Exemplo n.º 1
0
 def runOnce(self, MCSampleSize, xmin, args, interventionList, totalBudget, filename):        
     import asd as asd 
     import pickle 
     import numpy as np
     numInterventions = len(interventionList)
     scenarioMonteCarloOutput = []
     for r in range(0, MCSampleSize):
         proposalAllocation = np.random.rand(numInterventions)
         budgetBest, fval, exitflag, output = asd.asd(objectiveFunction, proposalAllocation, args, xmin = xmin, verbose = 0)  
         outputOneRun = OutputClass(budgetBest, fval, exitflag, output.iterations, output.funcCount, output.fval, output.x)        
         scenarioMonteCarloOutput.append(outputOneRun)   
     # find the best
     bestSample = scenarioMonteCarloOutput[0]
     for sample in range(0, len(scenarioMonteCarloOutput)):
         if scenarioMonteCarloOutput[sample].fval < bestSample.fval:
             bestSample = scenarioMonteCarloOutput[sample]
     # scale it and make a dictionary
     bestSampleBudget = bestSample.budgetBest
     bestSampleBudgetScaled = rescaleAllocation(totalBudget, bestSampleBudget)
     bestSampleBudgetScaledDict = {}
     for i in range(0, len(interventionList)):
         intervention = interventionList[i]
         bestSampleBudgetScaledDict[intervention] = bestSampleBudgetScaled[i]      
     # put it in a file    
     outfile = open(filename, 'wb')
     pickle.dump(bestSampleBudgetScaledDict, outfile)
     outfile.close()  
Exemplo n.º 2
0
 def getOptimisedRegionalBudgetList(self, geoMCSampleSize):
     import asd
     import numpy as np
     xmin = [0.] * self.numRegions
     # if BOCs not generated, generate them
     if self.regionalBOCs == None:
         self.generateAllRegionsBOC()
     totalBudget = self.getTotalNationalBudget()
     scenarioMonteCarloOutput = []
     for r in range(0, geoMCSampleSize):
         proposalSpendingList = np.random.rand(self.numRegions)
         args = {
             'regionalBOCs': self.regionalBOCs,
             'totalBudget': totalBudget
         }
         budgetBest, fval, exitflag, output = asd.asd(
             geospatialObjectiveFunction,
             proposalSpendingList,
             args,
             xmin=xmin,
             verbose=2)
         outputOneRun = OutputClass(budgetBest, fval, exitflag,
                                    output.iterations, output.funcCount,
                                    output.fval, output.x)
         scenarioMonteCarloOutput.append(outputOneRun)
     # find the best
     bestSample = scenarioMonteCarloOutput[0]
     for sample in range(0, len(scenarioMonteCarloOutput)):
         if scenarioMonteCarloOutput[sample].fval < bestSample.fval:
             bestSample = scenarioMonteCarloOutput[sample]
     bestSampleScaled = rescaleAllocation(totalBudget,
                                          bestSample.budgetBest)
     optimisedRegionalBudgetList = bestSampleScaled
     return optimisedRegionalBudgetList
Exemplo n.º 3
0
 def getOptimisedRegionalBudgetList(self, geoMCSampleSize):
     import asd
     import numpy as np
     xmin = [0.] * self.numRegions
     # if BOCs not generated, generate them
     if self.regionalBOCs == None:
         self.generateAllRegionsBOC()
     totalBudget = self.getTotalNationalBudget()
     scenarioMonteCarloOutput = []
     for r in range(0, geoMCSampleSize):
         proposalSpendingList = np.random.rand(self.numRegions)
         args = {'regionalBOCs':self.regionalBOCs, 'totalBudget':totalBudget}
         budgetBest, fval, exitflag, output = asd.asd(geospatialObjectiveFunction, proposalSpendingList, args, xmin = xmin, verbose = 2)  
         outputOneRun = OutputClass(budgetBest, fval, exitflag, output.iterations, output.funcCount, output.fval, output.x)        
         scenarioMonteCarloOutput.append(outputOneRun)         
     # find the best
     bestSample = scenarioMonteCarloOutput[0]
     for sample in range(0, len(scenarioMonteCarloOutput)):
         if scenarioMonteCarloOutput[sample].fval < bestSample.fval:
             bestSample = scenarioMonteCarloOutput[sample]
     bestSampleScaled = rescaleAllocation(totalBudget, bestSample.budgetBest)        
     optimisedRegionalBudgetList = bestSampleScaled  
     return optimisedRegionalBudgetList
Exemplo n.º 4
0
 def runOnce(self, MCSampleSize, xmin, args, interventionList, totalBudget,
             filename):
     import asd as asd
     import pickle
     import numpy as np
     numInterventions = len(interventionList)
     scenarioMonteCarloOutput = []
     for r in range(0, MCSampleSize):
         proposalAllocation = np.random.rand(numInterventions)
         budgetBest, fval, exitflag, output = asd.asd(objectiveFunction,
                                                      proposalAllocation,
                                                      args,
                                                      xmin=xmin,
                                                      verbose=0)
         outputOneRun = OutputClass(budgetBest, fval, exitflag,
                                    output.iterations, output.funcCount,
                                    output.fval, output.x)
         scenarioMonteCarloOutput.append(outputOneRun)
     # find the best
     bestSample = scenarioMonteCarloOutput[0]
     for sample in range(0, len(scenarioMonteCarloOutput)):
         if scenarioMonteCarloOutput[sample].fval < bestSample.fval:
             bestSample = scenarioMonteCarloOutput[sample]
     # scale it and make a dictionary
     bestSampleBudget = bestSample.budgetBest
     bestSampleBudgetScaled = rescaleAllocation(totalBudget,
                                                bestSampleBudget)
     bestSampleBudgetScaledDict = {}
     for i in range(0, len(interventionList)):
         intervention = interventionList[i]
         bestSampleBudgetScaledDict[intervention] = bestSampleBudgetScaled[
             i]
     # put it in a file
     outfile = open(filename, 'wb')
     pickle.dump(bestSampleBudgetScaledDict, outfile)
     outfile.close()
Exemplo n.º 5
0
    'costCoverageInfo': costCoverageInfo,
    'optimise': optimise,
    'mothers': mothers,
    'timestep': timestep,
    'agingRateList': agingRateList,
    'agePopSizes': agePopSizes,
    'keyList': keyList,
    'data': spreadsheetData
}

for r in range(0, 10):

    proposalAllocation = np.random.rand(7)

    budgetBest, fval, exitflag, output = asd.asd(objectiveFunction,
                                                 proposalAllocation,
                                                 args,
                                                 xmin=xmin)  #MaxFunEvals = 10

    scaledBudgetBest = rescaleAllocation(totalBudget, budgetBest)
    scaledproposalAllocation = rescaleAllocation(totalBudget,
                                                 proposalAllocation)
    budgetDictBefore = {}
    budgetDictAfter = {}
    initialCoverage = {}
    finalCoverage = {}
    i = 0
    for intervention in spreadsheetData.interventionList:
        budgetDictBefore[intervention] = scaledproposalAllocation[i]  #[0]
        budgetDictAfter[intervention] = scaledBudgetBest[i][0]
        initialCoverage[intervention] = costCov.function(
            array([scaledproposalAllocation[i]
for optimise in ['stunting', 'deaths']:

    print optimise
    cascadeBudget = {}
    for cascade in cascadeValues:
        print 'CASCADE:  ' + str(cascade)
    
        #filename = 'Bangladesh_cascade_output_'+str(cascade)+'_'+optimise+'.pkl'
        #outfile = open(filename, 'wb')
        scenarioMonteCarloOutput = []
        for r in range(0, MCSampleSize):
            print 'SAMPLE:  ' + str(r)
            totalBudget = currentTotalBudget * cascade
            args = {'totalBudget':totalBudget, 'costCoverageInfo':costCoverageInfo, 'optimise':optimise, 'mothers':mothers, 'timestep':timestep, 'agingRateList':agingRateList, 'agePopSizes':agePopSizes, 'keyList':keyList, 'data':spreadsheetData} 
            proposalAllocation = np.random.rand(numInterventions)
            budgetBest, fval, exitflag, output = asd.asd(objectiveFunction, proposalAllocation, args, xmin = xmin, verbose = 0)
            outputOneRun = OutputClass(budgetBest, fval, exitflag, output.iterations, output.funcCount, output.fval, output.x)        
            scenarioMonteCarloOutput.append(outputOneRun)
            #pickle.dump(outputOneRun, outfile)
        #outfile.close() 
        
        # find the best
        bestSample = scenarioMonteCarloOutput[0]
        for sample in range(0, len(scenarioMonteCarloOutput)):
            if scenarioMonteCarloOutput[sample].fval < bestSample.fval:
                bestSample = scenarioMonteCarloOutput[sample]
            
        # scale it and make a dictionary
        bestSampleBudget = bestSample.budgetBest
        bestSampleBudgetScaled = rescaleAllocation(totalBudget, bestSampleBudget)
        bestSampleBudgetScaledDict = {}
            totalBudget = currentTotalBudget * cascade
            args = {
                'totalBudget': totalBudget,
                'costCoverageInfo': costCoverageInfo,
                'optimise': optimise,
                'mothers': mothers,
                'timestep': timestep,
                'agingRateList': agingRateList,
                'agePopSizes': agePopSizes,
                'keyList': keyList,
                'data': spreadsheetData
            }
            proposalAllocation = np.random.rand(numInterventions)
            budgetBest, fval, exitflag, output = asd.asd(objectiveFunction,
                                                         proposalAllocation,
                                                         args,
                                                         xmin=xmin,
                                                         verbose=0)
            outputOneRun = OutputClass(budgetBest, fval, exitflag,
                                       output.iterations, output.funcCount,
                                       output.fval, output.x)
            scenarioMonteCarloOutput.append(outputOneRun)
            #pickle.dump(outputOneRun, outfile)
        #outfile.close()

        # find the best
        bestSample = scenarioMonteCarloOutput[0]
        for sample in range(0, len(scenarioMonteCarloOutput)):
            if scenarioMonteCarloOutput[sample].fval < bestSample.fval:
                bestSample = scenarioMonteCarloOutput[sample]
Exemplo n.º 8
0
#proposalAllocation = [totalBudget/2., 0., totalBudget/2., 0., 0., 0.,0.]
#proposalAllocation = [invest-1000. if invest>2000. else 1000. for invest in initialAllocation]
#proposalAllocation = [totalBudget/len(initialAllocation)] * len(initialAllocation)

xmin = [0.] * len(initialAllocation)
#xmin = [100.] * len(initialAllocation)
#xmin  = [0.01*invest if invest>100. else 1. for invest in initialAllocation]

optimise = 'stunting' # choose between 'deaths' and 'stunting'
args = {'totalBudget':totalBudget, 'costCoverageInfo':costCoverageInfo, 'optimise':optimise, 'mothers':mothers, 'timestep':timestep, 'agingRateList':agingRateList, 'agePopSizes':agePopSizes, 'keyList':keyList, 'data':spreadsheetData}    

for r in range(0, 10):
    
    proposalAllocation = np.random.rand(7)

    budgetBest, fval, exitflag, output = asd.asd(objectiveFunction, proposalAllocation, args, xmin = xmin)  #MaxFunEvals = 10            
    
    scaledBudgetBest = rescaleAllocation(totalBudget, budgetBest)
    scaledproposalAllocation = rescaleAllocation(totalBudget, proposalAllocation)
    budgetDictBefore = {}
    budgetDictAfter = {}  
    initialCoverage = {}
    finalCoverage = {}
    i = 0        
    for intervention in spreadsheetData.interventionList:
        budgetDictBefore[intervention] = scaledproposalAllocation[i]#[0]
        budgetDictAfter[intervention] = scaledBudgetBest[i][0]  
        initialCoverage[intervention] = costCov.function(array([scaledproposalAllocation[i]]), costCoverageInfo[intervention], targetPopSize[intervention]) / targetPopSize[intervention]
        finalCoverage[intervention] = costCov.function(array([scaledBudgetBest[i]]), costCoverageInfo[intervention], targetPopSize[intervention]) / targetPopSize[intervention]
        i += 1