Exemplo n.º 1
0
def test_rattle():

    i = LJInteractions({('O', 'O'): (epsilon0, sigma0)})

    for calc in [
            TIP3P(),
            SimpleQMMM([0, 1, 2], TIP3P(), TIP3P(), TIP3P()),
            EIQMMM([0, 1, 2], TIP3P(), TIP3P(), i)
    ]:
        dimer = s22('Water_dimer')

        for m in [0, 3]:
            dimer.set_angle(m + 1, m, m + 2, angleHOH)
            dimer.set_distance(m, m + 1, rOH, fix=0)
            dimer.set_distance(m, m + 2, rOH, fix=0)

        fixOH1 = [(3 * i, 3 * i + 1) for i in range(2)]
        fixOH2 = [(3 * i, 3 * i + 2) for i in range(2)]
        fixHH = [(3 * i + 1, 3 * i + 2) for i in range(2)]
        dimer.set_constraint(FixBondLengths(fixOH1 + fixOH2 + fixHH))

        dimer.calc = calc

        e = dimer.get_potential_energy()
        md = VelocityVerlet(dimer,
                            8.0 * units.fs,
                            trajectory=calc.name + '.traj',
                            logfile=calc.name + '.log',
                            loginterval=5)
        md.run(25)
        de = dimer.get_potential_energy() - e
        assert abs(de - -0.028) < 0.001
Exemplo n.º 2
0
def test_orca_qmmm():
    from ase.calculators.tip4p import TIP4P, epsilon0, sigma0
    from ase.calculators.orca import ORCA
    from ase.calculators.qmmm import EIQMMM, LJInteractions
    from ase.data import s22

    atoms = s22.create_s22_system('Water_dimer')

    qmcalc = ORCA(label='water', orcasimpleinput='BLYP def2-SVP')

    lj = LJInteractions({('O', 'O'): (epsilon0, sigma0)})

    atoms.calc = EIQMMM(selection=[0, 1, 2],
                        qmcalc=qmcalc,
                        mmcalc=TIP4P(),
                        interaction=lj,
                        output='orca_qmmm.log')

    e = atoms.get_potential_energy()

    assert abs(e + 2077.45445852) < 1.0
Exemplo n.º 3
0
def test_qmmm_tip4p():
    from math import cos, sin, pi

    import numpy as np
    #import matplotlib.pyplot as plt

    import ase.units as units
    from ase import Atoms
    from ase.calculators.tip4p import TIP4P, epsilon0, sigma0, rOH, angleHOH
    from ase.calculators.qmmm import (SimpleQMMM, EIQMMM, LJInteractions,
                                      LJInteractionsGeneral)
    from ase.constraints import FixInternals
    from ase.optimize import BFGS

    r = rOH
    a = angleHOH * pi / 180

    # From https://doi.org/10.1063/1.445869
    eexp = 6.24 * units.kcal / units.mol
    dexp = 2.75
    aexp = 46

    D = np.linspace(2.5, 3.5, 30)

    i = LJInteractions({('O', 'O'): (epsilon0, sigma0)})

    # General LJ interaction object
    sigma_mm = np.array([sigma0, 0, 0])
    epsilon_mm = np.array([epsilon0, 0, 0])
    sigma_qm = np.array([sigma0, 0, 0])
    epsilon_qm = np.array([epsilon0, 0, 0])
    ig = LJInteractionsGeneral(sigma_qm, epsilon_qm, sigma_mm, epsilon_mm, 3)

    for calc in [
            TIP4P(),
            SimpleQMMM([0, 1, 2], TIP4P(), TIP4P(), TIP4P()),
            SimpleQMMM([0, 1, 2], TIP4P(), TIP4P(), TIP4P(), vacuum=3.0),
            EIQMMM([0, 1, 2], TIP4P(), TIP4P(), i),
            EIQMMM([3, 4, 5], TIP4P(), TIP4P(), i, vacuum=3.0),
            EIQMMM([0, 1, 2], TIP4P(), TIP4P(), i, vacuum=3.0),
            EIQMMM([0, 1, 2], TIP4P(), TIP4P(), ig),
            EIQMMM([3, 4, 5], TIP4P(), TIP4P(), ig, vacuum=3.0),
            EIQMMM([0, 1, 2], TIP4P(), TIP4P(), ig, vacuum=3.0)
    ]:
        dimer = Atoms('OH2OH2', [(0, 0, 0), (r * cos(a), 0, r * sin(a)),
                                 (r, 0, 0), (0, 0, 0),
                                 (r * cos(a / 2), r * sin(a / 2), 0),
                                 (r * cos(a / 2), -r * sin(a / 2), 0)])
        dimer.calc = calc

        E = []
        F = []
        for d in D:
            dimer.positions[3:, 0] += d - dimer.positions[3, 0]
            E.append(dimer.get_potential_energy())
            F.append(dimer.get_forces())

        F = np.array(F)

        #plt.plot(D, E)

        F1 = np.polyval(np.polyder(np.polyfit(D, E, 7)), D)
        F2 = F[:, :3, 0].sum(1)
        error = abs(F1 - F2).max()
        assert error < 0.01

        dimer.constraints = FixInternals(bonds=[(r, (0, 1)), (r, (0, 2)),
                                                (r, (3, 4)), (r, (3, 5))],
                                         angles=[(a, (2, 0, 1)),
                                                 (a, (5, 3, 4))])
        opt = BFGS(dimer,
                   maxstep=0.04,
                   trajectory=calc.name + '.traj',
                   logfile=calc.name + 'd.log')
        opt.run(0.01)

        e0 = dimer.get_potential_energy()
        d0 = dimer.get_distance(0, 3)
        R = dimer.positions
        v1 = R[2] - R[3]
        v2 = R[3] - (R[5] + R[4]) / 2
        a0 = np.arccos(
            np.dot(v1, v2) /
            (np.dot(v1, v1) * np.dot(v2, v2))**0.5) / np.pi * 180
        fmt = '{0:>23}: {1:.3f} {2:.3f} {3:.3f} {4:.1f}'
        print(fmt.format(calc.name, -min(E), -e0, d0, a0))
        assert abs(e0 + eexp) < 0.002
        assert abs(d0 - dexp) < 0.006
        assert abs(a0 - aexp) < 2.5

    print(fmt.format('reference', 9.999, eexp, dexp, aexp))
Exemplo n.º 4
0
from ase.calculators.qmmm import (SimpleQMMM, EIQMMM, LJInteractions,
                                  LJInteractionsGeneral)
from ase.constraints import FixInternals
from ase.optimize import GPMin

r = rOH
a = angleHOH * pi / 180

# From http://dx.doi.org/10.1063/1.445869
eexp = 6.50 * units.kcal / units.mol
dexp = 2.74
aexp = 27

D = np.linspace(2.5, 3.5, 30)

i = LJInteractions({('O', 'O'): (epsilon0, sigma0)})

# General LJ interaction object
sigma_mm = np.array([0, 0, sigma0])
epsilon_mm = np.array([0, 0, epsilon0])
sigma_qm = np.array([0, 0, sigma0])
epsilon_qm = np.array([0, 0, epsilon0])
ig = LJInteractionsGeneral(sigma_qm, epsilon_qm, sigma_mm, epsilon_mm, 3)

for calc in [TIP3P(),
             SimpleQMMM([0, 1, 2], TIP3P(), TIP3P(), TIP3P()),
             SimpleQMMM([0, 1, 2], TIP3P(), TIP3P(), TIP3P(), vacuum=3.0),
             EIQMMM([0, 1, 2], TIP3P(), TIP3P(), i),
             EIQMMM([3, 4, 5], TIP3P(), TIP3P(), i, vacuum=3.0),
             EIQMMM([0, 1, 2], TIP3P(), TIP3P(), i, vacuum=3.0),
             EIQMMM([0, 1, 2], TIP3P(), TIP3P(), ig),
Exemplo n.º 5
0
def test_qmmm(testdir):
    r = rOH
    a = angleHOH * pi / 180

    # From https://doi.org/10.1063/1.445869
    eexp = 6.50 * units.kcal / units.mol
    dexp = 2.74
    aexp = 27

    D = np.linspace(2.5, 3.5, 30)

    i = LJInteractions({('O', 'O'): (epsilon0, sigma0)})

    # General LJ interaction object
    sigma_mm = np.array([0, 0, sigma0])
    epsilon_mm = np.array([0, 0, epsilon0])
    sigma_qm = np.array([0, 0, sigma0])
    epsilon_qm = np.array([0, 0, epsilon0])
    ig = LJInteractionsGeneral(sigma_qm, epsilon_qm, sigma_mm, epsilon_mm, 3)

    for calc in [
            TIP3P(),
            SimpleQMMM([0, 1, 2], TIP3P(), TIP3P(), TIP3P()),
            SimpleQMMM([0, 1, 2], TIP3P(), TIP3P(), TIP3P(), vacuum=3.0),
            EIQMMM([0, 1, 2], TIP3P(), TIP3P(), i),
            EIQMMM([3, 4, 5], TIP3P(), TIP3P(), i, vacuum=3.0),
            EIQMMM([0, 1, 2], TIP3P(), TIP3P(), i, vacuum=3.0),
            EIQMMM([0, 1, 2], TIP3P(), TIP3P(), ig),
            EIQMMM([3, 4, 5], TIP3P(), TIP3P(), ig, vacuum=3.0),
            EIQMMM([0, 1, 2], TIP3P(), TIP3P(), ig, vacuum=3.0)
    ]:
        dimer = Atoms('H2OH2O',
                      [(r * cos(a), 0, r * sin(a)), (r, 0, 0), (0, 0, 0),
                       (r * cos(a / 2), r * sin(a / 2), 0),
                       (r * cos(a / 2), -r * sin(a / 2), 0), (0, 0, 0)])
        dimer.calc = calc

        E = []
        F = []
        for d in D:
            dimer.positions[3:, 0] += d - dimer.positions[5, 0]
            E.append(dimer.get_potential_energy())
            F.append(dimer.get_forces())

        F = np.array(F)

        F1 = np.polyval(np.polyder(np.polyfit(D, E, 7)), D)
        F2 = F[:, :3, 0].sum(1)
        error = abs(F1 - F2).max()
        assert error < 0.01

        dimer.constraints = FixInternals(bonds=[(r, (0, 2)), (r, (1, 2)),
                                                (r, (3, 5)), (r, (4, 5))],
                                         angles_deg=[
                                             (np.degrees(a), (0, 2, 1)),
                                             (np.degrees(a), (3, 5, 4))
                                         ])
        opt = GPMin(dimer,
                    trajectory=calc.name + '.traj',
                    logfile=calc.name + 'd.log')
        opt.run(0.01)

        e0 = dimer.get_potential_energy()
        d0 = dimer.get_distance(2, 5)
        R = dimer.positions
        v1 = R[1] - R[5]
        v2 = R[5] - (R[3] + R[4]) / 2
        a0 = np.arccos(
            np.dot(v1, v2) /
            (np.dot(v1, v1) * np.dot(v2, v2))**0.5) / np.pi * 180
        fmt = '{0:>20}: {1:.3f} {2:.3f} {3:.3f} {4:.1f}'
        print(fmt.format(calc.name, -min(E), -e0, d0, a0))
        assert abs(e0 + eexp) < 0.002
        assert abs(d0 - dexp) < 0.01
        assert abs(a0 - aexp) < 4

    print(fmt.format('reference', 9.999, eexp, dexp, aexp))
Exemplo n.º 6
0
def test_turbomole_qmmm():
    """Test the Turbomole calculator in simple QMMM and
    explicit interaction QMMM simulations."""

    r = rOH
    a = angleHOH * pi / 180
    D = np.linspace(2.5, 3.5, 30)

    interaction = LJInteractions({('O', 'O'): (epsilon0, sigma0)})
    qm_par = {'esp fit': 'kollman', 'multiplicity': 1}

    for calc in [
            TIP3P(),
            SimpleQMMM([0, 1, 2], Turbomole(**qm_par), TIP3P(), TIP3P()),
            SimpleQMMM([0, 1, 2],
                       Turbomole(**qm_par),
                       TIP3P(),
                       TIP3P(),
                       vacuum=3.0),
            EIQMMM([0, 1, 2], Turbomole(**qm_par), TIP3P(), interaction),
            EIQMMM([3, 4, 5],
                   Turbomole(**qm_par),
                   TIP3P(),
                   interaction,
                   vacuum=3.0),
            EIQMMM([0, 1, 2],
                   Turbomole(**qm_par),
                   TIP3P(),
                   interaction,
                   vacuum=3.0)
    ]:
        dimer = Atoms('H2OH2O',
                      [(r * cos(a), 0, r * sin(a)), (r, 0, 0), (0, 0, 0),
                       (r * cos(a / 2), r * sin(a / 2), 0),
                       (r * cos(a / 2), -r * sin(a / 2), 0), (0, 0, 0)])
        dimer.calc = calc

        E = []
        F = []
        for d in D:
            dimer.positions[3:, 0] += d - dimer.positions[5, 0]
            E.append(dimer.get_potential_energy())
            F.append(dimer.get_forces())

        F = np.array(F)

        F1 = np.polyval(np.polyder(np.polyfit(D, E, 7)), D)
        F2 = F[:, :3, 0].sum(1)
        error = abs(F1 - F2).max()
        assert error < 0.9

        dimer.set_constraint(
            FixInternals(bonds=[(r, (0, 2)), (r, (1, 2)), (r, (3, 5)),
                                (r, (4, 5))],
                         angles_deg=[(angleHOH, (0, 2, 1)),
                                     (angleHOH, (3, 5, 4))]))
        opt = BFGS(dimer,
                   trajectory=calc.name + '.traj',
                   logfile=calc.name + 'd.log')
        opt.run(0.01)

        e0 = dimer.get_potential_energy()
        d0 = dimer.get_distance(2, 5)
        R = dimer.positions
        v1 = R[1] - R[5]
        v2 = R[5] - (R[3] + R[4]) / 2
        a0 = np.arccos(
            np.dot(v1, v2) /
            (np.dot(v1, v1) * np.dot(v2, v2))**0.5) / np.pi * 180
        fmt = '{0:>20}: {1:.3f} {2:.3f} {3:.3f} {4:.1f}'
        print(fmt.format(calc.name, -min(E), -e0, d0, a0))