Exemplo n.º 1
0
def run(name):
    Calculator = get_calculator(name)
    par = required.get(name, {})
    calc = Calculator(label=name + '_bandgap', xc='PBE',
                      # abinit, aims, elk - do not recognize the syntax below:
                      # https://trac.fysik.dtu.dk/projects/ase/ticket/98
                      # kpts={'size': kpts, 'gamma': True}, **par)
                      kpts=kpts, **par)
    si = bulk('Si', crystalstructure='diamond', a=5.43)
    si.calc = calc
    si.get_potential_energy()
    print(name, bandgap(si.calc))
    del si.calc
    # test spin-polarization
    calc = Calculator(label=name + '_bandgap_spinpol', xc='PBE',
                      # abinit, aims, elk - do not recognize the syntax below:
                      # https://trac.fysik.dtu.dk/projects/ase/ticket/98
                      # kpts={'size': kpts, 'gamma': True}, **par)
                      kpts=kpts, **par)
    si.set_initial_magnetic_moments([-0.1, 0.1])
    # this should not be necessary in the new ase interface standard ...
    if si.get_initial_magnetic_moments().any():  # spin-polarization
        if name == 'aims':
            calc.set(spin='collinear')
        if name == 'elk':
            calc.set(spinpol=True)
    si.set_calculator(calc)
    si.get_potential_energy()
    print(name, bandgap(si.calc))
Exemplo n.º 2
0
    def test_coulG(self):
        numpy.random.seed(19)
        kpt = numpy.random.random(3)
        ase_atom = bulk('C', 'diamond', a=3.5668)
        cell = pbcgto.Cell()
        cell.unit = 'A'
        cell.atom = pyscf_ase.ase_atoms_to_pyscf(ase_atom)
        cell.a = ase_atom.cell + numpy.random.random((3,3)).T
        cell.basis = 'gth-szv'
        cell.pseudo = 'gth-pade'
        cell.gs = [5,4,3]
        cell.verbose = 5
        cell.output = '/dev/null'
        cell.build()
        coulG = tools.get_coulG(cell, kpt)
        self.assertAlmostEqual(finger(coulG), 62.75448804333378, 9)

        cell.a = numpy.eye(3)
        cell.unit = 'B'
        coulG = tools.get_coulG(cell, numpy.array([0, numpy.pi, 0]))
        self.assertAlmostEqual(finger(coulG), 4.6737453679713905, 9)
        coulG = tools.get_coulG(cell, numpy.array([0, numpy.pi, 0]),
                                wrap_around=False)
        self.assertAlmostEqual(finger(coulG), 4.5757877990664744, 9)
        coulG = tools.get_coulG(cell, exx='ewald')
        self.assertAlmostEqual(finger(coulG), 4.888843468914021, 9)
Exemplo n.º 3
0
def get_elastic_constants(pot_path=None,
                          calculator=None,
                          delta=1e-2,
                          symbol="W"):
    """
    return lattice parameter, and cubic elastic constants: C11, C12, 44
    using matscipy function
    pot_path - path to the potential

    symbol : string
        Symbol of the element to pass to ase.lattuce.cubic.SimpleCubicFactory
        default is "W" for tungsten
    """

    unit_cell = bulk(symbol)

    if (pot_path is not None) and (calculator is None):
        # create lammps calculator with the potential
        lammps = LAMMPSlib(lmpcmds=["pair_style eam/fs",
                           "pair_coeff * * %s W" % pot_path],
                           atom_types={'W': 1}, keep_alive=True)
        calculator = lammps

    unit_cell.set_calculator(calculator)

#   simple calculation to get the lattice constant and cohesive energy
#    alat0 = W.cell[0][1] - W.cell[0][0]
    sf = StrainFilter(unit_cell)  # or UnitCellFilter(W) -> to minimise wrt pos, cell
    opt = FIRE(sf)
    opt.run(fmax=1e-4)  # max force in eV/A
    alat = unit_cell.cell[0][1] - unit_cell.cell[0][0]
#    print("a0 relaxation %.4f --> %.4f" % (a0, a))
#    e_coh = W.get_potential_energy()
#    print("Cohesive energy %.4f" % e_coh)

    Cij, Cij_err = fit_elastic_constants(unit_cell,
                                         symmetry="cubic",
                                         delta=delta)

    Cij = Cij/GPa  # unit conversion to GPa

    elasticMatrix3x3 = Cij[:3, :3]
    # average of diagonal elements: C11, C22, C33
    C11 = elasticMatrix3x3.diagonal().mean()
    # make mask to extract non diagonal elements
    mask = np.ones((3, 3), dtype=bool)
    np.fill_diagonal(mask, False)

    # average of all non diagonal elements from 1 to 3
    C12 = elasticMatrix3x3[mask].mean()

    # average of diagonal elements from 4 till 6: C44, C55, C66,
    C44 = Cij[3:, 3:].diagonal().mean()

    # A = 2.*C44/(C11 - C12)

    if (pot_path is not None) and (calculator is None):
        lammps.lmp.close()

    return alat, C11, C12, C44
Exemplo n.º 4
0
def surface(lattice, indices, layers, vacuum=None, tol=1e-10):
    """Create surface from a given lattice and Miller indices.

    lattice: Atoms object or str
        Bulk lattice structure of alloy or pure metal.  Note that the
        unit-cell must be the conventional cell - not the primitive cell.
        One can also give the chemical symbol as a string, in which case the
        correct bulk lattice will be generated automatically.
    indices: sequence of three int
        Surface normal in Miller indices (h,k,l).
    layers: int
        Number of equivalent layers of the slab.
    vacuum: float
        Amount of vacuum added on both sides of the slab.
    """

    indices = np.asarray(indices)

    if indices.shape != (3,) or not indices.any() or indices.dtype != int:
        raise ValueError('%s is an invalid surface type' % indices)

    if isinstance(lattice, basestring):
        lattice = bulk(lattice, cubic=True)

    h, k, l = indices
    h0, k0, l0 = (indices == 0)
    if h0 and k0 or h0 and l0 or k0 and l0:  # if two indices are zero
        if not h0:
            c1, c2, c3 = [(0, 1, 0), (0, 0, 1), (1, 0, 0)]
        if not k0:
            c1, c2, c3 = [(0, 0, 1), (1, 0, 0), (0, 1, 0)]
        if not l0:
            c1, c2, c3 = [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
    else:
        p, q = ext_gcd(k, l)
        a1, a2, a3 = lattice.cell

        # constants describing the dot product of basis c1 and c2:
        # dot(c1,c2) = k1+i*k2, i in Z
        k1 = np.dot(p * (k * a1 - h * a2) + q * (l * a1 - h * a3),
                    l * a2 - k * a3)
        k2 = np.dot(l * (k * a1 - h * a2) - k * (l * a1 - h * a3),
                    l * a2 - k * a3)

        if abs(k2) > tol:
            i = -int(round(k1 / k2))  # i corresponding to the optimal basis
            p, q = p + i * l, q - i * k

        a, b = ext_gcd(p * k + q * l, h)

        c1 = (p * k + q * l, -p * h, -q * h)
        c2 = np.array((0, l, -k)) // abs(gcd(l, k))
        c3 = (b, a * p, a * q)

    surf = build(lattice, np.array([c1, c2, c3]), layers, tol)
    if vacuum is not None:
        surf.center(vacuum=vacuum, axis=2)
    return surf
Exemplo n.º 5
0
def exafs_reference_path(z, feff_options):
    atoms = bulk(z, orthorhombic=True, cubic=True)
    atoms = atoms.repeat((4,4,4))
    center = numpy.argmin(numpy.sum((atoms.get_scaled_positions() -
        numpy.array( (.5,.5,.5) ))**2.0, axis=1))
    #do the bulk reference scattering calculation and get the path
    #data from feff
    path = run_feff(atoms, center, feff_options, get_path=True)[2]
    return path
Exemplo n.º 6
0
def estimate_lattice_constant(name, crystalstructure, covera):
    from ase.build import bulk
    atoms = bulk(name, crystalstructure, 1.0, covera)
    v0 = atoms.get_volume()
    v = 0.0
    for Z in atoms.get_atomic_numbers():
        r = covalent_radii[Z]
        v += 4 * np.pi / 3 * r**3 * 1.5
    return (v / v0)**(1.0 / 3)
Exemplo n.º 7
0
def test_ASE():
    """Socket client for ASE."""

    # create ASE atoms and calculator
    atoms = build.bulk('Ar', cubic=True)
    calculator = LennardJones(epsilon=0.997 * units.kJ / units.mol, sigma=3.4, rc=10.0)
    atoms.set_calculator(calculator)

    # try to get potential energy
    atoms.get_potential_energy()

    # create the socket client
    ClientASE(atoms, address='ase', _socket=False)
Exemplo n.º 8
0
def build_bulk(args):
    L = args.lattice_constant.replace(',', ' ').split()
    d = dict([(key, float(x)) for key, x in zip('ac', L)])
    atoms = bulk(args.name, crystalstructure=args.crystal_structure,
                 a=d.get('a'), c=d.get('c'),
                 orthorhombic=args.orthorhombic, cubic=args.cubic)

    M, X = {'Fe': (2.3, 'bcc'),
            'Co': (1.2, 'hcp'),
            'Ni': (0.6, 'fcc')}.get(args.name, (None, None))
    if M is not None and args.crystal_structure == X:
        atoms.set_initial_magnetic_moments([M] * len(atoms))

    return atoms
Exemplo n.º 9
0
def ase_vol_relax():
    Al = bulk('Al', 'fcc', a=4.5, cubic=True)
    calc = Vasp(xc='LDA')
    Al.set_calculator(calc)

    from ase.constraints import StrainFilter
    sf = StrainFilter(Al)
    qn = QuasiNewton(sf, logfile='relaxation.log')
    qn.run(fmax=0.1, steps=5)

    print('Stress:\n', calc.read_stress())
    print('Al post ASE volume relaxation\n', calc.get_atoms().get_cell())

    return Al
Exemplo n.º 10
0
    def test_eam(self):
        for calc in [EAM('Au-Grochola-JCP05.eam.alloy')]:
            a = bulk('Au')
            a *= (2, 2, 2)
            a.rattle(0.1)
            a.set_calculator(calc)
            e = a.get_potential_energy()
            f = a.get_forces()
            s = a.get_stress()

            a.set_calculator(SupercellCalculator(calc, (3, 3, 3)))
            self.assertAlmostEqual(e, a.get_potential_energy())
            self.assertArrayAlmostEqual(f, a.get_forces())
            self.assertArrayAlmostEqual(s, a.get_stress())
Exemplo n.º 11
0
 def test_coulG_ws(self):
     ase_atom = bulk('C', 'diamond', a=3.5668)
     cell = pbcgto.Cell()
     cell.unit = 'A'
     cell.atom = pyscf_ase.ase_atoms_to_pyscf(ase_atom)
     cell.a = ase_atom.cell
     cell.basis = 'gth-szv'
     cell.pseudo = 'gth-pade'
     cell.gs = [5]*3
     cell.verbose = 5
     cell.output = '/dev/null'
     cell.build()
     mf = khf.KRHF(cell, exxdiv='vcut_ws')
     mf.kpts = cell.make_kpts([2,2,2])
     coulG = tools.get_coulG(cell, mf.kpts[2], True, mf)
     self.assertAlmostEqual(finger(coulG), 1.3245117871351604, 9)
Exemplo n.º 12
0
def build_bulk(name, opts):
    L = opts.lattice_constant.replace(",", " ").split()
    d = dict([(key, float(x)) for key, x in zip("ac", L)])
    atoms = bulk(
        name,
        crystalstructure=opts.crystal_structure,
        a=d.get("a"),
        c=d.get("c"),
        orthorhombic=opts.orthorhombic,
        cubic=opts.cubic,
    )

    M, X = {"Fe": (2.3, "bcc"), "Co": (1.2, "hcp"), "Ni": (0.6, "fcc")}.get(name, (None, None))
    if M is not None and opts.crystal_structure == X:
        atoms.set_initial_magnetic_moments([M] * len(atoms))

    return atoms
Exemplo n.º 13
0
def run(name):
    Calculator = get_calculator(name)
    par = required.get(name, {})
    calc = Calculator(label=name, xc='LDA', kpts=1.0, **par)
    al = bulk('AlO', crystalstructure='rocksalt', a=4.5)
    al.calc = calc
    e = al.get_potential_energy()
    calc.set(xc='PBE', kpts=(2, 2, 2))
    epbe = al.get_potential_energy()
    print(e, epbe)
    calc = Calculator(name)
    print(calc.parameters, calc.results, calc.atoms)
    assert not calc.calculation_required(al, ['energy'])
    al = calc.get_atoms()
    print(al.get_potential_energy())
    label = 'dir/' + name + '-2'
    calc = Calculator(label=label, atoms=al, xc='LDA', kpts=1.0, **par)
    print(al.get_potential_energy())
    print(Calculator.read_atoms(label).get_potential_energy())
Exemplo n.º 14
0
def main():
    from ase.build import bulk
    from ase.calculators.interfacechecker import check_interface

    system = bulk('Si', 'diamond', orthorhombic=True)
    calc = Octopus(Spacing=0.275,
                   KPointsGrid=[[2, 2, 2]],
                   KPointsUseSymmetries=True,
                   Smearing=0.1,
                   SmearingFunction='fermi_dirac',
                   ExtraStates=2,
                   stdout='"stdout.log"',
                   stderr='"stderr.log"',
                   Output='density + potential + wfs',
                   OutputFormat='xcrysden')
    system.set_calculator(calc)
    system.get_potential_energy()

    check_interface(calc)
Exemplo n.º 15
0
def test_ASE():
    """Socket client for ASE."""

    try:
        from ase import build
        from ase import units
        from ase.calculators.lj import LennardJones
    except ImportError:
        raise nose.SkipTest

    # create ASE atoms and calculator
    atoms = build.bulk('Ar', cubic=True)
    calculator = LennardJones(epsilon=0.997 * units.kJ / units.mol, sigma=3.4, rc=10.0)
    atoms.set_calculator(calculator)

    # try to get potential energy
    atoms.get_potential_energy()

    # create the socket client
    client = ClientASE(atoms, address='ase', _socket=False)
Exemplo n.º 16
0
def vasp_vol_relax():
    Al = bulk('Al', 'fcc', a=4.5, cubic=True)
    calc = Vasp(xc='LDA', isif=7, nsw=5,
                ibrion=1, ediffg=-1e-3, lwave=False, lcharg=False)
    calc.calculate(Al)

    # Explicitly parse atomic position output file from Vasp
    CONTCAR_Al = io.read('CONTCAR', format='vasp')

    print('Stress after relaxation:\n', calc.read_stress())

    print('Al cell post relaxation from calc:\n', calc.get_atoms().get_cell())
    print('Al cell post relaxation from atoms:\n', Al.get_cell())
    print('Al cell post relaxation from CONTCAR:\n', CONTCAR_Al.get_cell())

    # All the cells should be the same.
    assert (calc.get_atoms().get_cell() == CONTCAR_Al.get_cell()).all()
    assert (Al.get_cell() == CONTCAR_Al.get_cell()).all()

    return Al
Exemplo n.º 17
0
# creates: a1.png a2.png a3.png cnt1.png cnt2.png gnr1.png gnr2.png
from ase.io import write
from ase.build import bulk
from ase.build import nanotube, graphene_nanoribbon
import numpy as np

for i, a in enumerate(
    [bulk('Cu', 'fcc', a=3.6),
     bulk('Cu', 'fcc', a=3.6, orthorhombic=True),
     bulk('Cu', 'fcc', a=3.6, cubic=True)]):
    write('a%d.pov' % (i + 1), a,
          show_unit_cell=2, display=False, run_povray=True)

cnt1 = nanotube(6, 0, length=4, vacuum=2.5)
cnt1.rotate('x', 'z', rotate_cell=True)
cnt2 = nanotube(3, 3, length=6, bond=1.4, symbol='Si', vacuum=2.5)
cnt2.rotate('x', 'z', rotate_cell=True)

for i, a in enumerate([cnt1, cnt2]):
    write('cnt%d.pov' % (i + 1), a,
          show_unit_cell=2, display=False, run_povray=True)

ind = [2, 0, 1]
gnr1 = graphene_nanoribbon(3, 4, type='armchair', saturated=True, vacuum=2.5)
gnr1.set_cell(np.diag(gnr1.cell)[ind])
gnr1.positions = gnr1.positions[:, ind]
gnr2 = graphene_nanoribbon(2, 6, type='zigzag', saturated=True,
                           C_H=1.1, C_C=1.4, vacuum=3.0,
                           magnetic=True, initial_mag=1.12)
gnr2.set_cell(np.diag(gnr2.cell)[ind])
gnr2.positions = gnr2.positions[:, ind]
Exemplo n.º 18
0
"""

Check the many ways of specifying KPOINTS

"""

import os
import filecmp

from ase.calculators.vasp import Vasp
from ase.build import bulk

Al = bulk('Al', 'fcc', a=4.5, cubic=True)


def check_kpoints_line(n, contents):
    """Assert the contents of a line"""
    with open('KPOINTS', 'r') as f:
        lines = f.readlines()
        assert lines[n] == contents

# Default to (1 1 1)

calc = Vasp(gamma=True)
calc.write_kpoints()
check_kpoints_line(2, 'Gamma\n')
check_kpoints_line(3, '1 1 1 \n')
calc.clean()

# 3-tuple prints mesh
calc = Vasp(gamma=False, kpts=(4, 4, 4))
Exemplo n.º 19
0
"""

# Import modules
from ase import Atom
from ase.build import bulk
from icet import ClusterSpace
from icet.tools.structure_generation import (generate_sqs,
                                             generate_sqs_from_supercells,
                                             generate_sqs_by_enumeration,
                                             generate_target_structure)

from icet.input_output.logging_tools import set_log_config
set_log_config(level='INFO')

# Generate SQS for binary fcc, 50 % concentration
primitive_structure = bulk('Au')
cs = ClusterSpace(primitive_structure, [8.0, 4.0], ['Au', 'Pd'])
target_concentrations = {'Au': 0.5, 'Pd': 0.5}
sqs = generate_sqs(cluster_space=cs,
                   max_size=8,
                   target_concentrations=target_concentrations)
print('Cluster vector of generated structure:', cs.get_cluster_vector(sqs))

# Generate SQS for binary fcc with specified supercells
supercells = [primitive_structure.repeat((1, 2, 4))]
sqs = generate_sqs_from_supercells(cluster_space=cs,
                                   supercells=supercells,
                                   n_steps=10000,
                                   target_concentrations=target_concentrations)
print('Cluster vector of generated structure:', cs.get_cluster_vector(sqs))
Exemplo n.º 20
0
assert np.allclose(correct_pos, positions)

# Test center away from values 0, 0.5
result_positions = wrap_positions(positions, cell,
                                  pbc=[True, True, False],
                                  center=0.2)
correct_pos = [[4.7425, 1.2575, 8.7425],
               [2.0275, 3.9725, 8.7425],
               [3.385, 2.615, 10.1],
               [-0.6875, 1.2575, 8.7425],
               [6.1, -0.1, 10.1],
               [3.385, -2.815, 10.1],
               [2.0275, -1.4575, 8.7425],
               [0.67, -0.1, 10.1]]
assert np.allclose(correct_pos, result_positions)

# Get the correct crystal structure from a range of different cells
assert crystal_structure_from_cell(bulk('Al').get_cell()) == 'fcc'
assert crystal_structure_from_cell(bulk('Fe').get_cell()) == 'bcc'
assert crystal_structure_from_cell(bulk('Zn').get_cell()) == 'hexagonal'
cell = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
assert crystal_structure_from_cell(cell) == 'cubic'
cell = [[1, 0, 0], [0, 1, 0], [0, 0, 2]]
assert crystal_structure_from_cell(cell) == 'tetragonal'
cell = [[1, 0, 0], [0, 2, 0], [0, 0, 3]]
assert crystal_structure_from_cell(cell) == 'orthorhombic'
cell = [[1, 0, 0], [0, 2, 0], [0, 1, 3]]
assert crystal_structure_from_cell(cell) == 'monoclinic'


Exemplo n.º 21
0
import numpy as np

from ase.calculators.emt import EMT
from ase.build import bulk
from ase.optimize import FIRE

a = bulk('Au')
a *= (2, 2, 2)

a[0].x += 0.5

a.set_calculator(EMT())

opt = FIRE(a, dtmax=1.0, dt=1.0, maxmove=100.0, downhill_check=False)
opt.run(fmax=0.001)
e1 = a.get_potential_energy()
n1 = opt.nsteps

a = bulk('Au')
a *= (2, 2, 2)

a[0].x += 0.5

a.set_calculator(EMT())

reset_history = []


def callback(a, r, e, e_last):
    reset_history.append([e - e_last])
Exemplo n.º 22
0
# Refer to G. Kresse, Phys. Rev. B 73, 045112 (2006)
# for comparison of macroscopic and microscopic dielectric constant
# and absorption peaks.
from __future__ import print_function

from ase.build import bulk
from ase.parallel import paropen
from gpaw import GPAW, FermiDirac
from gpaw.response.df import DielectricFunction

# Ground state calculation
a = 5.431
atoms = bulk('Si', 'diamond', a=a)

calc = GPAW(mode='pw',
            kpts={
                'density': 5.0,
                'gamma': True
            },
            parallel={'band': 1},
            xc='LDA',
            occupations=FermiDirac(0.001))  # Use small FD smearing

atoms.set_calculator(calc)
atoms.get_potential_energy()  # Get ground state density

# Restart Calculation with fixed density and dense kpoint sampling
calc.set(
    kpts={
        'density': 15.0,
        'gamma': False
Exemplo n.º 23
0
from numpy.random import RandomState
from ase.phonons import Phonons
from ase.data import atomic_numbers
from ase.optimize import FIRE
#from asap3 import EMT
from ase.calculators.emt import EMT
from ase.build import bulk
from ase.md.velocitydistribution import PhononHarmonics
from ase import units

# Tests the phonon-based perturbation and velocity distribution
# for thermal equilibration in MD.

rng = RandomState(17)

atoms = bulk('Pd')
atoms *= (3, 3, 3)
avail = [atomic_numbers[sym] for sym in ['Ni', 'Cu', 'Pd', 'Ag', 'Pt', 'Au']]
atoms.numbers[:] = rng.choice(avail, size=len(atoms))
atoms.calc = EMT()

opt = FIRE(atoms, trajectory='relax.traj')
opt.run(fmax=0.001)
positions0 = atoms.positions.copy()

phonons = Phonons(atoms, EMT(), supercell=(1, 1, 1), delta=0.05)

try:
    phonons.run()
    phonons.read()  # Why all this boilerplate?
finally:
Exemplo n.º 24
0
# creates: cu.png
from ase.build import bulk
from ase.calculators.test import FreeElectrons

a = bulk('Cu')
a.calc = FreeElectrons(nvalence=1,
                       kpts={'path': 'GXWLGK', 'npoints': 200})
a.get_potential_energy()
bs = a.calc.band_structure()
bs.plot(emax=10, filename='cu.png')
Exemplo n.º 25
0
from __future__ import print_function
from ase import Atoms
from ase.build import bulk
from gpaw import GPAW
from gpaw import PW

cell = bulk('Si', 'fcc', a=5.421).get_cell()
a = Atoms('Si2',
          cell=cell,
          pbc=True,
          scaled_positions=((0, 0, 0), (0.25, 0.25, 0.25)))

for x in [100, 200, 300, 400, 500, 600, 700, 800]:
    # for x in [0.24, 0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.1]:
    calc = GPAW(
        mode=PW(x),
        # h=x,
        xc='PBE',
        kpts=(4, 4, 4),
        txt='convergence_%s.txt' % x)

    a.set_calculator(calc)

    print(x, a.get_potential_energy())
Exemplo n.º 26
0
def system():
    return bulk('Al', 'fcc', a=4.5, cubic=True)
Exemplo n.º 27
0
from __future__ import print_function
from ase.build import bulk

import os

import sys
sys.path.append('/home/efefer/WORKS/my_github_repos/')
from qeManager import *

atoms = bulk('Fe')

pspFiles = ['Fe.pbe-spn-kjpaw_psl.0.2.1.UPF']

pwinput = PWSCFInput(atoms,
                     pspFiles,
                     filename='PWINPUT',
                     kpt_automatic=True,
                     Nk=[8, 8, 8])

pwinput.filename = 'PWINPUT_scf'
pwinput.CONTROL.pseudo_dir = '/home/efefer/pseudo'
pwinput.set_smearing()
pwinput.write()
#os.system('pw.x < PWINPUT_scf > LOG_scf')

pwinput.set_calc_bands('fcc', Nkpts=100)
pwinput.filename = 'PWINPUT_bands'
pwinput.write()
#os.system('pw.x < PWINPUT_bands > LOG_bands')

xcoords = pwinput.bands_xcoords
Exemplo n.º 28
0
from numpy import linspace

from ase.calculators.fleur import FLEUR
from ase.build import bulk
from ase.io.trajectory import Trajectory

atoms = bulk('Ni', a=3.52)
calc = FLEUR(xc='PBE', kmax=3.6, kpts=(10, 10, 10), workdir='lat_const')
atoms.set_calculator(calc)
traj = Trajectory('Ni.traj','w', atoms)
cell0 = atoms.get_cell()
for s in linspace(0.95, 1.05, 7):
    cell = cell0 * s
    atoms.set_cell((cell))
    ene = atoms.get_potential_energy()
    traj.write()

Exemplo n.º 29
0
def test_hcp():
    import numpy as np
    from ase.io import read, Trajectory
    from ase.build import bulk
    from ase.calculators.emt import EMT

    class NDPoly:
        def __init__(self, ndims=1, order=3):
            """Multivariate polynomium.

            ndims: int
                Number of dimensions.
            order: int
                Order of polynomium."""

            if ndims == 0:
                exponents = [()]
            else:
                exponents = []
                for i in range(order + 1):
                    E = NDPoly(ndims - 1, order - i).exponents
                    exponents += [(i, ) + tuple(e) for e in E]
            self.exponents = np.array(exponents)
            self.c = None

        def __call__(self, *x):
            """Evaluate polynomial at x."""
            return np.dot(self.c, (x**self.exponents).prod(1))

        def fit(self, x, y):
            """Fit polynomium at points in x to values in y."""
            A = (x**self.exponents[:, np.newaxis]).prod(2)
            self.c = np.linalg.solve(np.inner(A, A), np.dot(A, y))

    def polyfit(x, y, order=3):
        """Fit polynomium at points in x to values in y.

        With D dimensions and N points, x must have shape (N, D) and y
        must have length N."""

        p = NDPoly(len(x[0]), order)
        p.fit(x, y)
        return p

    a0 = 3.52 / np.sqrt(2)
    c0 = np.sqrt(8 / 3.0) * a0
    print('%.4f %.3f' % (a0, c0 / a0))
    for i in range(3):
        traj = Trajectory('Ni.traj', 'w')
        eps = 0.01
        for a in a0 * np.linspace(1 - eps, 1 + eps, 4):
            for c in c0 * np.linspace(1 - eps, 1 + eps, 4):
                ni = bulk('Ni', 'hcp', a=a, covera=c / a)
                ni.set_calculator(EMT())
                ni.get_potential_energy()
                traj.write(ni)
        traj.close()

        configs = read('Ni.traj', index=':')
        energies = [config.get_potential_energy() for config in configs]
        ac = [(config.cell[0, 0], config.cell[2, 2]) for config in configs]
        p = polyfit(ac, energies, 2)
        from scipy.optimize import fmin_bfgs
        a0, c0 = fmin_bfgs(p, (a0, c0))
        print('%.4f %.3f' % (a0, c0 / a0))
    assert abs(a0 - 2.466) < 0.001
    assert abs(c0 / a0 - 1.632) < 0.005
Exemplo n.º 30
0
'Test ase.dft.wannier module with k-points.'
from __future__ import print_function
from ase.build import bulk
from ase.dft.wannier import Wannier

from gpaw import GPAW
from gpaw.mpi import world, serial_comm

si = bulk('Si', 'diamond', a=5.43)

k = 4
if 1:
    si.calc = GPAW(kpts=(k, k, k), txt='Si-ibz.txt')
    e1 = si.get_potential_energy()
    si.calc.write('Si-ibz.gpw', mode='all')
    si.calc.set(symmetry={'point_group': False, 'time_reversal': False},
                txt='Si-bz.txt')
    e2 = si.get_potential_energy()
    si.calc.write('Si-bz.gpw', mode='all')
    print((e1, e2))

    
def wan(calc):
    centers = [([0.125, 0.125, 0.125], 0, 1.5),
               ([0.125, 0.625, 0.125], 0, 1.5),
               ([0.125, 0.125, 0.625], 0, 1.5),
               ([0.625, 0.125, 0.125], 0, 1.5)]
    w = Wannier(4, calc,
                nbands=4,
                verbose=1,
                initialwannier=centers)
Exemplo n.º 31
0
The molecules are first converted to molecular graphs using an 'adjacency rule'
as described in Tang & de Jong https://doi.org/10.1063/1.5078640, then computed
using the marginalized graph kernel.
"""
import numpy as np
import pandas as pd
from ase.build import molecule, bulk
from graphdot import Graph
from graphdot.kernel.molecular import Tang2019MolecularKernel

# build sample molecules
small_title = ['H2O', 'HCl', 'NaCl']
bulk_title = ['NaCl-bulk', 'NaCl-bulk2']
bulk = [
    bulk('NaCl', 'rocksalt', a=5.64),
    bulk('NaCl', 'rocksalt', a=5.66),
]
molecules = [molecule(name) for name in small_title] + bulk

# convert to molecular graphs
graphs = [Graph.from_ase(m) for m in molecules]

# use pre-defined molecular kernel
kernel = Tang2019MolecularKernel(edge_length_scale=0.1)

R = kernel(graphs)

# normalize the similarity matrix
d = np.diag(R)**-0.5
K = np.diag(d).dot(R).dot(np.diag(d))
Exemplo n.º 32
0
Arquivo: Cu.py Projeto: thonmaker/gpaw
from ase.build import bulk
from gpaw import GPAW, FermiDirac, PW

a = bulk('Cu', 'fcc')

calc = GPAW(mode=PW(600),
            xc='PBE',
            occupations=FermiDirac(width=0.1),
            kpts=(12, 12, 12),
            txt='Cu_scf.txt')
a.set_calculator(calc)
a.get_potential_energy()

calc.set(kpts={
    'size': (4, 4, 4),
    'gamma': True
},
         nbands=30,
         symmetry='off',
         fixdensity=True,
         txt='Cu_nscf.txt',
         convergence={'bands': 20})
calc.get_potential_energy()

calc.write('Cu.gpw', mode='all')
"""
Add a short description of what is actually being tested here.
"""

import itertools
import numpy.testing as npt

from ase.build import bulk, cut
from icet import ClusterSpace

# initializes cluster space and get the internal primitive structure
prim = bulk('Au', a=4.0, crystalstructure='hcp')
subelements = ['Au', 'Pd']
cutoffs = [0.0]

cs = ClusterSpace(prim, cutoffs, subelements)
structure_prim = cs.primitive_structure

# create a supercell using permutation matrix
p_trial = [[1, 0, 0], [0, 1, 5], [0, 0, 2]]
supercell = cut(structure_prim, p_trial[0], p_trial[1], p_trial[2])

# setup cartesian input to generate a random population
cartesian_product_input = []
for i in range(len(supercell)):
    cartesian_product_input.append(['Pd', 'Au'])

# loop over element combinations and assert expected singlet value
for subset in itertools.product(*cartesian_product_input):
    for atom, element in zip(supercell, subset):
        atom.symbol = element
Exemplo n.º 34
0
# additional tests of the extended XYZ file I/O
# (which is also included in oi.py test case)
# maintainted by James Kermode <*****@*****.**>

import os

import numpy as np

import ase.io
from ase.atoms import Atoms
from ase.build import bulk

# array data of shape (N, 1) squeezed down to shape (N, ) -- bug fixed
# in commit r4541
at = bulk('Si')
ase.io.write('to.xyz', at, format='extxyz')
at.arrays['ns_extra_data'] = np.zeros((len(at), 1))
assert at.arrays['ns_extra_data'].shape == (2, 1)

ase.io.write('to_new.xyz', at, format='extxyz')
at_new = ase.io.read('to_new.xyz')
assert at_new.arrays['ns_extra_data'].shape == (2,)

os.unlink('to.xyz')
os.unlink('to_new.xyz')

# write sequence of images with different numbers of atoms -- bug fixed
# in commit r4542
images = [at, at * (2, 1, 1), at * (3, 1, 1)]
ase.io.write('multi.xyz', images, format='extxyz')
read_images = ase.io.read('multi.xyz@:')
Exemplo n.º 35
0
def make_supercell_cu():
    crys = bulk('Cu', 'fcc', a=3.6, orthorhombic=True)
    P = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) * 5
    return make_supercell(crys, P)
Exemplo n.º 36
0
# creates: s1.png s2.png s3.png s4.png general_surface.pdf
from ase.build import surface
s1 = surface('Au', (2, 1, 1), 9)
s1.center(vacuum=10, axis=2)

from ase.build import bulk
Mobulk = bulk('Mo', 'bcc', a=3.16, cubic=True)
s2 = surface(Mobulk, (3, 2, 1), 9)
s2.center(vacuum=10, axis=2)

a = 4.0
from ase import Atoms
Pt3Rh = Atoms('Pt3Rh',
              scaled_positions=[(0, 0, 0),
                                (0.5, 0.5, 0),
                                (0.5, 0, 0.5),
                                (0, 0.5, 0.5)],
              cell=[a, a, a],
              pbc=True)
s3 = surface(Pt3Rh, (2, 1, 1), 9)
s3.center(vacuum=10, axis=2)

Pt3Rh.set_chemical_symbols('PtRhPt2')
s4 = surface(Pt3Rh, (2, 1, 1), 9)
s4.center(vacuum=10, axis=2)

from ase.io import write
for atoms, name in [(s1, 's1'), (s2, 's2'), (s3, 's3'), (s4, 's4')]:
    write(name + '.pov', atoms,
          rotation='-90x',
          show_unit_cell=2,
Exemplo n.º 37
0
def make_supercell_li():
    crys = bulk('Li', 'bcc', a=3.51, orthorhombic=True)
    P = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) * 10
    return make_supercell(crys, P)
Exemplo n.º 38
0
from gpaw import GPAW, ConvergenceError, restart
from gpaw.mixer import MixerSum
from gpaw.test import equal
from ase.build import bulk

# bulk Fe with k-point, band, and domain parallelization
a = 2.87
atoms = bulk('Fe', 'bcc', a=a)
atoms.set_initial_magnetic_moments([2.2])
calc = GPAW(h=0.20,
            eigensolver='rmm-diis',
            mixer=MixerSum(0.1, 3),
            nbands=6,
            kpts=(4, 4, 4),
            parallel={'band': 2, 'domain': (2, 1, 1)},
            maxiter=4)
atoms.set_calculator(calc)
try:
    atoms.get_potential_energy()
except ConvergenceError:
    pass
calc.write('tmp.gpw', mode='all')

# Continue calculation for few iterations
atoms, calc = restart('tmp.gpw',
                      eigensolver='rmm-diis',
                      mixer=MixerSum(0.1, 3),
                      parallel={'band': 2, 'domain': (1, 1, 2)},
                      maxiter=4)
try:
    atoms.get_potential_energy()
Exemplo n.º 39
0
from ase.build import bulk
from gpaw import GPAW
si = bulk('Si', 'diamond', a=5.5, cubic=not True)
si.set_calculator(GPAW(setups='ah', kpts=(2, 2, 2)))
si.get_potential_energy()
si.calc.write('Si.gpw', 'all')
GPAW('Si.gpw')
Exemplo n.º 40
0
from ase.build import bulk
from gpaw import GPAW, FermiDirac
from gpaw.wavefunctions.pw import PW

# Plane wave cutoff
pwcutoff = 400.0

# NxNxN k-point sampling
k = 4

# Si lattice constant
alat = 5.421

# bulk calculation
bulk_crystal = bulk('Si', 'diamond', a=alat)
bulk_calc = GPAW(
    mode=PW(pwcutoff),
    parallel={
        'domain': 1,
        'band': 1
    },
    kpts={
        'size': (k, k, k),
        'gamma': True
    },  # gamma-centred grid
    xc='PBE',
    occupations=FermiDirac(0.01),
    txt='si.rpa.pbe_output.txt')

bulk_crystal.set_calculator(bulk_calc)
e0_bulk_pbe = bulk_crystal.get_potential_energy()
Exemplo n.º 41
0
    def test_periodic_images(self):
        """Tests that periodic images are handled correctly.
        """
        decay = 1
        desc = MBTR(
            species=[1],
            periodic=True,
            k1={
                "geometry": {"function": "atomic_number"},
                "grid": {"min": 0, "max": 2, "sigma": 0.1, "n": 21}
            },
            k2={
                "geometry": {"function": "inverse_distance"},
                "grid": {"min": 0, "max": 1.0, "sigma": 0.02, "n": 21},
                "weighting": {"function": "exp", "scale": decay, "cutoff": 1e-4}
            },
            k3={
                "geometry": {"function": "cosine"},
                "grid": {"min": -1.0, "max": 1.0, "sigma": 0.02, "n": 21},
                "weighting": {"function": "exp", "scale": decay, "cutoff": 1e-4},
            },
            normalization="l2_each",  # This normalizes the spectrum
            flatten=True
        )

        # Tests that a system has the same spectrum as the supercell of
        # the same system.
        molecule = H.copy()
        a = 1.5
        molecule.set_cell([
            [a, 0.0, 0.0],
            [0.0, a, 0.0],
            [0.0, 0.0, a]
        ])
        cubic_cell = desc.create(molecule)
        suce = molecule * (2, 1, 1)
        cubic_suce = desc.create(suce)

        diff = abs(np.sum(cubic_cell[0, :] - cubic_suce[0, :]))
        cubic_sum = abs(np.sum(cubic_cell[0, :]))
        self.assertTrue(diff/cubic_sum < 0.05)  # A 5% error is tolerated

        # Same test but for triclinic cell
        molecule.set_cell([
            [0.0, 2.0, 1.0],
            [1.0, 0.0, 1.0],
            [1.0, 2.0, 0.0]
        ])

        triclinic_cell = desc.create(molecule)
        suce = molecule * (2, 1, 1)
        triclinic_suce = desc.create(suce)

        diff = abs(np.sum(triclinic_cell[0, :] - triclinic_suce[0, :]))
        tricl_sum = abs(np.sum(triclinic_cell[0, :]))
        self.assertTrue(diff/tricl_sum < 0.05)

        # Testing that the same crystal, but different unit cells will have a
        # similar spectrum when they are normalized. There will be small
        # differences in the shape (due to not double counting distances)
        a1 = bulk('H', 'fcc', a=2.0)
        a2 = bulk('H', 'fcc', a=2.0, orthorhombic=True)
        a3 = bulk('H', 'fcc', a=2.0, cubic=True)

        triclinic_cell = desc.create(a1)
        orthorhombic_cell = desc.create(a2)
        cubic_cell = desc.create(a3)

        diff1 = abs(np.sum(triclinic_cell[0, :] - orthorhombic_cell[0, :]))
        diff2 = abs(np.sum(triclinic_cell[0, :] - cubic_cell[0, :]))
        tricl_sum = abs(np.sum(triclinic_cell[0, :]))
        self.assertTrue(diff1/tricl_sum < 0.05)
        self.assertTrue(diff2/tricl_sum < 0.05)

        # Tests that the correct peak locations are present in a cubic periodic
        desc = MBTR(
            species=["H"],
            periodic=True,
            k3={
                "geometry": {"function": "cosine"},
                "grid": {"min": -1.1, "max": 1.1, "sigma": 0.010, "n": 600},
                "weighting": {"function": "exp", "scale": decay, "cutoff": 1e-4}
            },
            normalization="l2_each",  # This normalizes the spectrum
            flatten=True
        )
        a = 2.2
        system = Atoms(
            cell=[
                [a, 0.0, 0.0],
                [0.0, a, 0.0],
                [0.0, 0.0, a]
            ],
            positions=[
                [0, 0, 0],
            ],
            symbols=["H"],
        )
        cubic_spectrum = desc.create(system)[0, :]
        x3 = desc.get_k3_axis()

        peak_ids = find_peaks_cwt(cubic_spectrum, [2])
        peak_locs = x3[peak_ids]

        assumed_peaks = np.cos(np.array(
            [
                180,
                90,
                np.arctan(np.sqrt(2))*180/np.pi,
                45,
                np.arctan(np.sqrt(2)/2)*180/np.pi,
                0
            ])*np.pi/180
        )
        self.assertTrue(np.allclose(peak_locs, assumed_peaks, rtol=0, atol=5*np.pi/180))

        # Tests that the correct peak locations are present in a system with a
        # non-cubic basis
        desc = MBTR(
            species=["H"],
            periodic=True,
            k3={
                "geometry": {"function": "cosine"},
                "grid": {"min": -1.0, "max": 1.0, "sigma": 0.030, "n": 200},
                "weighting": {"function": "exp", "scale": 1.5, "cutoff": 1e-4}
            },
            normalization="l2_each",  # This normalizes the spectrum
            flatten=True,
            sparse=False
        )
        a = 2.2
        system = Atoms(
            cell=[
                [a, 0.0, 0.0],
                [0.0, a, 0.0],
                [0.0, 0.0, a]
            ],
            positions=[
                [0, 0, 0],
            ],
            symbols=["H"],
        )
        angle = 30
        system = Atoms(
            cell=ase.geometry.cellpar_to_cell([3*a, a, a, angle, 90, 90]),
            positions=[
                [0, 0, 0],
            ],
            symbols=["H"],
        )
        tricl_spectrum = desc.create(system)
        x3 = desc.get_k3_axis()

        peak_ids = find_peaks_cwt(tricl_spectrum[0, :], [3])
        peak_locs = x3[peak_ids]

        angle = (6)/(np.sqrt(5)*np.sqrt(8))
        assumed_peaks = np.cos(np.array([180, 105, 75, 51.2, 30, 0])*np.pi/180)
        self.assertTrue(np.allclose(peak_locs, assumed_peaks, rtol=0, atol=5*np.pi/180))
Exemplo n.º 42
0
from dscribe.descriptors import SineMatrix

# Setting up the sine matrix descriptor
sm = SineMatrix(n_atoms_max=6,
                permutation="sorted_l2",
                sparse=False,
                flatten=True)

# Creation
from ase.build import bulk

# NaCl crystal created as an ASE.Atoms
nacl = bulk("NaCl", "rocksalt", a=5.64)

# Create output for the system
nacl_sine = sm.create(nacl)

# Create output for multiple system
al = bulk("Al", "fcc", a=4.046)
fe = bulk("Fe", "bcc", a=2.856)
samples = [nacl, al, fe]
sine_matrices = sm.create(samples)  # Serial
sine_matrices = sm.create(samples, n_jobs=2)  # Parallel

# Visualization
import numpy as np
from ase import Atoms
import matplotlib.pyplot as mpl
from mpl_toolkits.axes_grid1 import make_axes_locatable

# FCC aluminum crystal
Exemplo n.º 43
0
def test_fcc_bcc(comparator):
    s1 = bulk("Al", crystalstructure="fcc")
    s2 = bulk("Al", crystalstructure="bcc", a=4.05)
    s1 = s1 * (2, 2, 2)
    s2 = s2 * (2, 2, 2)
    assert not comparator.compare(s1, s2)
Exemplo n.º 44
0
def test_new_style_interface():
    calc = LennardJones()
    atoms = bulk('Cu')
    rattle_calc(atoms, calc)
Exemplo n.º 45
0
from ase.db import connect
from al_mlp.base_calcs.morse import MultiMorse
from al_mlp.atomistic_methods import Relaxation

from amptorch.trainer import AtomsTrainer

parent_calc = EMT()
# Make a simple C on Cu slab.
# Sets calculator to parent_calc.

energies = []
volumes = []
LC = [3.5, 3.55, 3.6, 3.65, 3.7, 3.75]

for a in LC:
    cu_bulk = bulk("Cu", "fcc", a=a)

    calc = EMT()

    cu_bulk.set_calculator(calc)

    e = cu_bulk.get_potential_energy()
    energies.append(e)
    volumes.append(cu_bulk.get_volume())


eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()
aref = 3.6
vref = bulk("Cu", "fcc", a=aref).get_volume()
Exemplo n.º 46
0
from ase.db import connect
from ase.build import bulk

DB_NAME = 'kanzaki.db'

atoms = bulk('Al', cubic=True) * (3, 3, 3)
db = connect(DB_NAME)
# db.write(atoms, group=0, comment="Pure aluminium reference")
# atoms[0].symbol = 'Mg'
# db.write(atoms, group=1, comment="Single Mg")

# atoms[0].symbol = 'Si'
# db.write(atoms, group=2, comment="Single Si")
Exemplo n.º 47
0
because newer versions do not include eigenvalues,
Fermi levels, ... in the 'results.tag' file,
which the ASE interface relies upon.
"""
import os
import numpy as np
from ase.build import bulk
from ase.io import write
from ase.io.jsonio import write_json, read_json
from ase.units import Bohr
from ase.data import atomic_numbers, covalent_radii
from hotcent.atomic_dft import AtomicDFT
from hotcent.confinement import PowerConfinement
from hotcent.tools import ConfinementOptimizer, DftbPlusBandStructure

atoms = bulk('NO', 'zincblende', a=3.6)
atoms.set_initial_magnetic_moments([1., 0.])
write('NO.traj', atoms)

if not os.path.exists('bs_dft.json'):
    from ase.dft.kpoints import bandpath
    from ase.dft.band_structure import get_band_structure
    from gpaw import GPAW, PW, MixerSum, FermiDirac
    from gpaw.eigensolvers import CG

    calc = GPAW(
        mode=PW(400),
        maxiter=250,
        spinpol=True,
        kpts=(3, 3, 3),
        xc='LDA',
Exemplo n.º 48
0
from ase.dft.kpoints import monkhorst_pack

assert [0, 0, 0] in  monkhorst_pack((1, 3, 5)).tolist()
assert [0, 0, 0] not in  monkhorst_pack((1, 3, 6)).tolist()
assert len(monkhorst_pack((3, 4, 6))) == 3 * 4 * 6

from ase.units import Hartree, Bohr, kJ, mol, kcal, kB, fs
print(Hartree, Bohr, kJ/mol, kcal/mol, kB*300, fs, 1/fs)

from ase.build import bulk
hcp = bulk('X', 'hcp', a=1) * (2, 2, 1)
assert abs(hcp.get_distance(0, 3, mic=True) - 1) < 1e-12
assert abs(hcp.get_distance(0, 4, mic=True) - 1) < 1e-12
assert abs(hcp.get_distance(2, 5, mic=True) - 1) < 1e-12
Exemplo n.º 49
0
Arquivo: vap.py Projeto: Bismarrck/vap
def test_cache():
    atoms = bulk('Ni', crystalstructure='fcc', cubic=True)
    symbols = atoms.get_chemical_symbols()
    rc = 4.6
    nij_max = 4678
    max_occurs = Counter({'Ni': 108, "Mo": 54})
    angular = False
    eta = np.array([0.05, 4.0, 20.0, 80.0])
    omega = np.array([0.0])
    beta = np.array([
        0.005,
    ])
    gamma = np.array([1.0, -1.0])
    zeta = np.array([1.0, 4.0])
    params = {
        'eta': eta,
        'omega': omega,
        'gamma': gamma,
        'zeta': zeta,
        'beta': beta
    }

    with tf.Graph().as_default():
        vap = VirtualAtomMap(max_occurs, symbols)
        sf = BatchSymmetryFunction(rc,
                                   max_occurs,
                                   nij_max,
                                   0,
                                   batch_size=1,
                                   angular=angular,
                                   **params)

        positions = vap.map_array_to_gsl(atoms.positions).astype(np.float32)
        cells = atoms.cell.array.astype(np.float32)
        atom_masks = vap.atom_masks.astype(np.float32)
        g2_map = get_g2_map(atoms,
                            rc,
                            nij_max,
                            sf.all_kbody_terms,
                            vap,
                            sf.offsets,
                            for_prediction=False)
        composition = np.zeros(len(sf.elements), dtype=np.float32)
        for element, count in Counter(symbols).items():
            composition[sf.elements.index(element)] = np.float32(count)

        cache_dict = {
            'positions': bytes_feature(positions.tostring()),
            'cells': bytes_feature(cells.tostring()),
            'n_atoms': int32_feature(len(atoms)),
            'volume': float_feature(np.float32(atoms.get_volume())),
            'y_true': float_feature(np.float32(0.0)),
            'mask': bytes_feature(atom_masks.tostring()),
            'composition': bytes_feature(composition.tostring()),
            'pulay': float_feature(np.float32(0.0)),
        }
        for key, value in g2_map.items():
            cache_dict[key] = bytes_feature(value.tostring())

        forces = vap.map_array_to_gsl(np.zeros((4, 3))).astype(np.float32)
        cache_dict['f_true'] = bytes_feature(forces.tostring())
        virial = np.zeros(6, np.float32)
        cache_dict['stress'] = bytes_feature(virial.tostring())

        with tf.python_io.TFRecordWriter("test.tfrecords") as writer:
            example = tf.train.Example(features=tf.train.Features(
                feature=cache_dict))
            writer.write(example.SerializeToString())
Exemplo n.º 50
0
# creates: precon.png

from ase.build import bulk
from ase.calculators.emt import EMT
from ase.optimize.precon import Exp, PreconLBFGS

from ase.calculators.loggingcalc import LoggingCalculator
import matplotlib.pyplot as plt

a0 = bulk('Cu', cubic=True)
a0 *= [3, 3, 3]
del a0[0]
a0.rattle(0.1)

nsteps = []
energies = []
log_calc = LoggingCalculator(EMT())

for precon, label in [(None, 'None'), (Exp(A=3), 'Exp(A=3)')]:
    log_calc.label = label
    atoms = a0.copy()
    atoms.set_calculator(log_calc)
    opt = PreconLBFGS(atoms, precon=precon, use_armijo=True)
    opt.run(fmax=1e-3)

log_calc.plot(markers=['r-', 'b-'], energy=False, lw=2)
plt.savefig('precon.png')
Exemplo n.º 51
0
def main():
    """Adopted from ase/test/stress.py"""

    if "ASE_CP2K_COMMAND" not in os.environ:
        raise NotAvailable('$ASE_CP2K_COMMAND not defined')

    # setup a Fist Lennard-Jones Potential
    inp = """&FORCE_EVAL
                  &MM
                    &FORCEFIELD
                      &SPLINE
                        EMAX_ACCURACY 500.0
                        EMAX_SPLINE    1000.0
                        EPS_SPLINE 1.0E-9
                      &END
                      &NONBONDED
                        &LENNARD-JONES
                          atoms Ar Ar
                          EPSILON [eV] 1.0
                          SIGMA [angstrom] 1.0
                          RCUT [angstrom] 10.0
                        &END LENNARD-JONES
                      &END NONBONDED
                      &CHARGE
                        ATOM Ar
                        CHARGE 0.0
                      &END CHARGE
                    &END FORCEFIELD
                    &POISSON
                      &EWALD
                        EWALD_TYPE none
                      &END EWALD
                    &END POISSON
                  &END MM
                &END FORCE_EVAL"""

    calc = CP2K(label="test_stress", inp=inp, force_eval_method="Fist")

    vol0 = 4 * 0.91615977036  # theoretical minimum
    a0 = vol0 ** (1 / 3)
    a = bulk('Ar', 'fcc', a=a0)
    a.calc = calc
    a.set_cell(np.dot(a.cell,
                      [[1.02, 0, 0.03],
                       [0, 0.99, -0.02],
                       [0.1, -0.01, 1.03]]),
               scale_atoms=True)

    a *= (1, 2, 3)
    a.rattle()
    sigma_vv = a.get_stress(voigt=False)
    # print(sigma_vv)
    # print(a.get_potential_energy() / len(a))
    vol = a.get_volume()

    # compare stress tensor with numeric derivative
    deps = 1e-5
    cell = a.cell.copy()
    for v in range(3):
        x = np.eye(3)
        x[v, v] += deps
        a.set_cell(np.dot(cell, x), scale_atoms=True)
        ep = a.calc.get_potential_energy(a, force_consistent=True)
        x[v, v] -= 2 * deps
        a.set_cell(np.dot(cell, x), scale_atoms=True)
        em = a.calc.get_potential_energy(a, force_consistent=True)
        s = (ep - em) / 2 / deps / vol
        # print(v, s, abs(s - sigma_vv[v, v]))
        assert abs(s - sigma_vv[v, v]) < 1e-7
    for v1 in range(3):
        v2 = (v1 + 1) % 3
        x = np.eye(3)
        x[v1, v2] = deps
        x[v2, v1] = deps
        a.set_cell(np.dot(cell, x), scale_atoms=True)
        ep = a.calc.get_potential_energy(a, force_consistent=True)
        x[v1, v2] = -deps
        x[v2, v1] = -deps
        a.set_cell(np.dot(cell, x), scale_atoms=True)
        em = a.calc.get_potential_energy(a, force_consistent=True)
        s = (ep - em) / deps / 4 / vol
        # print(v1, v2, s, abs(s - sigma_vv[v1, v2]))
        assert abs(s - sigma_vv[v1, v2]) < 1e-7

    # run a cell optimization, see if it finds back original crystal structure
    opt = MDMin(UnitCellFilter(a), dt=0.01, logfile=None)
    opt.run(fmax=0.1)
    # print(a.cell)
    for i in range(3):
        for j in range(3):
            x = np.dot(a.cell[i], a.cell[j])
            y = (i + 1) * (j + 1) * a0 ** 2 / 2
            if i != j:
                y /= 2
            # print(i, j, x, (x - y) / x)
            assert abs((x - y) / x) < 0.01

    print('passed test "stress"')
Exemplo n.º 52
0
                1,
            ],
            'eta': [0.036, 0.071]
        },
        'G5': {
            'Rs': [0],
            'lambda': [1],
            'zeta': [
                1,
            ],
            'eta': [0.036, 0.071]
        },
    }

    for a in [5.0]:  #, 5.4, 5.8]:
        si = bulk('Si', 'diamond', a=a, cubic=True)
        cell = si.get_cell()
        #cell[0,1] += 0.2
        si.set_cell(cell)
        print(si.get_cell())

        bp = ACSF(symmetry,
                  Rc=Rc,
                  derivative=True,
                  stress=True,
                  atom_weighted=False)
        des = bp.calculate(si, system=[14])

        #print("G:", des['x'][0])
        #print("Sequence", des['seq'][0])
        #print("GPrime", des['dxdr'][0])
Exemplo n.º 53
0
print("nbands = ", nbnd)
spath = elem_list[3]
print("path = ", spath)
nkpts = elem_list[4]
print("kpts = ", nkpts)
kpts = ast.literal_eval(nkpts)
La = float(elem_list[5])
print("lattice constant a = ", La)
Lb = float(elem_list[6])
print("lattice constant b = ", Lb)
Lc = float(elem_list[7])
print("lattice constant c = ", Lc)
Lalpha = float(elem_list[8])
print("alpha angle = ", Lalpha)

atoms = bulk(element, struct, a=La, b=Lb, c=Lc, alpha=Lalpha)
#atoms = bulk(element,struct)
# sc,fcc,bcc,tetragonal,bct,hcp,rhmbohedral,orthorhombic
# mlc, diamond,zincblende,rocksalt,cesiumchloride, fluorite, wurtzite

# First perform a regular SCF run
gbrv_pp = {}
ppdir = os.environ['ESPRESSO_PSEUDO']
sym = list(set(atoms.get_chemical_symbols()))

for s in sym:
    for f in os.listdir(ppdir):
        keys = f.split('_')
        if keys[0] == s.lower() and keys[1] == xc.lower():
            gbrv_pp[s] = f
Exemplo n.º 54
0
# creates: lattice_constant.csv

import numpy as np
a0 = 3.52 / np.sqrt(2)
c0 = np.sqrt(8 / 3.0) * a0

from ase.io import Trajectory
traj = Trajectory('Ni.traj', 'w')

from ase.build import bulk
from ase.calculators.emt import EMT
eps = 0.01
for a in a0 * np.linspace(1 - eps, 1 + eps, 3):
    for c in c0 * np.linspace(1 - eps, 1 + eps, 3):
        ni = bulk('Ni', 'hcp', a=a, c=c)
        ni.set_calculator(EMT())
        ni.get_potential_energy()
        traj.write(ni)

from ase.io import read
configs = read('Ni.traj@:')
energies = [config.get_potential_energy() for config in configs]
a = np.array([config.cell[0, 0] for config in configs])
c = np.array([config.cell[2, 2] for config in configs])

functions = np.array([a**0, a, c, a**2, a * c, c**2])
p = np.linalg.lstsq(functions.T, energies)[0]

p0 = p[0]
p1 = p[1:3]
p2 = np.array([(2 * p[3], p[4]),
Exemplo n.º 55
0
def Cbulk():
    Cbulk = bulk('C', crystalstructure='fcc', a=2 * 1.221791471)
    Cbulk = Cbulk.repeat([2, 1, 1])
    Cbulk.calc = EMT()
    return Cbulk
Exemplo n.º 56
0
                       -2.51338548e+00, -2.39650817e+00, -2.25058831e+00])

m_phi = np.array([6.27032242e+01, 3.49638589e+01, 1.79007014e+01,
                  8.69001383e+00, 4.51545250e+00, 2.83260884e+00,
                  1.93216616e+00, 1.06795515e+00, 3.37740836e-01,
                  1.61087890e-02, -6.20816372e-02, -6.51314297e-02,
                  -5.35210341e-02, -5.20950200e-02, -5.51709524e-02,
                  -4.89093894e-02, -3.28051688e-02, -1.13738785e-02,
                  2.33833655e-03, 4.19132033e-03, 1.68600692e-04])

m_densityf = spline(rs, m_density)
m_embeddedf = spline(rhos, m_embedded)
m_phif = spline(rs, m_phi)

a = 4.05  # Angstrom lattice spacing
al = bulk('Al', 'fcc', a=a)

mishin_approx = EAM(elements=['Al'], embedded_energy=np.array([m_embeddedf]),
                    electron_density=np.array([m_densityf]),
                    phi=np.array([[m_phif]]), cutoff=cutoff, form='alloy',
                    # the following terms are only required to write out a file
                    Z=[13], nr=n, nrho=n, dr=cutoff / n, drho=2. / n,
                    lattice=['fcc'], mass=[26.982], a=[a])

al.set_calculator(mishin_approx)
mishin_approx_energy = al.get_potential_energy()

mishin_approx.write_potential('Al99-test.eam.alloy')

mishin_check = EAM(potential='Al99-test.eam.alloy')
al.set_calculator(mishin_check)
Exemplo n.º 57
0
        name,
        'gw-' + name,
        nbands=8,
        integrate_gamma=0,
        kpts=[(0, 0, 0), (0.5, 0.5, 0)],  # Gamma, X
        ecut=40,
        domega0=0.1,
        eta=0.2,
        bands=(3, 7),  # h**o, lumo, lumo+1, lumo+2
    )
    results = gw.calculate()
    return e, results


a = 5.43
si1 = bulk('Si', 'diamond', a=a)
si2 = si1.copy()
si2.positions -= a / 8

i = 0
results = []
for si in [si1, si2]:
    for symm in [{}, 'off', {'time_reversal': False}, {'point_group': False}]:
        e, r = run(si, symm, str(i))
        G, X = r['eps'][0]
        results.append([e, G[0], G[1] - G[0], X[1] - G[0], X[2] - X[1]])
        G, X = r['qp'][0]
        results[-1].extend([G[0], G[1] - G[0], X[1] - G[0], X[2] - X[1]])
        i += 1

equal(
Exemplo n.º 58
0
def test_compare(comparator):
    s1 = bulk("Al")
    s1 = s1 * (2, 2, 2)
    s2 = bulk("Al")
    s2 = s2 * (2, 2, 2)
    assert comparator.compare(s1, s2)
Exemplo n.º 59
0
models_list = []
sites_list = []
classes_list = []

for i in range(num_examples):
    buildclass = randint(0, 1)

    L_wire = randint(100, 200)  # Wire length 20 nm
    W_wire = 50  #Wire width 100 Å
    a_wire = 5.6  #Lattice constant

    # # Create structure
    if buildclass == 'WZ':
        atoms = bulk('GaAs',
                     'wurtzite',
                     a_wire,
                     a_wire,
                     a_wire * 1.63,
                     orthorhombic=True)
        atoms = atoms.repeat((round(W_wire / a_wire), round(W_wire / a_wire),
                              round(L_wire / (a_wire * 1.63))))
    else:
        atoms = bulk('GaAs',
                     'zincblende',
                     a_wire,
                     a_wire,
                     a_wire,
                     orthorhombic=True)
        atoms = atoms.repeat((round(W_wire / a_wire), round(W_wire / a_wire),
                              round(L_wire / a_wire)))

    atoms.center(vacuum=0.0)