Exemplo n.º 1
0
def assoc_catalogs_opt(c1, c2, tolerance = 1/18000.):
    mag_tuples = []
    flux_tuples = []
    cat1 = asciidata.open(c1)
    cat2 = asciidata.open(c2)
    for i in range(cat2.nrows):
        cat2['ASSOC'][i] = -1
    for i in range(cat1.nrows):
        cat1['ASSOC'][i] = -1
    alpha1 = [cat1['ALPHA_SKY'][i] for i in range(cat1.nrows)]
    alpha2 = [cat2['ALPHA_SKY'][i] for i in range(cat2.nrows)]
    delta1 =   [cat1['DELTA_SKY'][i] for i in range(cat1.nrows)]
    delta2 =   [cat2['DELTA_SKY'][i] for i in range(cat2.nrows)]
    for i in range(cat1.nrows):
        match = [abs(alpha1[i]-alpha2[j]) < tolerance and abs(delta1[i]-delta2[j]) < tolerance for j in range(cat2.nrows)]
        try:
           idx = match.index(True)
           if cat2['ASSOC'][idx] == -1 \
           and cat1['SNR'][i] > 20 \
           and cat2['SNR'][idx] > 20 \
           and cat1['MAG_AUTO'][i] + 21.1 < 22.5 \
           and cat2['MAG_AUTO'][idx] + 21.1 < 22.5 \
           and cat1['FLUX_RADIUS'][i] > 0 \
           and cat2['FLUX_RADIUS'][idx] > 0 \
           and cat1['IS_STAR'][i] == 0 \
           and cat2['IS_STAR'][idx] == 0 \
           and cat1['FLUX_RADIUS'][i] < 500 \
           and cat2['FLUX_RADIUS'][idx] < 500:
               cat1['ASSOC'][i] = i
               cat2['ASSOC'][idx] = i
               mag_tuples.append((cat1['MAG_AUTO'][i], cat2['MAG_AUTO'][idx]))
               flux_tuples.append((cat1['FLUX_RADIUS'][i],cat2['FLUX_RADIUS'][idx]))               
        except ValueError:
           continue
Exemplo n.º 2
0
def check_adjacent(base_catalog, all_catalogs, check_indices, tolerance=1.0 / 18000):
    nDeleted = 0
    base = asciidata.open(base_catalog)
    base_alpha = [base["ALPHA_SKY"][i] for i in range(base.nrows)]
    base_delta = [base["DELTA_SKY"][i] for i in range(base.nrows)]
    for index in check_indices:
        nDeletedInd = 0
        print "Checking for overlaps in the base catalog", base_catalog
        print "Checking against catalog", all_catalogs[index]
        check = asciidata.open(all_catalogs[index])
        check_alpha = [check["ALPHA_SKY"][i] for i in range(check.nrows)]
        check_delta = [check["DELTA_SKY"][i] for i in range(check.nrows)]
        check_number = [check["NUMBER"][i] for i in range(check.nrows)]
        delete_numbers = []
        for j in range(check.nrows):
            if j % 1000 == 0:
                print "Checking item", j
            item_alpha = check_alpha[j]
            item_delta = check_delta[j]
            item_bools = [
                (abs(item_alpha - base_alpha[k]) < tolerance and abs(item_delta - base_delta[k]) < tolerance)
                for k in range(base.nrows)
            ]
            if True in item_bools:
                delete_numbers.append(check_number[j])
                nDeleted += 1
                nDeletedInd += 1
        print nDeletedInd, "objects were deleted in this check."
        delete_items(all_catalogs[index], delete_numbers)
    return nDeleted
Exemplo n.º 3
0
def SemenovMeanOpacity(Temp = None, Density = None,Type=None):
    # Type deteremines the mean opacity type, 0 : Rosseland , 1: Planck.

    if Type == 0 or Type == None:
        Whole_Table = np.array(asc.open(Opac_Dir+RossFileName))
    else:
        Whole_Table = np.array(asc.open(Opac_Dir+PlanckFileName))

    
    rho = Whole_Table[1:,0]
    T = Whole_Table[0,1:]
    OpMatrix = Whole_Table[1:,1:]


    LgInputTemp = np.log10(Temp)
    LgInputDens = np.log10(Density)

    pt1 = (np.abs(rho-LgInputDens)).argmin()
    pt2 = (np.abs(T-LgInputTemp)).argmin()
    
    if LgInputTemp > 3.87:
        interpval = ConstantGasOpacity
    else:
        outgrid = RectBivariateSpline(rho,T,OpMatrix,kx=1,ky=1)
        interpval = outgrid(rho[pt1],T[pt2])[0][0]

    return interpval
Exemplo n.º 4
0
def compareLabelLists(labelFile1, labelFile2, magCut=18):
    t = 2006.580

    ## Read in star labels
    tab1 = asciidata.open(labelFile1)
    name1 = [tab1[0][ss].strip() for ss in range(tab1.nrows)]
    mag1 = tab1[1].tonumpy()
    x01 = tab1[2].tonumpy()
    y01 = tab1[3].tonumpy()
    vx1 = tab1[6].tonumpy()
    vy1 = tab1[7].tonumpy()
    t01 = tab1[10].tonumpy()
    x1 = x01 + vx1 * (t - t01) / 10**3
    y1 = y01 + vy1 * (t - t01) / 10**3

    tab2 = asciidata.open(labelFile2)
    name2 = [tab2[0][ss].strip() for ss in range(tab2.nrows)]
    mag2 = tab2[1].tonumpy()
    x02 = tab2[2].tonumpy()
    y02 = tab2[3].tonumpy()
    vx2 = tab2[6].tonumpy()
    vy2 = tab2[7].tonumpy()
    t02 = tab2[10].tonumpy()
    x2 = x02 + vx2 * (t - t02) / 10**3
    y2 = y02 + vy2 * (t - t02) / 10**3

    # Image
    im = pyfits.getdata('/u/ghezgroup/data/gc/06maylgs1/combo/mag06maylgs1_dp_msc_kp.fits')
    imgsize = (im.shape)[0]

    # pixel position (0,0) is at upper left
    xpix = np.arange(0, im.shape[0], dtype=float)
    ypix = np.arange(0, im.shape[1], dtype=float)

    sgra = [1422.6, 1543.8]
    scale_jpg = 0.00995
    xim = (xpix - sgra[0]) * scale_jpg * -1.0
    yim = (ypix - sgra[1]) * scale_jpg
    
    py.clf()
    py.grid(True)
    py.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95)
    py.imshow(np.log10(im), extent=[xim[0], xim[-1], yim[0], yim[-1]],
              aspect='equal', vmin=1.9, vmax=6.0, cmap=py.cm.gray)
    py.xlabel('X Offset from Sgr A* (arcsec)')
    py.ylabel('Y Offset from Sgr A* (arcsec)')
    py.title('UCLA/Keck Galactic Center Group', fontsize=20, fontweight='bold')
    thePlot = py.gca()

    py.axis([15, -15, -15, 15])
    
    idx2 = np.where(mag2 < magCut)[0]
    py.plot(x2[idx2], y2[idx2], 'ro', color='cyan', mfc='none', mec='cyan')
    for ii in idx2:
        py.text(x2[ii], y2[ii], name2[ii], color='cyan', fontsize=10)

    idx1 = np.where(mag1 < magCut)[0]
    py.plot(x1[idx1], y1[idx1], 'ro', color='orange', mfc='none', mec='orange')
    for ii in idx1:
        py.text(x1[ii], y1[ii], name1[ii], color='orange', fontsize=10)
Exemplo n.º 5
0
def check_adjacent(base_catalog,
                   all_catalogs,
                   check_indices,
                   tolerance=1. / 18000):
    nDeleted = 0
    base = asciidata.open(base_catalog)
    base_alpha = [base['ALPHA_SKY'][i] for i in range(base.nrows)]
    base_delta = [base['DELTA_SKY'][i] for i in range(base.nrows)]
    for index in check_indices:
        nDeletedInd = 0
        print "Checking for overlaps in the base catalog", base_catalog
        print "Checking against catalog", all_catalogs[index]
        check = asciidata.open(all_catalogs[index])
        check_alpha = [check['ALPHA_SKY'][i] for i in range(check.nrows)]
        check_delta = [check['DELTA_SKY'][i] for i in range(check.nrows)]
        check_number = [check['NUMBER'][i] for i in range(check.nrows)]
        delete_numbers = []
        for j in range(check.nrows):
            if j % 1000 == 0:
                print "Checking item", j
            item_alpha = check_alpha[j]
            item_delta = check_delta[j]
            item_bools = [(abs(item_alpha - base_alpha[k]) < tolerance
                           and abs(item_delta - base_delta[k]) < tolerance)
                          for k in range(base.nrows)]
            if True in item_bools:
                delete_numbers.append(check_number[j])
                nDeleted += 1
                nDeletedInd += 1
        print nDeletedInd, "objects were deleted in this check."
        delete_items(all_catalogs[index], delete_numbers)
    return nDeleted
Exemplo n.º 6
0
def SemenovMeanOpacity(Temp=None, Density=None, Type=None):
    # Type deteremines the mean opacity type, 0 : Rosseland , 1: Planck.

    if Type == 0 or Type == None:
        Whole_Table = np.array(asc.open(Opac_Dir + RossFileName))
    else:
        Whole_Table = np.array(asc.open(Opac_Dir + PlanckFileName))

    rho = Whole_Table[1:, 0]
    T = Whole_Table[0, 1:]
    OpMatrix = Whole_Table[1:, 1:]

    LgInputTemp = np.log10(Temp)
    LgInputDens = np.log10(Density)

    pt1 = (np.abs(rho - LgInputDens)).argmin()
    pt2 = (np.abs(T - LgInputTemp)).argmin()

    if LgInputTemp > 3.87:
        interpval = ConstantGasOpacity
    else:
        outgrid = RectBivariateSpline(rho, T, OpMatrix, kx=1, ky=1)
        interpval = outgrid(rho[pt1], T[pt2])[0][0]

    return interpval
Exemplo n.º 7
0
def go(epoch, limMag=15):
    root = '/u/ghezgroup/data/gc/' + epoch + '/clean/kp/starfinder/align/'

    aln_list = root + 'align_kp_0.0.list'
    #frameList = asciidata.open(aln_list)
    f_list = open(aln_list)
    files = []

    for line in f_list:
        _line = line.split()
        fileParts = _line[0].split('/')
        files.append(fileParts[-1])

    files = files[1:]
    #frames = frameList[0].tonumarray()
    s = starset.StarSet(root + 'align_kp_0.0')

    numstars = asciidata.open(root + 'align_kp_0.0.mag').nrows
    numepochs = asciidata.open(root + 'align_kp_0.0.mag').ncols - 5

    fluxFile = root + '/sgra_all.mag'
    brtFile = root + '/sgra_brt.mag'
    dimFile = root + '/sgra_dim.mag'

    _sgraAll = open(fluxFile, 'w')
    _sgraBrt = open(brtFile, 'w')
    _sgraDim = open(dimFile, 'w')

    _sgraAll.write('#Frame' + '                   Mag ' + '    Flux(mJy) ' +
                   '\n')
    _sgraBrt.write('#Frame' + '                   Mag ' + '    Flux(mJy) ' +
                   '\n')
    _sgraDim.write('#Frame' + '                   Mag ' + '    Flux(mJy) ' +
                   '\n')

    # Find index for Sgr A* in the mag file
    for x in range(numstars):
        if (s.stars[x].name == 'SgrA'):
            sgra_idx = x

    # Loop through epochs and print frame, mags, & fluxes (in mJy)
    for i in range(numepochs):
        mag = s.stars[sgra_idx].e[i].mag
        flux = 655000. * 10**(-0.4 * mag)

        #frame = frames[i]
        frame = files[i]

        _sgraAll.write('%5s % 5.3f %7.2f\n' % (frame, mag, flux))

        if (mag < limMag):
            _sgraBrt.write('%5s % 5.3f %7.2f\n' % (frame, mag, flux))
        else:
            _sgraDim.write('%5s % 5.3f %7.2f\n' % (frame, mag, flux))

    _sgraAll.close()
    _sgraBrt.close()
    _sgraDim.close()
Exemplo n.º 8
0
def plotTrans(root):
    """
    Plot the fractional change in plate scale and PA over many different
    starlists that  have been aligned. You can either give align results
    for many different epochs or align results for many different cleaned
    frames in a single epoch.

    root - align output
    """
    tab = asciidata.open(root + '.trans')

    a0 =  tab[3].tonumarray()
    a0e = tab[4].tonumarray()
    a1 =  tab[5].tonumarray()
    a1e = tab[6].tonumarray()
    a2 =  tab[7].tonumarray()
    a2e = tab[8].tonumarray()
    b0 =  tab[9].tonumarray()
    b0e = tab[10].tonumarray()
    b1 =  tab[11].tonumarray()
    b1e = tab[12].tonumarray()
    b2 =  tab[13].tonumarray()
    b2e = tab[14].tonumarray()

    trans = []
    for ff in range(len(a0)):
        tt = objects.Transform()
        tt.a = [a0[ff], a1[ff], a2[ff]]
        tt.b = [b0[ff], b1[ff], b2[ff]]
        tt.aerr = [a0e[ff], a1e[ff], a2e[ff]]
        tt.berr = [b0e[ff], b1e[ff], b2e[ff]]
        tt.linearToSpherical(override=False)

        trans.append(tt)

    # Read epochs
    dateTab = asciidata.open(root + '.date')
    numEpochs = dateTab.ncols
    years = [dateTab[i][0] for i in range(numEpochs)]

    p.clf()
    p.subplot(211)
    p.plot(scale - 1.0, 'ko')
    p.ylabel('Fract. Plate Scale Difference')
    if (years[0] != years[1]):
        thePlot = p.gca()
        thePlot.get_xaxis().set_major_locator(p.MultipleLocator(0.1))
        thePlot.get_xaxis().set_major_formatter(p.FormatStrFormatter('%8.3f'))
    
    p.subplot(212)
    p.plot(angle, 'ko')
    p.ylabel('Position Angle')
    if (years[0] != years[1]):
        thePlot = p.gca()
        thePlot.get_xaxis().set_major_locator(p.MultipleLocator(0.1))
        thePlot.get_xaxis().set_major_formatter(p.FormatStrFormatter('%8.3f'))
Exemplo n.º 9
0
def plotTrans(root):
    """
    Plot the fractional change in plate scale and PA over many different
    starlists that  have been aligned. You can either give align results
    for many different epochs or align results for many different cleaned
    frames in a single epoch.

    root - align output
    """
    tab = asciidata.open(root + '.trans')

    a0 = tab[3].tonumarray()
    a0e = tab[4].tonumarray()
    a1 = tab[5].tonumarray()
    a1e = tab[6].tonumarray()
    a2 = tab[7].tonumarray()
    a2e = tab[8].tonumarray()
    b0 = tab[9].tonumarray()
    b0e = tab[10].tonumarray()
    b1 = tab[11].tonumarray()
    b1e = tab[12].tonumarray()
    b2 = tab[13].tonumarray()
    b2e = tab[14].tonumarray()

    trans = []
    for ff in range(len(a0)):
        tt = objects.Transform()
        tt.a = [a0[ff], a1[ff], a2[ff]]
        tt.b = [b0[ff], b1[ff], b2[ff]]
        tt.aerr = [a0e[ff], a1e[ff], a2e[ff]]
        tt.berr = [b0e[ff], b1e[ff], b2e[ff]]
        tt.linearToSpherical(override=False)

        trans.append(tt)

    # Read epochs
    dateTab = asciidata.open(root + '.date')
    numEpochs = dateTab.ncols
    years = [dateTab[i][0] for i in range(numEpochs)]

    p.clf()
    p.subplot(211)
    p.plot(scale - 1.0, 'ko')
    p.ylabel('Fract. Plate Scale Difference')
    if (years[0] != years[1]):
        thePlot = p.gca()
        thePlot.get_xaxis().set_major_locator(p.MultipleLocator(0.1))
        thePlot.get_xaxis().set_major_formatter(p.FormatStrFormatter('%8.3f'))

    p.subplot(212)
    p.plot(angle, 'ko')
    p.ylabel('Position Angle')
    if (years[0] != years[1]):
        thePlot = p.gca()
        thePlot.get_xaxis().set_major_locator(p.MultipleLocator(0.1))
        thePlot.get_xaxis().set_major_formatter(p.FormatStrFormatter('%8.3f'))
def findBestMask(iterations=100., maxDist = 1000., realProfilePath=False):
  import Deimos_SKiMS_slit__def__ as tst
  #
  if realProfilePath:
    try:
      try:
        inputData = numpy.array(asciidata.open(realProfilePath))
        R_as, mag_R, emag_R = inputData[1,:], inputData[2,:], inputData[3,:]
      except:
        inputData = asciidata.open(realProfilePath)
        R_as, mag_R, emag_R = [], [], []
        for ii in numpy.arange(len(inputData[0])):
          R_as.append(inputData[1][ii])
          mag_R.append(inputData[2][ii])
          emag_R.append(inputData[3][ii])
        #
        R_as = numpy.array(R_as); mag_R = numpy.array(mag_R); emag_R = numpy.array(emag_R)
      #
      inputPar = [R_as, mag_R, emag_R]
      initialGuesses = [7.67, gal_Reff, 4] #Guesses for minimization, #b=7.67 Cai et al. 2008, Reff=47.9arcsec from Brodie+14, Sersic Index = 4 (de Vaucouleurs)
      #
      bm, Re, m = scipy.optimize.fmin(SersicFunctChi2, initialGuesses, 
              args=(R_as, mag_R, emag_R), ftol = 0.1,  disp = True)      
      I0 = mag_R[0]
    except:
      print "Error with SB profile. Using a default Sersic profile. "
      realProfilePath = False
  #
  for ii in arange(iterations):
    t1 = time.time()
    print "\n###########"
    print "Iteration "+str(int(ii+1))+"/"+str(int(iterations))+"\n"
    print "Creating mask..."
    tmpObj = tst.Mask()
    print "\r DONE!"
    print "Creating slits..."
    if realProfilePath:
      tmpObj.createSlits(sersicPar=[bm, Re, m, I0])
    else:
      tmpObj.createSlits()
    print "\r DONE!"
    print "Finding largest empty space between the slits."
    tmpDist = tmpObj.getMaxEmptySpace()
    print "\r DONE!"
    if tmpDist < maxDist:
      maxDist = tmpDist
    ## Adding Sky Slits
    tmpObj.createSkySlits()
    #
    Mask = tmpObj
    t2 = time.time()
    print "Elapsed time: "+str(t2-t1)
    print "###########\n"
    tmpObj.__del__()
  return Mask, maxDist
Exemplo n.º 11
0
def go(epoch, limMag=15):
    root = '/u/ghezgroup/data/gc/'+epoch+'/clean/kp/starfinder/align/'

    aln_list = root+'align_kp_0.0.list'
    #frameList = asciidata.open(aln_list)
    f_list = open(aln_list)
    files = []

    for line in f_list:
        _line = line.split()
        fileParts = _line[0].split('/')
        files.append(fileParts[-1])
    
    files = files[1:]
    #frames = frameList[0].tonumarray()
    s=starset.StarSet(root+'align_kp_0.0')

    numstars = asciidata.open(root+'align_kp_0.0.mag').nrows
    numepochs = asciidata.open(root+'align_kp_0.0.mag').ncols - 5

    fluxFile = root+'/sgra_all.mag'
    brtFile = root+'/sgra_brt.mag'
    dimFile = root+'/sgra_dim.mag'

    _sgraAll = open(fluxFile, 'w')
    _sgraBrt = open(brtFile, 'w')
    _sgraDim = open(dimFile, 'w')

    _sgraAll.write('#Frame' + '                   Mag ' + '    Flux(mJy) ' + '\n')
    _sgraBrt.write('#Frame' + '                   Mag ' + '    Flux(mJy) ' + '\n')
    _sgraDim.write('#Frame' + '                   Mag ' + '    Flux(mJy) ' + '\n')

    # Find index for Sgr A* in the mag file
    for x in range(numstars):
        if (s.stars[x].name == 'SgrA'):
            sgra_idx = x

    # Loop through epochs and print frame, mags, & fluxes (in mJy)
    for i in range(numepochs):
        mag = s.stars[sgra_idx].e[i].mag
        flux = 655000. * 10 ** (-0.4*mag)

        #frame = frames[i]
        frame = files[i]

        _sgraAll.write('%5s % 5.3f %7.2f\n' % (frame, mag, flux))
    
        if (mag < limMag):
            _sgraBrt.write('%5s % 5.3f %7.2f\n' % (frame, mag, flux))
        else:
            _sgraDim.write('%5s % 5.3f %7.2f\n' % (frame, mag, flux))

    _sgraAll.close()
    _sgraBrt.close()
    _sgraDim.close()
Exemplo n.º 12
0
 def make_SNR(self, out_name):
     catalog = asciidata.open(self.class_catalog)
     for i in range(catalog.nrows):
         catalog['SNR'][
             i] = catalog['FLUX_AUTO'][i] / catalog['FLUXERR_AUTO'][i]
     catalog['SNR'].set_colcomment("Signal to Noise Ratio")
     catalog.writeto(out_name)
Exemplo n.º 13
0
 def make_segmentation_map(self, out_name, enlarge=20):
     hdulist = pyfits.open(self.file)
     x_dim = int(hdulist[0].header['NAXIS1'])
     y_dim = int(hdulist[0].header['NAXIS2'])
     hdulist.close()
     positions = []
     catalog = asciidata.open(self.bright_catalog)
     for i in range(catalog.nrows):
         x_min = catalog['XMIN_IMAGE'][i]
         y_min = catalog['YMIN_IMAGE'][i]
         x_max = catalog['XMAX_IMAGE'][i]
         y_max = catalog['YMAX_IMAGE'][i]
         pos_tuple = (x_min, x_max, y_min, y_max)
         positions.append(pos_tuple)
     #Make an empty numpy array of zeros in those dimensions
     segmentation_map_array = np.zeros((x_dim, y_dim))
     #Iterate through position tuples and switch flagged areas to 1's in the array
     for j in range(len(positions)):
         x_min = (positions[j])[0]
         x_max = (positions[j])[1]
         y_min = (positions[j])[2]
         y_max = (positions[j])[3]
         for x in range(x_min - enlarge, x_max + enlarge):
             for y in range(y_min - enlarge, y_max + enlarge):
                 try:
                     segmentation_map_array[y, x] = 1
                 except:
                     continue
     #Write out to a fits file
         hdu_out = pyfits.PrimaryHDU(segmentation_map_array)
     hdu_out.writeto(out_name + "_seg_map.fits", clobber=True)
Exemplo n.º 14
0
def plotKeyword(keyword1, keyword2, imgList):
    """
    Pass in a file containing a list of images. For each of these
    images, read out the values of the header keywords specified.
    Then plot each of the keywords against each other.
    """
    tab = asciidata.open(imgList)

    files = [tab[0][i].strip() for i in range(tab.nrows)]

    value1 = zeros(tab.nrows, dtype=float)
    value2 = zeros(tab.nrows, dtype=float)

    print keyword1, keyword2

    for ff in range(len(files)):
        hdr = pyfits.getheader(files[ff],ignore_missing_end=True)

        value1[ff] = hdr[keyword1]
        value2[ff] = hdr[keyword2]


    import pylab as py
    py.clf()

    py.plot(value1, value2, 'k.')
    py.xlabel(keyword1)
    py.ylabel(keyword2)

    return (value1, value2)
Exemplo n.º 15
0
def manual_mask(catalog, x_vertices, y_vertices, clean=True):
    orig_name = catalog
    catalog = asciidata.open(catalog)
    new_table = asciidata.create(catalog.ncols,catalog.nrows)
    delete_numbers = []
    for i in range(catalog.nrows):
        if (i+1) % 1000 == 0:
            print "Working on object", i+1, "out of", catalog.nrows
        number = catalog['NUMBER'][i]
        is_star = catalog['IS_STAR'][i]
        if is_star == 1:
            continue
        x_min,y_min = catalog['XMIN_IMAGE'][i], catalog['YMIN_IMAGE'][i]
        x_max,y_max = catalog['XMAX_IMAGE'][i], catalog['YMAX_IMAGE'][i]
        bottom_pixels = [(x,y_min) for x in range(x_min,x_max)]
        left_pixels = [(x_min,y) for y in range(y_min,y_max)]
        top_pixels = [(x, y_max) for x in range(x_min,x_max)]
        right_pixels = [(x_max,y) for y in range(y_min,y_max)]
        pixels = bottom_pixels + left_pixels + top_pixels + right_pixels
    	bools = [inpoly(pixel[0],pixel[1],x_vertices,y_vertices) for pixel in pixels]
        if max(bools) == 1:
            delete_numbers.append(number)
    print "Delete numbers", delete_numbers
    new_table = asciidata.create(catalog.ncols,catalog.nrows)
    for i in range(catalog.nrows):
        if catalog['NUMBER'][i] not in delete_numbers:
             for k in range(catalog.ncols):
                 new_table[k][i] = catalog[k][i]
    #Get rid of empty rows
    row_number = 0
    while True:
        try:
            if new_table[0][row_number] is None:
                new_table.delete(row_number)
            else:
                row_number += 1
        except:
            break
    #Write out to another catalog
    new_table.writeto("manual_filter.cat")
    new_catalog = open("manual_filter.cat")
    old_catalog = open(orig_name)
    final_catalog = open("final_catalog.cat", "w")
    for line in old_catalog.readlines():
        if line[0] == "#":
            final_catalog.write(line)
        else:
            break
    for line in new_catalog:
        final_catalog.write(line)
    old_catalog.close()
    final_catalog.close()
    final = open("final_catalog.cat", "r")
    rewrite = open(orig_name, "w")
    for line in final.readlines():
        rewrite.write(line)
    #Optional clean
    if clean:
        subprocess.call(["rm", "final_catalog.cat"])
        subprocess.call(["rm", "manual_filter.cat"])
def retrieveFrom_RKriging(inputPath, genTable, namegal, label, sizePixelMap, limits):
  #Retrieving galaxy parameters' dictionary
  #Creating the Kriging maps with Python
  #reading input file
  fileKriging = asciidata.open(inputPath+'gridKrig_'+label+'.txt')
  xK, yK, zK, errzK = [], [], [], []
  maxZmap = 0.
  minZmap = 0.
  for jj in range(len(fileKriging[0])):
      xK.append(fileKriging[0][jj])
      yK.append(fileKriging[1][jj])
      if fileKriging[2][jj] != 'NA':
        zK.append(float(fileKriging[2][jj]))
        errzK.append(float(fileKriging[3][jj]))
        if float(fileKriging[2][jj]) > maxZmap: maxZmap = float(fileKriging[2][jj])
        if float(fileKriging[2][jj]) < minZmap: minZmap = float(fileKriging[2][jj])
      else:
        zK.append(nan)
        errzK.append(nan)
  #
  #reshaping
  xK = numpy.array(xK).reshape(sizePixelMap,sizePixelMap)
  yK = numpy.array(yK).reshape(sizePixelMap,sizePixelMap)
  zK = numpy.array(zK).reshape(sizePixelMap,sizePixelMap)
  errzK = numpy.array(errzK).reshape(sizePixelMap,sizePixelMap)
  #
  minZpoints, maxZpoints = numpy.min(genTable[:,2]),  numpy.max(genTable[:,2])
  rangeZmap = [numpy.max([numpy.min([minZpoints, minZmap]), limits[0]]),
               numpy.min([numpy.max([maxZpoints, maxZmap]), limits[1]])]
  return [xK, yK, zK, errzK], [minZpoints, maxZpoints], rangeZmap
Exemplo n.º 17
0
    def __init__(self):
        self.file = tablesDir + "ucla_ott2003.dat"
        tab = asciidata.open(self.file)

        self.ourName = [tab[0][d].strip() for d in range(tab.nrows)]
        self.id = [tab[1][d].strip() for d in range(tab.nrows)]
        self.name = [tab[2][d].strip() for d in range(tab.nrows)]
        self.r = tab[3].tonumpy()
        self.x = tab[4].tonumpy()
        self.y = tab[5].tonumpy()
        self.xerr = tab[6].tonumpy()
        self.yerr = tab[7].tonumpy()
        self.mag = tab[8].tonumpy()
        self.magerr = tab[9].tonumpy()
        self.mHK = tab[10].tonumpy()
        self.mCO = tab[11].tonumpy()
        self.vx = tab[12].tonumpy()
        self.vy = tab[13].tonumpy()
        self.vz = tab[14].tonumpy()
        self.vxerr = tab[15].tonumpy()
        self.vyerr = tab[16].tonumpy()
        self.vzerr = tab[17].tonumpy()
        self.type = tab[18].tonumpy()

        self.fixNames()
Exemplo n.º 18
0
    def __init__(self):
        self.file = tablesDir + "ucla_genzel2000.dat"
        tab = asciidata.open(self.file)

        self.ourName = [tab[0][d].strip() for d in range(tab.nrows)]
        self.name = [tab[1][d].strip() for d in range(tab.nrows)]
        self.r = tab[2].tonumpy()
        self.x = tab[3].tonumpy()
        self.y = tab[4].tonumpy()
        self.vx1 = tab[5].tonumpy()
        self.vx1err = tab[6].tonumpy()
        self.vy1 = tab[7].tonumpy()
        self.vy1err = tab[8].tonumpy()
        self.vx2 = tab[9].tonumpy()
        self.vx2err = tab[10].tonumpy()
        self.vy2 = tab[11].tonumpy()
        self.vy2err = tab[12].tonumpy()
        self.vx = tab[13].tonumpy()
        self.vxerr = tab[14].tonumpy()
        self.vy = tab[15].tonumpy()
        self.vyerr = tab[16].tonumpy()
        self.vz = tab[17].tonumpy()
        self.vzerr = tab[18].tonumpy()

        self.fixNames()
Exemplo n.º 19
0
def plotKeyword(keyword1, keyword2, imgList):
    """
    Pass in a file containing a list of images. For each of these
    images, read out the values of the header keywords specified.
    Then plot each of the keywords against each other.
    """
    tab = asciidata.open(imgList)

    files = [tab[0][i].strip() for i in range(tab.nrows)]

    value1 = zeros(tab.nrows, dtype=float)
    value2 = zeros(tab.nrows, dtype=float)

    print keyword1, keyword2

    for ff in range(len(files)):
        hdr = pyfits.getheader(files[ff], ignore_missing_end=True)

        value1[ff] = hdr[keyword1]
        value2[ff] = hdr[keyword2]

    import pylab as py
    py.clf()

    py.plot(value1, value2, 'k.')
    py.xlabel(keyword1)
    py.ylabel(keyword2)

    return (value1, value2)
Exemplo n.º 20
0
    def __init__(self, massfile):
        self.file = massfile

        table = asciidata.open(massfile)
        
        # Date and time are in UT
        self.year = table[0].tonumpy()
        self.month = table[1].tonumpy()
        self.day = table[2].tonumpy()

        self.hour = table[3].tonumpy()
        self.minute = table[4].tonumpy()
        self.second = table[5].tonumpy()

        self.free_seeing = table[6].tonumpy()
        if '2010' in massfile:
            # Values Don't exist
            self.isoplanatic_angle = np.zeros(len(self.hour))
            self.tau0 = np.zeros(len(self.hour))

            # Convert from HST to UT
            self.hour += 10
            
            idx = np.where(self.hour > 24)[0]
            self.day[idx] += 1
            self.hour[idx] -= 24
        else:
            self.isoplanatic_angle = table[18].tonumpy()
            self.tau0 = table[22].tonumpy()  # in milli-sec

        self.timeInHours = self.hour + (self.minute/60.0) + (self.second/3600.0)
Exemplo n.º 21
0
    def __init__(self, dimmfile):
        self.file = dimmfile

        table = asciidata.open(dimmfile)

        # Date and time are in UT
        self.year = table[0].tonumpy()
        self.month = table[1].tonumpy()
        self.day = table[2].tonumpy()
    
        self.hour = table[3].tonumpy()
        self.minute = table[4].tonumpy()
        self.second = table[5].tonumpy()

        if '2010' in dimmfile:
            self.seeing = table[6].tonumpy()
            
            # No airmass in new file format
            self.airmass = np.zeros(len(self.hour))

            # Convert from HST to UT
            self.hour += 10
            
            idx = np.where(self.hour > 24)[0]
            self.day[idx] += 1
            self.hour[idx] -= 24
        else:
            self.airmass = table[8].tonumpy()
            self.seeing = table[9].tonumpy()

        self.r0 = 0.98 * 500e-7 * 206265.0 / self.seeing # in cm

        self.timeInHours = self.hour + (self.minute/60.0) + (self.second/3600.0)
Exemplo n.º 22
0
def velVsAcc():
    """
    Plot v/v_circular vs. a/a_bound.
    """
    # Load up the accelPolar file
    fitFile = rootDir + poly + '.accelPolar'
    scale = 0.00995  # arcsec/pixel

    tab = asciidata.open(fitFile)

    name = tab[0]._data
    radius = tab[2].tonumarray() * scale

    velPhi = tab[5].tonumarray() * scale
    velRad = tab[6].tonumarray() * scale
    velPhiErr = tab[7].tonumarray() * scale
    velRadErr = tab[8].tonumarray() * scale
    acc = tab[10].tonumarray() * scale
    accErr = tab[12].tonumarray() * scale

    # Need to get the line-of-sight velocity from Paumard et al.
    

    vel = np.sqrt(velPhi**2 + velRad**2)
    velErr = np.sqrt((velPhi*velPhiErr)**2 + (velRad*velRadErr)**2) / vel
Exemplo n.º 23
0
 def makeHoldenRegionFile(self):
     if self.prefix.find('RDCSJ1317') > -1:
         infile = homedir + 'research/z08clusters/AncillaryData/Holden/r1317/c1317+29.skycat.v2'
     in1 = asciidata.open(infile)
     self.hdata = in1
     ncol = len(in1)
     nrow = len(in1[0])
     redshift = array(in1[11], 'f')
     zindex = where(redshift > -1)
     out1 = homedir + 'research/z08clusters/RegionsFiles/' + self.prefix + '_holdenRADec.reg'
     outfile = open(out1, 'w')
     outfile.write('global color=green width=2\n')
     outfile.write('fk5 \n')
     zi = zindex[0]
     for i in zi:
         print i, zindex, redshift[i], float(in1[11][i])
         if (redshift[i] > zmin) & (redshift[i] < zmax):
             ccolor = 'blue'
         else:
             ccolor = 'cyan'
         s = 'circle(%12.8f,%12.8f,5\") # color= %s text={%s}\n' % (float(
             in1[1][i]), float(in1[2][i]), ccolor, in1[11][i])
         outfile.write(s)
     outfile.close()
     in1.close()
    def make_segmentation_map(self, out_name, enlarge=20):
        hdulist = pyfits.open(self.file)
        x_dim = int(hdulist[0].header['NAXIS1'])
        y_dim = int(hdulist[0].header['NAXIS2'])
        hdulist.close()
        positions = []
        catalog = asciidata.open(self.bright_catalog)
        for i in range(catalog.nrows):
            x_min = catalog['XMIN_IMAGE'][i]
            y_min = catalog['YMIN_IMAGE'][i]
            x_max = catalog['XMAX_IMAGE'][i]
            y_max = catalog['YMAX_IMAGE'][i]
            pos_tuple = (x_min, x_max, y_min, y_max)
            positions.append(pos_tuple)
        #Make an empty numpy array of zeros in those dimensions
        segmentation_map_array = np.zeros((x_dim, y_dim))
        #Iterate through position tuples and switch flagged areas to 1's in the array
        for j in range(len(positions)):
            x_min = (positions[j])[0]
            x_max = (positions[j])[1]
            y_min = (positions[j])[2]
            y_max = (positions[j])[3]
            for x in range(x_min-enlarge,x_max+enlarge):
                for y in range(y_min-enlarge,y_max+enlarge):
                    try:
                        segmentation_map_array[y,x] = 1
                    except:
                        continue
        #Write out to a fits file
	    hdu_out = pyfits.PrimaryHDU(segmentation_map_array)
        hdu_out.writeto(out_name + "_seg_map.fits",clobber=True)
Exemplo n.º 25
0
def nightAnimation(epoch):
    cleanShifts = '/u/ghezgroup/data/gc/' + epoch 
    cleanShifts += '/combo/mag' + epoch + '_kp.shifts'

    table = asciidata.open(cleanShifts)

    cleanFiles = table[0]._data
    xshifts = table[1].tonumpy()
    yshifts = table[2].tonumpy()

    cleanDir = '/u/ghezgroup/data/gc/' + epoch + '/clean/kp/'
    for cc in range(len(cleanFiles)):
        print '%4d out of %4d' % (cc, len(cleanFiles))

        cleanImg = cleanDir + cleanFiles[cc]
        img = pyfits.getdata(cleanImg)

        xax = arange(0, img.shape[1])
        yax = arange(0, img.shape[0])

        xax -= 512.0 - xshifts[cc]
        yax -= 512.0 - yshifts[cc]

        pylab.clf()
        pylab.imshow(log10(img), extent=[xax[0], xax[-1], yax[0], yax[-1]],
                     vmin=1.5, vmax=3.5)
        pylab.plot([0], [0], 'k+')
        pylab.axis([-300, 300, -300, 300])
        pylab.xlabel('RA Offset (pixels)')
        pylab.ylabel('Dec Offset (pixels)')
        pylab.title(cleanFiles[cc])

        pylab.savefig(cleanFiles[cc].replace('.fits', '_shift.png'))
Exemplo n.º 26
0
def lp_sensitivity():
    """
    Read in a number of GC L' data sets and plot the 
    SNR vs. mag with number of frames plotted.
    """
    rootDir = "/u/jlu/doc/proposals/keck/uc/10B/orion/"
    files = [rootDir + "mag04jul_lp_rms.lis", rootDir + "mag05jullgs_lp_rms.lis", rootDir + "mag06jullgs_lp_rms.lis"]
    legends = ["04jul", "05jullgs", "06jullgs"]

    py.clf()

    magStep = 1.0
    magBins = np.arange(6, 18, magStep)
    snrAvg = np.zeros(len(magBins))
    for ff in range(len(files)):
        tab = asciidata.open(files[ff])

        mag = tab[1].tonumpy()
        snr = tab[7].tonumpy()
        cnt = tab[9].tonumpy()

        for mm in range(len(magBins) - 1):
            magLo = magBins[mm] - magStep / 2.0
            magHi = magBins[mm] + magStep / 2.0
            idx = np.where((mag > magLo) & (mag <= magHi))[0]

            snrAvg[mm] = snr[idx].mean()

        py.semilogy(magBins, snrAvg)

        legends[ff] += ": N = %d" % cnt[0]
    py.legend(legends)
    py.show()
Exemplo n.º 27
0
def plot_psf_stars(psfList, fitsFile='/u/ghezgroup/data/gc/09maylgs1/combo/mag09maylgs1_kp.fits', sgraX=576.875, sgraY=681.500):
    """
    Plot the PSf starlist over an image.
    """
    tab = asciidata.open(psfList)

    name = tab[0]._data
    mag = tab[1].tonumpy()
    x = tab[2].tonumpy()
    y = tab[3].tonumpy()
    vx = tab[4].tonumpy()
    vy = tab[5].tonumpy()
    t0 = tab[6].tonumpy()
    filt = tab[7]._data
    isPsf = (tab[8].tonumpy() == 1)

    # Check the PA of the image and rotate to North up if necessary
    hdr = pyfits.getheader(fitsFile)
    pa = float(hdr['ROTPOSN']) - 0.7
    if pa != 0:
        rotPos = rotate_pos(x, y, pa)
        x = rotPos[0]
        y = rotPos[1]

    # Remove PSF stars that should be rejected for the K' filter.
    kpReject = np.zeros(len(x), dtype=np.bool)
    for ff in range(len(filt)):
        filters = filt[ff].split(',')
        if 'KP' in filters:
            kpReject[ff] = True


    isPsf[kpReject == True] = False

    sgra = np.array([sgraX, sgraY])

    img = pyfits.getdata(fitsFile)

    xaxis = (np.arange(img.shape[1]) - sgra[0]) * 0.00995 * -1.0
    yaxis = (np.arange(img.shape[0]) - sgra[1]) * 0.00995
#    pdb.set_trace()

    py.close(2)
    py.figure(2, figsize=(12, 12))
    py.clf()
    py.imshow(np.log10(img), extent=[xaxis[0], xaxis[-1], yaxis[0], yaxis[-1]],
              vmin=1, vmax=math.log10(40000), cmap=py.cm.Greys, origin='lowerleft')
    py.plot(x[isPsf == False], y[isPsf == False], 'bx', mew=2)
    py.plot(x[isPsf == True],  y[isPsf == True],  'rx', mew=2)
    
    idxPsf = np.where(isPsf == True)[0]
    for pp in range(len(idxPsf)):
        py.text(x[idxPsf[pp]], y[idxPsf[pp]], name[idxPsf[pp]], color='red')

    py.axis([xaxis[0], xaxis[-1], yaxis[0], yaxis[-1]])
    py.title(psfList)
    py.xlabel('R.A. Offset from Sgr A* (arcsec)')
    py.ylabel('Dec. Offset from Sgr A* (arcsec)')
    py.savefig(psfList + '.png')
def readProfileTxt(filepath):
  # Reads SB profile from txt output
  #
  try:
    inputData = numpy.array(asciidata.open(realProfilePath))
    R_as, mag_R, emag_R = inputData[1,:], inputData[2,:], inputData[3,:]
  except:
    inputData = asciidata.open(realProfilePath)
    R_as, mag_R, emag_R = [], [], []
    for ii in numpy.arange(len(inputData[0])):
      R_as.append(inputData[1][ii])
      mag_R.append(inputData[2][ii])
      emag_R.append(inputData[3][ii])
      #
    R_as = numpy.array(R_as); mag_R = numpy.array(mag_R); emag_R = numpy.array(emag_R)
  #
  return R_as, mag_R, emag_R
Exemplo n.º 29
0
def model_klf():
    # Read in Geneva tracks
    genevaFile = '/u/jlu/work/models/geneva/iso/020/c/'
    genevaFile += 'iso_c020_0675.UBVRIJHKLM'
    model = asciidata.open(genevaFile)
    modMass = model[1].tonumpy()
    modV = model[6].tonumpy()
    modVK = model[11].tonumpy()
    modHK = model[15].tonumpy()
    modJLp = model[19].tonumpy()
    modJK = model[17].tonumpy()

#     genevaFile2 = '/u/jlu/work/models/geneva/iso/020/c/'
#     genevaFile2 += 'iso_c020_068.UBVRIJHKLM'
#     model = asciidata.open(genevaFile)
#     modMass = model[1].tonumpy()
#     modV = model[6].tonumpy()
#     modVK = model[11].tonumpy()
#     modHK = model[15].tonumpy()
#     modJLp = model[19].tonumpy()
#     modJK = model[17].tonumpy()

    

    # Reddening
    aV = 27.0
    RV = 2.9

#     # cardelli() returns A_L
#     aJ = aV * extinction.cardelli(1.248, RV)
#     aH = aV * extinction.cardelli(1.6330, RV)
#     aKp = aV * extinction.cardelli(2.1245, RV)
#     aK = aV * extinction.cardelli(2.196, RV)
#     aKs = aV * extinction.cardelli(2.146, RV)


    aKs = 2.7
    aJ = extinction.nishiyama09(1.248, aKs)
    aH = extinction.nishiyama09(1.6330, aKs)
    aKp = extinction.nishiyama09(2.1245, aKs)
    aK = extinction.nishiyama09(2.196, aKs)
    aKs = extinction.nishiyama09(2.146, aKs)

    modK = modV - modVK
    modH = modK + modHK
    modJ = modK + modJK
    modLp = modJ - modJLp
    modKs = modK + 0.002 + 0.026 * (modJK)
    modKp = modK + 0.22 * (modHK)

    dist = 8400.0
    distMod = -5.0 + 5.0 * math.log10(dist)

    modK_extinct = modK + aK + distMod
    modKp_extinct = modKp + aKp + distMod
    modKs_extinct = modKs + aKs + distMod

    return modKp_extinct
Exemplo n.º 30
0
def degrade_spectra_Jband(Teff, logg, met):
    #Each model has its own directory
    root = '/Users/duisiya/astro/ABPic'
    dirname = str(Teff) + '_' + 'logg' + str(logg) + 'met' + str(met)
    
    #read synthetic spectrum
    spec_synth = asciidata.open(os.path.join(dirname, 'J_band_mod.dat'))
    wave_synth = spec_synth[0].tonumpy()
    flux_synth = spec_synth[1].tonumpy()

    #read observed spectrum
    spec_obs = asciidata.open(os.path.join(dirname, 'J_band_obs.dat'))
    wave_obs = spec_obs[0].tonumpy()
    flux_obs = spec_obs[1].tonumpy()
    
    
    #BINNING SPECTRUM
    #
    #the synthetic spectrum needs to be binned to have fewer point in the wavelength dimension (~1700 instead of >100000) 
    dwave = (max(wave_obs) - min(wave_obs)) / len (wave_obs) #"fwhm" of the observed spectrum
    dwave_sigma = dwave / (2 * np.sqrt(2 * np.log(2)))
    
    #before interpolating the spectrum to a new wavelength grid, smooth it with a Gaussian
    flux_conv = ndimage.filters.gaussian_filter(flux_synth, dwave_sigma)
    
    #interpolating the smoothed synthetic spectrum on the observed wavelength grid
    func_interp = interpolate.splrep(wave_synth, flux_conv) #searching for interpolation function
    flux_synth_smooth = interpolate.splev(wave_obs, func_interp) #interpolating on a new grid
    
    
    #DEGRADING SPECTRAL RESOLUTION
    #
    R = 2000. #resolution of observed spectra in J band
    FWHM = wave_synth / R #FWHM of a line profile at a given wavelength
    G_sigma = FWHM / (2 * np.sqrt(2 * np.log(2)))
           
    #Convolution of the synthetic spectrum with a Gaussian function that has a variable sigma
    gauss_matr = np.vstack([np.hstack([gauss(x, mu, sig) for x in wave_obs]) for mu, sig in zip(wave_obs, G_sigma)])
    flux_synth_conv = np.dot(flux_synth_smooth * dwave, gauss_matr)  

    #writing the degraded spectrum to file
    flux_smooth_file = open(os.path.join(dirname, 'low_res_synth_spectrum_Jband.dat'), 'w')
    for n, m in zip(wave_obs, flux_synth_conv):   
        flux_smooth_file.write(str(n) + ' ' + str(m) + ' ' + '\n')
    flux_smooth_file.close()
Exemplo n.º 31
0
def match_to_tt(image_star_table, tt_star_data_file, dist=200.):
    centroid_table = asciidata.open(tt_star_data_file)
    star_table = asciidata.open(image_star_table)
    out_table = asciidata.create(6, star_table.nrows)
    tt_centroids = []
    for i in range(star_table.nrows):
        x0 = star_table[0][i]
        y0 = star_table[1][i]
        r = star_table[2][i]
        for j in range(centroid_table.nrows):
            x = centroid_table[0][j]
            y = centroid_table[1][j]
            if abs(x0-x) < dist and abs(y0-y) < dist:
                tt_centroids.append((x,y,r))
                break
            if j == centroid_table.nrows-1:
                print "no star found"
    return tt_centroids
 def alter_catalog_for_classification(self, out_name, flat_x_division, flat_y_division, slope, intercept):
     catalog = asciidata.open(self.merged_catalog)
     for i in range(catalog.nrows):
         if is_below_boundary(catalog['MAG_AUTO'][i]+25, catalog['MU_MAX'][i], flat_x_division, flat_y_division, slope, intercept) and catalog['MAG_AUTO'][i]+25.0 < 25.0:
             catalog['IS_STAR'][i] = 1
         else:
             catalog['IS_STAR'][i] = 0
     catalog['IS_STAR'].set_colcomment("Revised Star-Galaxy Classifier")
     catalog.writeto(out_name)
Exemplo n.º 33
0
def match_to_tt(image_star_table, tt_star_data_file, dist=200.):
    centroid_table = asciidata.open(tt_star_data_file)
    star_table = asciidata.open(image_star_table)
    out_table = asciidata.create(6, star_table.nrows)
    tt_centroids = []
    for i in range(star_table.nrows):
        x0 = star_table[0][i] * (7500. / 4210.)
        y0 = star_table[1][i] * (7500. / 4242.)
        r = star_table[2][i]
        for j in range(centroid_table.nrows):
            x = centroid_table[0][j]
            y = centroid_table[1][j]
            if abs(x0 - x) < dist and abs(y0 - y) < dist:
                tt_centroids.append((x, y, r))
                break
            if j == centroid_table.nrows - 1:
                print "no star found at location", x0, y0
    return tt_centroids
def radialProfileLog(
    namegal,
    inputFile,
    label='Z',  #binsize=50,  #Bin numerosity
    binsize=0.01,  #Bin size in dex
    datapoints=[]
):  #If exist, the radial profiles are limited by the actual datapoints
    #reading input file
    fileKriging = asciidata.open(inputFile)
    xK, yK, zK, errzK = [], [], [], []
    for jj in range(len(fileKriging[0])):
        if fileKriging[2][jj] != 'NA':
            xK.append(fileKriging[0][jj])
            yK.append(fileKriging[1][jj])
            zK.append(float(fileKriging[2][jj]))
            errzK.append(float(fileKriging[3][jj]))
    #
    xK, yK = numpy.array(xK), numpy.array(yK)
    zK, errzK = numpy.array(zK), numpy.array(errzK)
    ellDist = findDell(xK, yK, PA0[namegal], b_a[namegal])
    ellDist_Sorted = ellDist[permutation_indices(ellDist)]
    ellDist_Sorted_log = numpy.log10(ellDist[permutation_indices(ellDist)] /
                                     Reff[namegal])
    zK_Sorted = zK[permutation_indices(ellDist)]
    errzK_Sorted = errzK[permutation_indices(ellDist)]
    #
    # Limit elements within datapoints
    #
    if datapoints != []:
        RA_dp, Dec_dp = numpy.array(datapoints)[:,
                                                0], numpy.array(datapoints)[:,
                                                                            1]
        ellDist_dp_log = numpy.log10(
            findDell(RA_dp, Dec_dp, PA0[namegal], b_a[namegal]) /
            Reff[namegal])
        minR, maxR = numpy.min(ellDist_dp_log), numpy.max(ellDist_dp_log)
    else:
        minR, maxR = numpy.min(ellDist_Sorted_log), numpy.max(
            ellDist_Sorted_log)
        #
    binR, binZ, bineZ = [], [], []
    for ii in numpy.arange(minR, maxR, binsize):
        tmpR, tmpZ, tmperrZ = [], [], []
        for kk in numpy.arange(len(ellDist_Sorted_log)):
            if ii <= ellDist_Sorted_log[kk] < ii + binsize:
                tmpR.append(ellDist_Sorted_log[kk])
                tmpZ.append(zK_Sorted[kk])
                tmperrZ.append(errzK_Sorted[kk])
        if len(tmpR) > 0:
            binR.append(numpy.average(tmpR))
            binZ.append(
                numpy.average(tmpZ, weights=1. / (numpy.array(tmperrZ)**2.)))
            bineZ.append(numpy.std(tmpZ))


#
    return binR, binZ, bineZ
Exemplo n.º 35
0
def load_osiris_spectral_comp(extinctCorrect=True):
    workDir = '/u/jlu/work/gc/imf/gcows/'
    # Get the completeness corrections for each field.
    if extinctCorrect == True:
        completenessFile = workDir + 'spec_completeness_extinct_correct.txt'
    else:
        completenessFile = workDir + 'spec_completeness.txt'

    completeness = asciidata.open(completenessFile)

    # Get the field names which are in the header
    fields = completeness.header.hdata[1].split()
    fields = fields[1:]

    # Get the completeness in dictionary by field name
    compKp = completeness[0].tonumpy()
    comp = {}

    # Fix the compKp because the values given are actually
    # the left side of the bin.
    kpBinSize = compKp[1] - compKp[0]

    compKp += kpBinSize / 2.0

    for ff in range(len(fields)):
        field = fields[ff]
        compTmp = completeness[ff+1].tonumpy()

        # We need to interpolate over empty stuff, but only where
        # completness is <= 1.
        # Get the "good" values.
        tmpKp = compKp[compTmp.mask == False]
        tmpComp = compTmp[compTmp.mask == False].data

        # Now find the last bin with completeness = 1 and inlcude 
        # only this bin plus all fainter magnitude bins.
        idx = np.where(tmpComp == 1)[0]
        tmpKp = tmpKp[idx[-1]:]
        tmpComp = tmpComp[idx[-1]:]
        
        c_interp = interpolate.splrep(tmpKp, tmpComp, s=0)
        compInField = interpolate.splev(compKp, c_interp)

        # Flatten to 1 at the bright end
        idx = np.where(compInField >= 1)[0]
        if len(idx) > 0:
            compInField[0:idx[-1]+1] = 1.0

        # Flatten to 0 at the faint end
        idx  = np.where(compInField <= 0)[0]
        if len(idx) > 0:
            compInField[idx[0]:] = 0.0

        comp[field] = compInField

    return compKp, comp
def load_osiris_spectral_comp(extinctCorrect=True):
    workDir = '/u/jlu/work/gc/imf/gcows/'
    # Get the completeness corrections for each field.
    if extinctCorrect == True:
        completenessFile = workDir + 'spec_completeness_extinct_correct.txt'
    else:
        completenessFile = workDir + 'spec_completeness.txt'

    completeness = asciidata.open(completenessFile)

    # Get the field names which are in the header
    fields = completeness.header.hdata[1].split()
    fields = fields[1:]

    # Get the completeness in dictionary by field name
    compKp = completeness[0].tonumpy()
    comp = {}

    # Fix the compKp because the values given are actually
    # the left side of the bin.
    kpBinSize = compKp[1] - compKp[0]

    compKp += kpBinSize / 2.0

    for ff in range(len(fields)):
        field = fields[ff]
        compTmp = completeness[ff + 1].tonumpy()

        # We need to interpolate over empty stuff, but only where
        # completness is <= 1.
        # Get the "good" values.
        tmpKp = compKp[compTmp.mask == False]
        tmpComp = compTmp[compTmp.mask == False].data

        # Now find the last bin with completeness = 1 and inlcude
        # only this bin plus all fainter magnitude bins.
        idx = np.where(tmpComp == 1)[0]
        tmpKp = tmpKp[idx[-1]:]
        tmpComp = tmpComp[idx[-1]:]

        c_interp = interpolate.splrep(tmpKp, tmpComp, s=0)
        compInField = interpolate.splev(compKp, c_interp)

        # Flatten to 1 at the bright end
        idx = np.where(compInField >= 1)[0]
        if len(idx) > 0:
            compInField[0:idx[-1] + 1] = 1.0

        # Flatten to 0 at the faint end
        idx = np.where(compInField <= 0)[0]
        if len(idx) > 0:
            compInField[idx[0]:] = 0.0

        comp[field] = compInField

    return compKp, comp
Exemplo n.º 37
0
def read_coords():
    """
    Read in the list of coordinates for the WISPS fields.
    """
    cooFile = '/u/jlu/work/wisps/WISPS_hmsdms.coords'

    cooTable = asciidata.open(cooFile, delimiter=',')

    ra = cooTable.tonumpy()
    dec = cooTable.tonumpy()
Exemplo n.º 38
0
def read_coords():
    """
    Read in the list of coordinates for the WISPS fields.
    """
    cooFile = '/u/jlu/work/wisps/WISPS_hmsdms.coords'

    cooTable = asciidata.open(cooFile, delimiter=',')

    ra = cooTable.tonumpy()
    dec = cooTable.tonumpy()
Exemplo n.º 39
0
def snr_hist(catalog):
    cat = asciidata.open(catalog)
    snrs = []
    for i in range(cat.nrows):
        if cat['MAG_AUTO'][i] + 21.1 <= 22.5:
            snrs.append(cat['SNR'][i])
    for i in range(10):
        print i * 10, "percentile is", np.percentile(snrs, i * 10)
    plt.hist(snrs, bins=50, range=(0, 50))
    plt.show()
Exemplo n.º 40
0
def update_stars(astromTable):
    """
    Update the database with the positions, photometry, and velocities
    from our final results.
    """
    foo = asciidata.open(astromTable)
    
    name = foo[0].tonumpy()
    x = foo[1].tonumpy()
    xerr = foo[3].tonumpy()
    y = foo[4].tonumpy()
    yerr = foo[6].tonumpy()
    h = foo[7].tonumpy()
    herr = foo[9].tonumpy()
    kp = foo[10].tonumpy()
    kperr = foo[12].tonumpy()
    lp = foo[13].tonumpy()
    lperr = foo[15].tonumpy()
    x0 = foo[16].tonumpy()
    x0err = foo[18].tonumpy()
    y0 = foo[19].tonumpy()
    y0err = foo[21].tonumpy()
    vx = foo[22].tonumpy()
    vxerr = foo[24].tonumpy()
    vy = foo[25].tonumpy()
    vyerr = foo[27].tonumpy()
    vy = foo[25].tonumpy()
    vyerr = foo[27].tonumpy()
    t0 = foo[28].tonumpy()
    velField = foo[29].tonumpy()


    # Create a connection to the database
    connection = sqlite.connect(dbfile)

    # Create a cursor object
    cur = connection.cursor()

    for ss in range(len(name)):
        sql = 'update stars '
        sql += 'set x=?, xerr=?, y=?, yerr=?, vx=?, vxerr=?, vy=?, vyerr=?, '
        sql += 'h=?, herr=?, kp=?, kperr=?, lp=?, lperr=?, '
        sql += 't0=?, velField=? where name=?'

        if x0[ss] == 0:
            x0[ss] = x[ss]
        if y0[ss] == 0:
            y0[ss] = y[ss]
        
        cur.execute(sql, (x0[ss], x0err[ss], y0[ss], y0err[ss],
                          vx[ss], vxerr[ss], vy[ss], vyerr[ss],
                          h[ss], herr[ss], kp[ss], kperr[ss], lp[ss], lperr[ss],
                          t0[ss], velField[ss], name[ss]))
        
    connection.commit()
Exemplo n.º 41
0
def plotPhotoCalib(image, cooStar,
                   photoCalib='/u/ghezgroup/data/gc/source_list/photo_calib.dat'):
    """
    Plot the specified image and overlay the photo_calib.dat sources on top.
    Coordinates are converted from pixels to arcsec using the coo star and
    assuming that the angle of the image is 0.
    """
    # Load up the photometric calibraters table.
    _tab = asciidata.open(photoCalib)

    name = _tab[0].tonumpy()
    x = _tab[1].tonumpy()
    y = _tab[2].tonumpy()

    # Load up the image
    imageRoot = image.replace('.fits', '')
    im = pyfits.getdata(imageRoot + '.fits')

    # Coo star pixel coordinates
    _coo = open(imageRoot + '.coo', 'r')
    tmp = _coo.readline().split()
    cooPixel = [float(tmp[0]), float(tmp[1])]

    imgsize = (im.shape)[0]
    xpix = np.arange(0, im.shape[0], dtype=float)
    ypix = np.arange(0, im.shape[1], dtype=float)

    cooIdx = np.where(name == cooStar)[0]
    if len(cooIdx) == 0:
        print 'Failed to find the coo star %s in %s' % (cooStar, photoCalib)

    cooArcsec = [x[cooIdx[0]], y[cooIdx[0]]]

    scale = 0.00994
    xim = ((xpix - cooPixel[0]) * scale * -1.0) + cooArcsec[0]
    yim = ((ypix - cooPixel[1]) * scale) + cooArcsec[1]
    
    py.figure(1)
    py.clf()
    py.grid(True)
    py.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95)
    py.imshow(np.log10(im), extent=[xim[0], xim[-1], yim[0], yim[-1]],
              aspect='equal', vmin=1.9, vmax=6.0, cmap=py.cm.gray)
    py.xlabel('X Offset from Sgr A* (arcsec)')
    py.ylabel('Y Offset from Sgr A* (arcsec)')
    py.title(imageRoot)

    thePlot = py.gca()
    
    idx = (np.where((x > xim.min()) & (x < xim.max()) &
                    (y > yim.min()) & (y < yim.max()) ))[0]

    py.plot(x[idx], y[idx], 'r+', color='orange')
    for ii in idx:
        py.text(x[ii], y[ii], name[ii], color='orange', fontsize=12)
def model_klf():
    # Read in Geneva tracks
    genevaFile = '/u/jlu/work/models/geneva/iso/020/c/'
    genevaFile += 'iso_c020_0675.UBVRIJHKLM'
    model = asciidata.open(genevaFile)
    modMass = model[1].tonumpy()
    modV = model[6].tonumpy()
    modVK = model[11].tonumpy()
    modHK = model[15].tonumpy()
    modJLp = model[19].tonumpy()
    modJK = model[17].tonumpy()

    #     genevaFile2 = '/u/jlu/work/models/geneva/iso/020/c/'
    #     genevaFile2 += 'iso_c020_068.UBVRIJHKLM'
    #     model = asciidata.open(genevaFile)
    #     modMass = model[1].tonumpy()
    #     modV = model[6].tonumpy()
    #     modVK = model[11].tonumpy()
    #     modHK = model[15].tonumpy()
    #     modJLp = model[19].tonumpy()
    #     modJK = model[17].tonumpy()

    # Reddening
    aV = 27.0
    RV = 2.9

    #     # cardelli() returns A_L
    #     aJ = aV * extinction.cardelli(1.248, RV)
    #     aH = aV * extinction.cardelli(1.6330, RV)
    #     aKp = aV * extinction.cardelli(2.1245, RV)
    #     aK = aV * extinction.cardelli(2.196, RV)
    #     aKs = aV * extinction.cardelli(2.146, RV)

    aKs = 2.7
    aJ = extinction.nishiyama09(1.248, aKs)
    aH = extinction.nishiyama09(1.6330, aKs)
    aKp = extinction.nishiyama09(2.1245, aKs)
    aK = extinction.nishiyama09(2.196, aKs)
    aKs = extinction.nishiyama09(2.146, aKs)

    modK = modV - modVK
    modH = modK + modHK
    modJ = modK + modJK
    modLp = modJ - modJLp
    modKs = modK + 0.002 + 0.026 * (modJK)
    modKp = modK + 0.22 * (modHK)

    dist = 8400.0
    distMod = -5.0 + 5.0 * math.log10(dist)

    modK_extinct = modK + aK + distMod
    modKp_extinct = modKp + aKp + distMod
    modKs_extinct = modKs + aKs + distMod

    return modKp_extinct
Exemplo n.º 43
0
def mu_mag(catalog):
    mu = []
    mag = []
    cat = asciidata.open(catalog)
    for i in range(cat.nrows):
        mu.append(cat['MU_MAX'][i])
        mag.append(cat['MAG_AUTO'][i])
    mu_array = np.asarray(mu)
    mag_array = np.asarray(mag)
    plt.scatter(mag_array, mu_array)
    plt.show()
Exemplo n.º 44
0
def update_stars(astromTable):
    """
    Update the database with the positions, photometry, and velocities
    from our final results.
    """
    foo = asciidata.open(astromTable)

    name = foo[0].tonumpy()
    x = foo[1].tonumpy()
    xerr = foo[3].tonumpy()
    y = foo[4].tonumpy()
    yerr = foo[6].tonumpy()
    h = foo[7].tonumpy()
    herr = foo[9].tonumpy()
    kp = foo[10].tonumpy()
    kperr = foo[12].tonumpy()
    lp = foo[13].tonumpy()
    lperr = foo[15].tonumpy()
    x0 = foo[16].tonumpy()
    x0err = foo[18].tonumpy()
    y0 = foo[19].tonumpy()
    y0err = foo[21].tonumpy()
    vx = foo[22].tonumpy()
    vxerr = foo[24].tonumpy()
    vy = foo[25].tonumpy()
    vyerr = foo[27].tonumpy()
    vy = foo[25].tonumpy()
    vyerr = foo[27].tonumpy()
    t0 = foo[28].tonumpy()
    velField = foo[29].tonumpy()

    # Create a connection to the database
    connection = sqlite.connect(dbfile)

    # Create a cursor object
    cur = connection.cursor()

    for ss in range(len(name)):
        sql = 'update stars '
        sql += 'set x=?, xerr=?, y=?, yerr=?, vx=?, vxerr=?, vy=?, vyerr=?, '
        sql += 'h=?, herr=?, kp=?, kperr=?, lp=?, lperr=?, '
        sql += 't0=?, velField=? where name=?'

        if x0[ss] == 0:
            x0[ss] = x[ss]
        if y0[ss] == 0:
            y0[ss] = y[ss]

        cur.execute(sql,
                    (x0[ss], x0err[ss], y0[ss], y0err[ss], vx[ss], vxerr[ss],
                     vy[ss], vyerr[ss], h[ss], herr[ss], kp[ss], kperr[ss],
                     lp[ss], lperr[ss], t0[ss], velField[ss], name[ss]))

    connection.commit()
def mu_mag(catalog):
    mu = []
    mag = []
    cat = asciidata.open(catalog)
    for i in range(cat.nrows):
        mu.append(cat['MU_MAX'][i])
        mag.append(cat['MAG_AUTO'][i])
    mu_array = np.asarray(mu)
    mag_array = np.asarray(mag)
    plt.scatter(mag_array, mu_array)
    plt.show()
Exemplo n.º 46
0
def massLuminosity(distance=8.0,
                   AKp=3.0,
                   isoFileName='iso_c020_0680.UBVRIJHKLM'):
    """
    Plot the mass luminosity relationship for the GC young stars. 
    Make two figures, one for
    absolute magnitudes (Kp) and one for apparent magnitudes at the 
    specified distance and AKp extinction.
    """
    # ==========
    # Convert to masses
    # Assume solar metallicity, A_K=3, distance = 8 kpc, age = 6 Myr
    # ==========
    genevaFile = '/u/jlu/work/models/geneva/iso/020/c/'
    genevaFile += isoFileName

    model = asciidata.open(genevaFile)
    modMass = model[1].tonumpy()
    modV = model[6].tonumpy()
    modVK = model[11].tonumpy()
    modHK = model[15].tonumpy()

    modK = modV - modVK
    modH = modK + modHK

    # Convert from K to Kp (Wainscoat and Cowie 1992)
    modKp = modK + 0.22 * (modH - modK)

    dist = 8000.0
    distMod = -5.0 + 5.0 * math.log10(dist)

    modKpGC = modKp + distMod + AKp

    outputDir = '/u/jlu/work/gc/imf/klf/2010_04_02/plots/'
    outputSuffix = '_%.1f_%.1f.png' % (distance, AKp)

    py.clf()
    py.plot(modMass, modKp, 'b.')
    py.xlabel('Mass (Msun)')
    py.ylabel('Absolute Kp (magnitude)')
    rng = py.axis()
    py.ylim(rng[3], rng[2])
    py.savefig(outputDir + 'mass_vs_absKp' + outputSuffix)
    py.show()

    py.clf()
    py.plot(modMass, modKpGC, 'b.')
    py.xlabel('Mass (Msun)')
    py.ylabel('Apparent Kp (magnitude)')
    rng = py.axis()
    py.ylim(rng[3], rng[2])
    py.title('Distance = %.1f kpc, A_Kp = %.1f' % (distance, AKp))
    py.savefig(outputDir + 'mass_vs_appKp' + outputSuffix)
    py.show()
Exemplo n.º 47
0
def massLuminosity(distance=8.0, AKp=3.0, 
                   isoFileName='iso_c020_0680.UBVRIJHKLM'):
    """
    Plot the mass luminosity relationship for the GC young stars. 
    Make two figures, one for
    absolute magnitudes (Kp) and one for apparent magnitudes at the 
    specified distance and AKp extinction.
    """
    # ==========
    # Convert to masses
    # Assume solar metallicity, A_K=3, distance = 8 kpc, age = 6 Myr
    # ==========
    genevaFile = '/u/jlu/work/models/geneva/iso/020/c/'
    genevaFile += isoFileName

    model = asciidata.open(genevaFile)
    modMass = model[1].tonumpy()
    modV = model[6].tonumpy()
    modVK = model[11].tonumpy()
    modHK = model[15].tonumpy()

    modK = modV - modVK
    modH = modK + modHK

    # Convert from K to Kp (Wainscoat and Cowie 1992)
    modKp = modK + 0.22 * (modH - modK)
    
    dist = 8000.0
    distMod = -5.0 + 5.0 * math.log10(dist)

    modKpGC = modKp + distMod + AKp

    outputDir = '/u/jlu/work/gc/imf/klf/2010_04_02/plots/'
    outputSuffix = '_%.1f_%.1f.png' % (distance, AKp)


    py.clf()
    py.plot(modMass, modKp, 'b.')
    py.xlabel('Mass (Msun)')
    py.ylabel('Absolute Kp (magnitude)')
    rng = py.axis()
    py.ylim(rng[3], rng[2])
    py.savefig(outputDir + 'mass_vs_absKp' + outputSuffix)
    py.show()

    py.clf()
    py.plot(modMass, modKpGC, 'b.')
    py.xlabel('Mass (Msun)')
    py.ylabel('Apparent Kp (magnitude)')
    rng = py.axis()
    py.ylim(rng[3], rng[2])
    py.title('Distance = %.1f kpc, A_Kp = %.1f' % (distance, AKp))
    py.savefig(outputDir + 'mass_vs_appKp' + outputSuffix)
    py.show()
Exemplo n.º 48
0
def radialProfile(
    namegal,
    inputFile,
    label='Z',  #binsize=50,  #Bin numerosity 
    binsize=1,  #Bin size in arcsec
    datapoints=[]
):  #If exist, the radial profiles are limited by the actual datapoints
    #reading input file
    fileKriging = asciidata.open(inputFile)
    xK, yK, zK, errzK = [], [], [], []
    for jj in range(len(fileKriging[0])):
        if fileKriging[2][jj] != 'NA':
            xK.append(fileKriging[0][jj])
            yK.append(fileKriging[1][jj])
            zK.append(float(fileKriging[2][jj]))
            errzK.append(float(fileKriging[3][jj]))
    #
    xK, yK = numpy.array(xK), numpy.array(yK)
    zK, errzK = numpy.array(zK), numpy.array(errzK)
    #  xA = -(-xK*numpy.cos((90-PA0[namegal])*numpy.pi/180.) - yK*numpy.sin((90-PA0[namegal])*numpy.pi/180.))
    #  yA = -xK*numpy.sin((90-PA0[namegal])*numpy.pi/180.) + yK*numpy.cos((90-PA0[namegal])*numpy.pi/180.)
    #  ellDist = numpy.sqrt((b_a[namegal]*(xA**2.))+((yA**2.)/b_a[namegal]))
    ellDist = findDell(xK, yK, PA0[namegal], b_a[namegal])
    ellDist_Sorted = ellDist[permutation_indices(ellDist)]
    zK_Sorted = zK[permutation_indices(ellDist)]
    errzK_Sorted = errzK[permutation_indices(ellDist)]
    #
    # Limit elements within datapoints
    #
    if datapoints != []:
        RA_dp, Dec_dp = numpy.array(datapoints)[:,
                                                0], numpy.array(datapoints)[:,
                                                                            1]
        ellDist_dp = findDell(RA_dp, Dec_dp, PA0[namegal], b_a[namegal])
        minR, maxR = numpy.min(ellDist_dp), numpy.max(ellDist_dp)
    else:
        minR, maxR = numpy.min(ellDist_Sorted), numpy.max(ellDist_Sorted)
        #
    binR, binZ = [], []
    for ii in numpy.arange(minR, maxR, binsize):
        tmpR, tmpZ, tmperrZ = [], [], []
        for kk in numpy.arange(len(ellDist_Sorted)):
            if ii <= ellDist_Sorted[kk] < ii + binsize:
                tmpR.append(ellDist_Sorted[kk])
                tmpZ.append(zK_Sorted[kk])
                tmperrZ.append(errzK_Sorted[kk])
        if len(tmpR) > 0:
            binR.append(numpy.average(tmpR))
            binZ.append(
                numpy.average(tmpZ, weights=1. / (numpy.array(tmperrZ)**2.)))
#
    return binR, binZ
Exemplo n.º 49
0
 def alter_catalog_for_classification(self, out_name, flat_x_division,
                                      flat_y_division, slope, intercept):
     catalog = asciidata.open(self.merged_catalog)
     for i in range(catalog.nrows):
         if is_below_boundary(
                 catalog['MAG_AUTO'][i] + 25, catalog['MU_MAX'][i],
                 flat_x_division, flat_y_division, slope,
                 intercept) and catalog['MAG_AUTO'][i] + 25.0 < 25.0:
             catalog['IS_STAR'][i] = 1
         else:
             catalog['IS_STAR'][i] = 0
     catalog['IS_STAR'].set_colcomment("Revised Star-Galaxy Classifier")
     catalog.writeto(out_name)
Exemplo n.º 50
0
def update_header_coords(fileList):
    """
    Updates coordinates in the header for XREF, YREF
    and XSTREHL, and YSTREHL.
 
    fileList : list of files to update
    """

    _files = asciidata.open(fileList)
    files = _files[0].tonumpy()
    files = [files[ff].split('.')[0] for ff in range(len(files))]
    

    for ff in range(len(files)):
        # Open .coo file and read 16C's coordinates
        coo = asciidata.open(files[ff]+'.coo')
        xref = coo[0].tonumpy()
        yref = coo[1].tonumpy()

        # Open .coord file and read strehl source's coordinates
        coord = asciidata.open(files[ff]+'.coord')
        xstr = coord[0].tonumpy()
        ystr = coord[1].tonumpy()
 
        # Open image and write reference star x,y to fits header
        fits = pyfits.open(files[ff]+'.fits')

        fits[0].header.update('XREF', "%.3f" %xref,
                              'Cross Corr Reference Src x')
        fits[0].header.update('YREF', "%.3f" %yref,
                              'Cross Corr Reference Src y')
        fits[0].header.update('XSTREHL', "%.3f" %xstr,
                              'Strehl Reference Src x')
        fits[0].header.update('YSTREHL', "%.3f" %ystr,
                              'Strehl Reference Src y')

        # Output fits file
        _out = 'new_hdr/' + files[ff] + '.fits'
        fits[0].writeto(_out, output_verify='silentfix')
Exemplo n.º 51
0
def ttsRadius():
    file = '/u/jlu/work/m31/tts_close.txt'

    tab = asciidata.open(file)

    name = tab[1].tonumarray().tolist()
    ra_hr = tab[7].tonumarray()
    ra_min = tab[8].tonumarray()
    ra_sec = tab[9].tonumarray()
    dec_deg = tab[10].tonumarray()
    dec_min = tab[11].tonumarray()
    dec_sec = tab[12].tonumarray()

    m31_ra_hr = 0.0
    m31_ra_min = 42.0
    m31_ra_sec = 44.23
    m31_dec_deg = 41.0
    m31_dec_min = 16.0
    m31_dec_sec = 8.8

    # Convert into floats
    ra_tmp = ra_hr + (ra_min / 60.0) + (ra_sec / 3600.0)
    dec_tmp = dec_deg + (dec_min / 60.0) + (dec_sec / 3600.0)
    m31_ra_tmp = m31_ra_hr + (m31_ra_min / 60.0) + (m31_ra_sec / 3600.0)
    m31_dec_tmp = m31_dec_deg + (m31_dec_min / 60.0) + (m31_dec_sec / 3600.0)

    ra_diff = (ra_tmp - m31_ra_tmp) * math.cos(math.radians(m31_dec_tmp))
    dec_diff = dec_tmp - m31_dec_tmp

    # Convert to degrees
    ra_diff *= (360.0 / 24.0)

    diff = sqrt(pow(ra_diff, 2) + pow(dec_diff, 2))

    # Convert into arcsec
    ra_diff *= 3600.0
    dec_diff *= 3600.0
    diff *= 3600.0

    idx = diff.argsort()

    for i in idx:
        print('%10s   %2d %2d %4.1f  %2d %2d %4.1f  %4d  %4d %4d' % \
            (name[i], ra_hr[i], ra_min[i], ra_sec[i],
             dec_deg[i], dec_min[i], dec_sec[i],
             diff[i], ra_diff[i], dec_diff[i]))

        if (diff[i] < 65.0):
            os.system('grep %s tts_clust.txt' % name[i])
            os.system('grep %s tts_stars.txt' % name[i])
Exemplo n.º 52
0
    def test_parsing_conversion_bsc(self):
        """Parsing and comparing to Vizier calculated values the entire 5th Bright Star Catalogue"""

        bsc = asciidata.open(os.path.abspath(
            os.path.join(os.path.dirname(__file__), 'bsc.dat')),
                             comment_char='#',
                             delimiter='\t')

        expected_ra = []
        expected_ra_str = []

        expected_dec = []
        expected_dec_str = []

        ra = []
        dec = []

        for i in range(bsc.nrows):
            expected_ra.append(bsc[0][i])
            expected_dec.append(bsc[1][i])

            expected_ra_str.append(bsc[2][i].strip())
            expected_dec_str.append(bsc[3][i].strip())

            ra.append(Coord.fromHMS(bsc[2][i]))
            dec.append(Coord.fromDMS(bsc[3][i]))

        for i in range(bsc.nrows):
            # use e=0.0001 'cause its the maximum we can get with Vizier data (4 decimal places only)

            # test conversion from HMS DMS to decimal
            assert TestCoord.equal(
                ra[i].D, expected_ra[i],
                e=1e-4), "ra: %.6f != coord ra: %.6f (%.6f)" % (
                    expected_ra[i], ra[i].D, expected_ra[i] - ra[i].D)
            assert TestCoord.equal(
                dec[i].D, expected_dec[i],
                e=1e-4), "dec: %.6f != coord dec: %.64f (%.6f)" % (
                    expected_dec[i], dec[i].D, expected_dec[i] - dec[i].D)

            # test strfcoord implementation
            assert expected_ra_str[i] == ra[i].strfcoord(
                "%(h)02d %(m)02d %(s)04.1f"), "ra: %s != coord ra: %s" % (
                    expected_ra_str[i],
                    ra[i].strfcoord("%(h)02d %(m)02d %(s)04.1f"))

            assert expected_dec_str[i] == dec[i].strfcoord(
                "%(d)02d %(m)02d %(s)02.0f"), "dec: %s != coord dec: %s" % (
                    expected_dec_str[i],
                    dec[i].strfcoord("%(d)02d %(m)02d %(s)02.0f"))
Exemplo n.º 53
0
	def Disk_Rad(self,Data,**kwargs):
		Ld = asciidata.open(kwargs.get('file','/Users/bhargavvaidya/test_linediskrpcor_55.dat'))
		r2d = np.asarray(Ld[0]).reshape(516,1028)
		z2d = np.asarray(Ld[1]).reshape(516,1028)
		Srl = np.asarray(Ld[2]).reshape(516,1028)
		Svl = np.asarray(Ld[3]).reshape(516,1028)
		Mstar = kwargs.get('Mstar',30.0)
		urho = kwargs.get('urho',5.0e-14)
		ul = kwargs.get('ul',0.1)
		Gammae = kwargs.get('Gammae',0.2369)
		Zeta = kwargs.get('Zeta',0.4644)
		Lambda = kwargs.get('Lambda',0.4969)
		Qo = kwargs.get('Qo',1400.0)
		Alpha = kwargs.get('Alpha',0.55)

		print '-----------------------------------------------'
		print 'xfl   : ',kwargs.get('xfl',5.0)
		print 'Alpha : ',Alpha
		print 'Gammae: ',Gammae
		print 'Zeta  : ',Zeta
		print 'Lambda: ',Lambda
		print 'Qo    : ',Qo
		print 'ul    : ',ul
		print 'urho  : ',urho
		print 'Mstar : ',Mstar
		print '-----------------------------------------------'
		
		sigmae = 0.4
		clight = 3.0e10
		G = 6.67e-8
		Msun = 2.0e33
		AU=1.5e13
		uvel = np.sqrt((G*Mstar*Msun)/(ul*AU))
		Dless = uvel/(urho*ul*AU*sigmae*clight)
		prefactor = (3.0/2.0)*(1.0/np.pi)*Gammae*Zeta*Lambda
		Kpara = (Dless**(Alpha))*((Qo**(1.0-Alpha))/(1.0-Alpha))

		Tool = pp.Tools()
		grv2 = Tool.Grad(Data.v2,Data.x1,Data.x2,Data.dx1,Data.dx2)
		DvzDz = np.abs(grv2[:,:,1])

		dvdl = DvzDz 
		Disk_Mt = Kpara*((1.0/Data.rho)*dvdl)**(Alpha)
		
		Disk_Rad_r = Disk_Mt*prefactor*Srl[2:514,2:1026]
		Disk_Rad_z = Disk_Mt*prefactor*Svl[2:514,2:1026]

		DiskRad_force_dict={'d_dvdl':dvdl,'d_Mt':Disk_Mt,'d_Fr_r':Disk_Rad_r,'d_Fr_z':Disk_Rad_z}
		return DiskRad_force_dict
Exemplo n.º 54
0
def Analysis(filepath=None,info=None):
    Values = np.asarray(asc.open(filepath+'analysis.out'))
    [a,b]=Values.shape
    
    MyArr = []
    finfo = open(filepath+'analysis.info','r')
    for line in finfo.readlines():
        if line.find('column')>=0:
            MyArr.append(line.split())

    print len(MyArr)
    ana_dict= dict([('col'+ str(i+1),[Values[i],' '.join(MyArr[i][3:])]) for i in range(a-1)])
    
    
    
    return ana_dict
Exemplo n.º 55
0
def label_catalogs(focus_text_file, catalogs):
    f = open(focus_text_file)
    n = 0
    for line in f.readlines():
        split = line.split()
        filename = split[0]
        focus = np.float32(split[1])
        catalog = asciidata.open(catalogs[n])
        for i in range(catalog.nrows):
            catalog['FILENAME'][i] = filename
            catalog['FOCUS'][i] = focus
        catalog['FILENAME'].set_colcomment(
            'Original name of image file for object')
        catalog['FOCUS'].set_colcomment('Focus position in um')
        catalog.writeto((catalogs[n])[:len(catalogs[n]) - 4] + ".focus.cat")
        n += 1