_cluster"))
            btclp = pm.Normal("btclp", mu=0.0, sigma=1.0, dims="daypart")
            bthlp = pm.Normal("bthlp", mu=0.0, sigma=1.0, dims="daypart")

            bs1 = pm.Normal("bs1", mu=0.0, sigma=1.0, dims="profile_cluster")
            bs2 = pm.Normal("bs2", mu=0.0, sigma=1.0, dims="profile_cluster")
            bs3 = pm.Normal("bs3", mu=0.0, sigma=1.0, dims="profile_cluster")
            bc1 = pm.Normal("bc1", mu=0.0, sigma=1.0, dims="profile_cluster")
            bc2 = pm.Normal("bc2", mu=0.0, sigma=1.0, dims="profile_cluster")
            bc3 = pm.Normal("bc3", mu=0.0, sigma=1.0, dims="profile_cluster")

            # Expected value per county:
            mu = a_cluster[daypart, profile_cluster_idx] + bs1[profile_cluster_idx] * fs_sin_1 + \
                 bs2[profile_cluster_idx] * fs_sin_2 + bs3[profile_cluster_idx] * fs_sin_3 + \
                 bc1[profile_cluster_idx] * fs_cos_1 + bc2[profile_cluster_idx] * fs_cos_2 + \
                 bc3[profile_cluster_idx] * fs_cos_3 + \
                 btclp[daypart] * cooling_temp_lp + \
                 bthlp[daypart] * heating_temp_lp
            # btc[daypart] * cooling_temp + bth[daypart] * heating_temp + \

            # Model error:
            sigma = pm.Exponential("sigma", 1.0)

            # Likelihood
            y = pm.Normal("y",
                          mu,
                          sigma=sigma,
                          observed=log_electricity[train_index],
                          dims="obs_id")

        # Fitting

        with no_pooling:
            approx = pm.fit(
                n=50000,
                method='fullrank_advi',
                callbacks=[CheckParametersConvergence(tolerance=0.01)])
            no_pooling_trace = approx.sample(1000)

            # Sampling from the posterior setting test data to check the predictions on unseen data

        with no_pooling:
            pm.set_data({
                "profile_cluster_idx": clusters[test_index],
                "daypart": dayparts[test_index],  # "weekday":weekdays,
                "fs_sin_1": daypart_fs_sin_1[test_index],
                "fs_sin_2": daypart_fs_sin_2[test_index],
                "fs_sin_3": daypart_fs_sin_3[test_index],
                "fs_cos_1": daypart_fs_cos_1[test_index],
                "fs_cos_2": daypart_fs_cos_2[test_index],
                "fs_cos_3": daypart_fs_cos_3[test_index],
                # "cooling_temp":outdoor_temp_c, "heating_temp": outdoor_temp_h,
                "cooling_temp_lp": outdoor_temp_lp_c[test_index],
                "heating_temp_lp": outdoor_temp_lp_h[test_index]
            })

            no_pool_posterior_hdi = pm.sample_posterior_predictive(
                no_pooling_trace, keep_size=True)
            no_pool_posterior = pm.sample_posterior_predictive(
                no_pooling_trace)

            no_pool_prior = pm.sample_prior_predictive(150)

            # Calculate predictions and HDI

        no_pool_predictions = np.exp(no_pool_posterior['y'].mean(0))
        no_pool_hdi_data = az.hdi(no_pool_posterior_hdi)
        no_pool_lower_bound = np.array(
            np.exp(no_pool_hdi_data.to_array().sel(hdi='lower'))).flatten()
        no_pool_higher_bound = np.array(
            np.exp(no_pool_hdi_data.to_array().sel(hdi='higher'))).flatten()

        # Calculate cvrmse and coverage of the HDI
        no_pool_mse = mean_squared_error(df.total_electricity[test_index],
                                         no_pool_predictions)
        no_pool_rmse = sqrt(no_pool_mse)
        no_pool_cvrmse = no_pool_rmse / df.total_electricity.mean()
        no_pool_coverage = sum(
            (no_pool_lower_bound <= df.total_electricity[test_index])
            & (df.total_electricity[test_index] <= no_pool_higher_bound)
        ) * 100 / len(test_index)

        no_pool_cvrmse_list.append(no_pool_cvrmse)
        no_pool_coverage_list.append(no_pool_coverage)

        # Complete pooling

        with pm.Model(coords=coords) as complete_pooling:

            fs_sin_1 = pm.Data("fs_sin_1",
                               daypart_fs_sin_1[train_index],
                               dims="obs_id")
            fs_sin_2 = pm.Data("fs_sin_2",
                               daypart_fs_sin_2[train_index],
                               dims="obs_id")
            fs_sin_3 = pm.Data("fs_sin_3",
                               daypart_fs_sin_3[train_index],
                               dims="obs_id")

            fs_cos_1 = pm.Data("fs_cos_1",
                               daypart_fs_cos_1[train_index],
                               dims="obs_id")
            fs_cos_2 = pm.Data("fs_cos_2",
                               daypart_fs_cos_2[train_index],
                               dims="obs_id")
            fs_cos_3 = pm.Data("fs_cos_3",
                               daypart_fs_cos_3[train_index],
                               dims="obs_id")

            # cooling_temp = pm.Data("cooling_temp", outdoor_temp_c[train_index], dims="obs_id")
            # heating_temp = pm.Data("heating_temp", outdoor_temp_h[train_index], dims="obs_id")
            cooling_temp_lp = pm.Data("cooling_temp_lp",
                                      outdoor_temp_lp_c[train_index],
                                      dims="obs_id")
            heating_temp_lp = pm.Data("heating_temp_lp",
                                      outdoor_temp_lp_h[train_index],
                                      dims="obs_id")

            # Priors:
            a = pm.Normal("a", mu=0.0, sigma=1.0)
            btclp = pm.Normal("btclp", mu=0.0, sigma=1.0)
            bthlp = pm.Normal("bthlp", mu=0.0, sigma=1.0)

            bs1 = pm.Normal("bs1", mu=0.0, sigma=1.0)
            bs2 = pm.Normal("bs2", mu=0.0, sigma=1.0)
            bs3 = pm.Normal("bs3", mu=0.0, sigma=1.0)
            bc1 = pm.Normal("bc1", mu=0.0, sigma=1.0)
            bc2 = pm.Normal("bc2", mu=0.0, sigma=1.0)
            bc3 = pm.Normal("bc3", mu=0.0, sigma=1.0)

            # Expected value per county:
            mu = a + bs1 * fs_sin_1 + bs2 * fs_sin_2 + bs3 * fs_sin_3 + bc1 * fs_cos_1 + bc2 * fs_cos_2 + \
                 bc3 * fs_cos_3 + btclp * cooling_temp_lp + bthlp * heating_temp_lp
            # btc[daypart] * cooling_temp + bth[daypart] * heating_temp + \

            # Model error:
            sigma = pm.Exponential("sigma", 1.0)

            # Likelihood
            y = pm.Normal("y",
                          mu,
                          sigma=sigma,
                          observed=log_electricity[train_index],
                          dims="obs_id")

        # Fitting

        with complete_pooling:
            approx = pm.fit(
                n=50000,
                method='fullrank_advi',
                callbacks=[CheckParametersConvergence(tolerance=0.01)])
            complete_pooling_trace = approx.sample(1000)

            # Sampling from the posterior setting test data to check the predictions on unseen data

        with complete_pooling:
            pm.set_data({
                "fs_sin_1": daypart_fs_sin_1[test_index],
                "fs_sin_2": daypart_fs_sin_2[test_index],
                "fs_sin_3": daypart_fs_sin_3[test_index],
                "fs_cos_1": daypart_fs_cos_1[test_index],
                "fs_cos_2": daypart_fs_cos_2[test_index],
                "fs_cos_3": daypart_fs_cos_3[test_index],
                # "cooling_temp":outdoor_temp_c, "heating_temp": outdoor_temp_h,
                "cooling_temp_lp": outdoor_temp_lp_c[test_index],
                "heating_temp_lp": outdoor_temp_lp_h[test_index]
            })

            complete_pool_posterior_hdi = pm.sample_posterior_predictive(
                complete_pooling_trace, keep_size=True)
            complete_pool_posterior = pm.sample_posterior_predictive(
                complete_pooling_trace)

            complete_pool_prior = pm.sample_prior_predictive(150)

            # Calculate predictions and HDI

        complete_pool_predictions = np.exp(
            complete_pool_posterior['y'].mean(0))
        complete_pool_hdi_data = az.hdi(complete_pool_posterior_hdi)
        complete_pool_lower_bound = np.array(
            np.exp(
                complete_pool_hdi_data.to_array().sel(hdi='lower'))).flatten()
        complete_pool_higher_bound = np.array(
            np.exp(complete_pool_hdi_data.to_array().sel(
                hdi='higher'))).flatten()

        # Calculate cvrmse and coverage of the HDI
        complete_pool_mse = mean_squared_error(
            df.total_electricity[test_index], complete_pool_predictions)
        complete_pool_rmse = sqrt(complete_pool_mse)
        complete_pool_cvrmse = complete_pool_rmse / df.total_electricity.mean()
        complete_pool_coverage = sum(
            (complete_pool_lower_bound <= df.total_electricity[test_index])
            & (df.total_electricity[test_index] <= complete_pool_higher_bound)
        ) * 100 / len(test_index)

        complete_pool_cvrmse_list.append(complete_pool_cvrmse)
        complete_pool_coverage_list.append(complete_pool_coverage)

    # Export Results
    np_cvrmse = np.mean(no_pool_cvrmse_list)
    cp_cvrmse = np.mean(complete_pool_cvrmse_list)
    pp_cvrmse = np.mean(partial_pool_cvrmse_list)

    np_coverage = np.mean(no_pool_coverage_list)
    cp_coverage = np.mean(complete_pool_coverage_list)
    pp_coverage = np.mean(partial_pool_coverage_list)

    export_data = {
        'partial_pooling_cvrmse': [pp_cvrmse],
        'no_pooling_cvrmse': [np_cvrmse],
        'complete_pooling_cvrmse': [cp_cvrmse],
        'partial_pooling_coverage': [pp_coverage],
        'no_pooling_coverage': [np_coverage],
        'complete_pooling_coverage': [cp_coverage]
    }
    export_df = pd.DataFrame(data=export_data)
    return export_df
Exemplo n.º 29
0
def create_and_run_models(args):
    verbose = args.verbose
    data = pd.read_csv(args.infile)
    data_start = data[data.P_t >= args.cutoff].index[0]
    data = data.loc[data_start:]
    # Now, from the start date, we will project forward and
    # compute our Rts and Its.
    R_t_mu, R_t_sigma = args.rt_init_mu, args.rt_init_sigma
    I_t_mu = data.iloc[0].P_t
    n_days = len(data) if args.window == -1 else args.window

    R_t_mus, R_t_lows, R_t_highs = [R_t_mu], [R_t_mu - R_t_sigma * 1.96
                                              ], [R_t_mu + R_t_sigma * 1.96]
    I_t_mus, I_t_lows, I_t_highs = [I_t_mu], [-np.inf], [np.inf]
    for i in range(1, n_days):
        day = data.iloc[i]
        model = MCMCModel(args.infile,
                          R_t_drift=args.R_t_drift,
                          num_positive=day.P_t,
                          num_tests=day.T_t,
                          dI_t_mu=I_t_mu,
                          N_t=day.N_t,
                          use_real_nt=args.real_nt,
                          R_t_mu=R_t_mu,
                          R_t_sigma=R_t_sigma,
                          verbose=args.verbose).run(chains=args.chains,
                                                    tune=args.tune,
                                                    draws=args.draw,
                                                    cores=args.cores)

        I_t_1 = model.trace['dI_t_1']
        R_t_1 = model.trace['R_t_1']

        R_t_mu = np.mean(R_t_1)
        R_t_sigma = np.std(R_t_1)
        I_t_mu = np.mean(I_t_1)

        R_t_bounds = az.hdi(R_t_1, 0.95)
        R_t_low, R_t_high = R_t_bounds[0], R_t_bounds[1]
        I_t_bounds = az.hdi(I_t_1, 0.95)
        I_t_low, I_t_high = I_t_bounds[0], I_t_bounds[1]

        if verbose:
            print(i)
            print(f'R_t: {(R_t_mu, R_t_low, R_t_high)}')
            print(f'I_t: {(I_t_mu, I_t_low, I_t_high)}')
            if verbose > 1:
                print(f'R_t_sigma: {(np.std(R_t_1))}')
                print('Skew, kurtosis: ', skew(R_t_1), kurtosis(R_t_1))

        R_t_mus.append(R_t_mu)
        R_t_highs.append(R_t_high)
        R_t_lows.append(R_t_low)
        I_t_mus.append(I_t_mu)
        I_t_highs.append(I_t_high)
        I_t_lows.append(I_t_low)

    results = pd.DataFrame({
        'R_t_mean': np.array(R_t_mus),
        'R_t_low': np.array(R_t_lows),
        'R_t_high': np.array(R_t_highs),
        'I_t_mean': np.array(I_t_mus),
        'I_t_low': np.array(I_t_lows),
        'I_t_high': np.array(I_t_highs),
    })

    results.index = data.index[:n_days]
    return results
Exemplo n.º 30
0
def plot_dependence(
    idata,
    X=None,
    Y=None,
    kind="pdp",
    xs_interval="linear",
    xs_values=None,
    var_idx=None,
    var_discrete=None,
    samples=50,
    instances=10,
    random_seed=None,
    sharey=True,
    rug=True,
    smooth=True,
    indices=None,
    grid="long",
    color="C0",
    color_mean="C0",
    alpha=0.1,
    figsize=None,
    smooth_kwargs=None,
    ax=None,
):
    """
    Partial dependence or individual conditional expectation plot

    Parameters
    ----------
    idata: InferenceData
        InferenceData containing a collection of BART_trees in sample_stats group
    X : array-like
        The covariate matrix.
    Y : array-like
        The response vector.
    kind : str
        Whether to plor a partial dependence plot ("pdp") or an individual conditional expectation
        plot ("ice"). Defaults to pdp.
    xs_interval : str
        Method used to compute the values X used to evaluate the predicted function. "linear",
        evenly spaced values in the range of X. "quantiles", the evaluation is done at the specified
        quantiles of X. "insample", the evaluation is done at the values of X.
        For discrete variables these options are ommited.
    xs_values : int or list
        Values of X used to evaluate the predicted function. If ``xs_interval="linear"`` number of
        points in the evenly spaced grid. If ``xs_interval="quantiles"``quantile or sequence of
        quantiles to compute, which must be between 0 and 1 inclusive.
        Ignored when ``xs_interval="insample"``.
    var_idx : list
        List of the indices of the covariate for which to compute the pdp or ice.
    var_discrete : list
        List of the indices of the covariate treated as discrete.
    samples : int
        Number of posterior samples used in the predictions. Defaults to 50
    instances : int
        Number of instances of X to plot. Only relevant if ice ``kind="ice"`` plots.
    random_seed : int
        random_seed used to sample from the posterior. Defaults to None.
    sharey : bool
        Controls sharing of properties among y-axes. Defaults to True.
    rug : bool
        Whether to include a rugplot. Defaults to True.
    smooth=True,
        If True the result will be smoothed by first computing a linear interpolation of the data
        over a regular grid and then applying the Savitzky-Golay filter to the interpolated data.
        Defaults to True.
    grid : str or tuple
        How to arrange the subplots. Defaults to "long", one subplot below the other.
        Other options are "wide", one subplot next to eachother or a tuple indicating the number of
        rows and columns.
    color : matplotlib valid color
        Color used to plot the pdp or ice. Defaults to "C0"
    color_mean : matplotlib valid color
        Color used to plot the mean pdp or ice. Defaults to "C0",
    alpha : float
        Transparency level, should in the interval [0, 1].
    figsize : tuple
        Figure size. If None it will be defined automatically.
    smooth_kwargs : dict
        Additional keywords modifying the Savitzky-Golay filter.
        See scipy.signal.savgol_filter() for details.
    ax : axes
        Matplotlib axes.

    Returns
    -------
    axes: matplotlib axes
    """
    if kind not in ["pdp", "ice"]:
        raise ValueError(f"kind={kind} is not suported. Available option are 'pdp' or 'ice'")

    if xs_interval not in ["insample", "linear", "quantiles"]:
        raise ValueError(
            f"""{xs_interval} is not suported.
                          Available option are 'insample', 'linear' or 'quantiles'"""
        )

    rng = RandomState(seed=random_seed)

    if isinstance(X, pd.DataFrame):
        X_names = list(X.columns)
        X = X.values
    else:
        X_names = []

    if isinstance(Y, pd.DataFrame):
        Y_label = f"Predicted {Y.name}"
    else:
        Y_label = "Predicted Y"

    num_observations = X.shape[0]
    num_covariates = X.shape[1]

    indices = list(range(num_covariates))

    if var_idx is None:
        var_idx = indices
    if var_discrete is None:
        var_discrete = []

    if X_names:
        X_labels = [X_names[idx] for idx in var_idx]
    else:
        X_labels = [f"X_{idx}" for idx in var_idx]

    if xs_interval == "linear" and xs_values is None:
        xs_values = 10

    if xs_interval == "quantiles" and xs_values is None:
        xs_values = [0.05, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.95]

    if kind == "ice":
        instances = np.random.choice(range(X.shape[0]), replace=False, size=instances)

    new_Y = []
    new_X_target = []
    y_mins = []

    new_X = np.zeros_like(X)
    idx_s = list(range(X.shape[0]))
    for i in var_idx:
        indices_mi = indices[:]
        indices_mi.pop(i)
        y_pred = []
        if kind == "pdp":
            if i in var_discrete:
                new_X_i = np.unique(X[:, i])
            else:
                if xs_interval == "linear":
                    new_X_i = np.linspace(np.nanmin(X[:, i]), np.nanmax(X[:, i]), xs_values)
                elif xs_interval == "quantiles":
                    new_X_i = np.quantile(X[:, i], q=xs_values)
                elif xs_interval == "insample":
                    new_X_i = X[:, i]

            for x_i in new_X_i:
                new_X[:, indices_mi] = X[:, indices_mi]
                new_X[:, i] = x_i
                y_pred.append(np.mean(predict(idata, rng, X_new=new_X, size=samples), 1))
            new_X_target.append(new_X_i)
        else:
            for instance in instances:
                new_X = X[idx_s]
                new_X[:, indices_mi] = X[:, indices_mi][instance]
                y_pred.append(np.mean(predict(idata, rng, X_new=new_X, size=samples), 0))
            new_X_target.append(new_X[:, i])
        y_mins.append(np.min(y_pred))
        new_Y.append(np.array(y_pred).T)

    if ax is None:
        if grid == "long":
            fig, axes = plt.subplots(len(var_idx), sharey=sharey, figsize=figsize)
        elif grid == "wide":
            fig, axes = plt.subplots(1, len(var_idx), sharey=sharey, figsize=figsize)
        elif isinstance(grid, tuple):
            fig, axes = plt.subplots(grid[0], grid[1], sharey=sharey, figsize=figsize)
        axes = np.ravel(axes)
    else:
        axes = [ax]
        fig = ax.get_figure()

    for i, ax in enumerate(axes):
        if i >= len(var_idx):
            ax.set_axis_off()
            fig.delaxes(ax)
        else:
            var = var_idx[i]
            if var in var_discrete:
                if kind == "pdp":
                    y_means = new_Y[i].mean(0)
                    hdi = az.hdi(new_Y[i])
                    ax.errorbar(
                        new_X_target[i],
                        y_means,
                        (y_means - hdi[:, 0], hdi[:, 1] - y_means),
                        fmt=".",
                        color=color,
                    )
                else:
                    ax.plot(new_X_target[i], new_Y[i], ".", color=color, alpha=alpha)
                    ax.plot(new_X_target[i], new_Y[i].mean(1), "o", color=color_mean)
                ax.set_xticks(new_X_target[i])
            elif smooth:
                if smooth_kwargs is None:
                    smooth_kwargs = {}
                smooth_kwargs.setdefault("window_length", 55)
                smooth_kwargs.setdefault("polyorder", 2)
                x_data = np.linspace(np.nanmin(new_X_target[i]), np.nanmax(new_X_target[i]), 200)
                x_data[0] = (x_data[0] + x_data[1]) / 2
                if kind == "pdp":
                    interp = griddata(new_X_target[i], new_Y[i].mean(0), x_data)
                else:
                    interp = griddata(new_X_target[i], new_Y[i], x_data)

                y_data = savgol_filter(interp, axis=0, **smooth_kwargs)

                if kind == "pdp":
                    az.plot_hdi(
                        new_X_target[i], new_Y[i], color=color, fill_kwargs={"alpha": alpha}, ax=ax
                    )
                    ax.plot(x_data, y_data, color=color_mean)
                else:
                    ax.plot(x_data, y_data.mean(1), color=color_mean)
                    ax.plot(x_data, y_data, color=color, alpha=alpha)

            else:
                idx = np.argsort(new_X_target[i])
                if kind == "pdp":
                    az.plot_hdi(
                        new_X_target[i],
                        new_Y[i],
                        smooth=smooth,
                        fill_kwargs={"alpha": alpha},
                        ax=ax,
                    )
                    ax.plot(new_X_target[i][idx], new_Y[i][idx].mean(0), color=color)
                else:
                    ax.plot(new_X_target[i][idx], new_Y[i][idx], color=color, alpha=alpha)
                    ax.plot(new_X_target[i][idx], new_Y[i][idx].mean(1), color=color_mean)

            if rug:
                lb = np.min(y_mins)
                ax.plot(X[:, var], np.full_like(X[:, var], lb), "k|")

            ax.set_xlabel(X_labels[i])

    fig.text(-0.05, 0.5, Y_label, va="center", rotation="vertical", fontsize=15)
    return axes