Exemplo n.º 1
0
    def __add_candidate__(self, a):
        """ Adds a single candidate to the population. """

        # check if the structure is too low in raw score
        raw_score_a = get_raw_score(a)
        raw_score_worst = get_raw_score(self.pop[-1])
        if raw_score_a < raw_score_worst \
                and len(self.pop) == self.pop_size:
            return

        # check if the new candidate should
        # replace a similar structure in the population
        for (i, b) in enumerate(self.pop):
            if self.comparator.looks_like(a, b):
                if get_raw_score(b) < raw_score_a:
                    del self.pop[i]
                    a.info['looks_like'] = count_looks_like(a,
                                                            self.all_cand,
                                                            self.comparator)
                    self.pop.append(a)
                    self.pop.sort(key=lambda x: get_raw_score(x),
                                  reverse=True)
                return

        # the new candidate needs to be added, so remove the highest
        # energy one
        if len(self.pop) == self.pop_size:
            del self.pop[-1]

        # add the new candidate
        a.info['looks_like'] = count_looks_like(a,
                                                self.all_cand,
                                                self.comparator)
        self.pop.append(a)
        self.pop.sort(key=lambda x: get_raw_score(x), reverse=True)
Exemplo n.º 2
0
    def __get_fitness__(self, candidates):
        """Input should be sorted according to raw_score."""
        max_s = get_raw_score(candidates[0])
        min_s = get_raw_score(candidates[-1])
        T = min_s - max_s

        shared_fit = []
        for c in candidates:
            sc = get_raw_score(c)
            obj_fit = 0.5 * (1. - tanh(2. * (sc - max_s) / T - 1.))
            m = 1.
            ck = c.info['key_value_pairs'][self.comp_key]
            for other in candidates:
                if other != c:
                    name = tuple(sorted([c.info['confid'],
                                         other.info['confid']]))
                    if name not in self.sh_cache:
                        ok = other.info['key_value_pairs'][self.comp_key]
                        d = abs(ck - ok)
                        if d < self.dt:
                            v = 1 - (d / self.dt)**self.alpha_sh
                            self.sh_cache[name] = v
                        else:
                            self.sh_cache[name] = 0
                    m += self.sh_cache[name]

            shf = (obj_fit ** self.fit_scaling) / m
            shared_fit.append(shf)
        return shared_fit
Exemplo n.º 3
0
    def __get_fitness__(self, indecies, with_history=True):
        """Calculates the fitness using the formula from
            L.B. Vilhelmsen et al., JACS, 2012, 134 (30), pp 12807-12816

        Sign change on the fitness compared to the formulation in the
        abovementioned paper due to maximizing raw_score instead of
        minimizing energy. (Set raw_score=-energy to optimize the energy)
        """

        scores = [get_raw_score(x) for x in self.pop]
        min_s = min(scores)
        max_s = max(scores)
        T = min_s - max_s
        if isinstance(indecies, int):
            indecies = [indecies]

        f = [
            0.5 * (1. - tanh(2. * (scores[i] - max_s) / T - 1.))
            for i in indecies
        ]
        if with_history:
            M = [float(self.pop[i].info['n_paired']) for i in indecies]
            L = [float(self.pop[i].info['looks_like']) for i in indecies]
            f = [
                f[i] * 1. / sqrt(1. + M[i]) * 1. / sqrt(1. + L[i])
                for i in range(len(f))
            ]
        return f
Exemplo n.º 4
0
    def __initialize_pop__(self):
        # Get all relaxed candidates from the database
        ue = self.use_extinct
        all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
        all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)

        if len(all_cand) > 0:
            shared_fit = self.__get_fitness__(all_cand)
            all_sorted = list(zip(*sorted(zip(shared_fit, all_cand),
                                          reverse=True)))[1]

            # Fill up the population with the self.pop_size most stable
            # unique candidates.
            i = 0
            while i < len(all_sorted) and len(self.pop) < self.pop_size:
                c = all_sorted[i]
                i += 1
                eq = False
                for a in self.pop:
                    if self.comparator.looks_like(a, c):
                        eq = True
                        break
                if not eq:
                    self.pop.append(c)

            for a in self.pop:
                a.info['looks_like'] = count_looks_like(a, all_cand,
                                                        self.comparator)
        self.all_cand = all_cand
Exemplo n.º 5
0
    def __initialize_pop__(self):
        # Get all relaxed candidates from the database
        ue = self.use_extinct
        all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
        all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)

        if len(all_cand) > 0:
            shared_fit = self.__get_fitness__(all_cand)
            all_sorted = list(
                zip(*sorted(zip(shared_fit, all_cand), reverse=True)))[1]

            # Fill up the population with the self.pop_size most stable
            # unique candidates.
            i = 0
            while i < len(all_sorted) and len(self.pop) < self.pop_size:
                c = all_sorted[i]
                i += 1
                eq = False
                for a in self.pop:
                    if self.comparator.looks_like(a, c):
                        eq = True
                        break
                if not eq:
                    self.pop.append(c)

            for a in self.pop:
                a.info['looks_like'] = count_looks_like(
                    a, all_cand, self.comparator)
        self.all_cand = all_cand
Exemplo n.º 6
0
def penalize(t):
    # penalize explosion:
    raw_score = get_raw_score(t)
    max_volume_per_atom = 50.
    if t.get_volume() / len(t) >= max_volume_per_atom:
        raw_score -= 1e9
    set_raw_score(t, raw_score)
def run_ga(n_to_test):
    """
    This method specifies how to run the GA once the
    initial random structures have been stored in godb.db.
    """
    # Various initializations:
    population_size = 10  # maximal size of the population
    da = DataConnection('godb.db')
    atom_numbers_to_optimize = da.get_atom_numbers_to_optimize()  # = [14] * 7
    n_to_optimize = len(atom_numbers_to_optimize)  # = 7
    # This defines how close the Si atoms are allowed to get
    # in candidate structures generated by the genetic operators:
    blmin = closest_distances_generator(atom_numbers_to_optimize,
                                        ratio_of_covalent_radii=0.4)
    # This is our OFPComparator instance which will be
    # used to judge whether or not two structures are identical:
    comparator = OFPComparator(n_top=None, dE=1.0, cos_dist_max=1e-3,
                               rcut=10., binwidth=0.05, pbc=[False]*3,
                               sigma=0.1, nsigma=4, recalculate=False)

    # Defining a typical combination of genetic operators:
    pairing = CutAndSplicePairing(da.get_slab(), n_to_optimize, blmin)
    rattlemut = RattleMutation(blmin, n_to_optimize, rattle_prop=0.8,
                               rattle_strength=1.5)
    operators = OperationSelector([2., 1.], [pairing, rattlemut])

    # Relax the randomly generated initial candidates:
    while da.get_number_of_unrelaxed_candidates() > 0:
        a = da.get_an_unrelaxed_candidate()
        a = relax_one(a)
        da.add_relaxed_step(a)

    # Create the population
    population = Population(data_connection=da,
                            population_size=population_size,
                            comparator=comparator,
                            logfile='log.txt')
    current_pop = population.get_current_population()

    # Test n_to_test new candidates
    for step in range(n_to_test):
        print('Starting configuration number %d' % step, flush=True)

        a3 = None
        while a3 is None:
            a1, a2 = population.get_two_candidates()
            a3, description = operators.get_new_individual([a1, a2])

        da.add_unrelaxed_candidate(a3, description=description)
        a3 = relax_one(a3)
        da.add_relaxed_step(a3)

        population.update()
        best = population.get_current_population()[0]
        print('Highest raw score at this point: %.3f' % get_raw_score(best))

    print('GA finished after step %d' % step)
    write('all_candidates.traj', da.get_all_relaxed_candidates())
    write('current_population.traj', population.get_current_population())
Exemplo n.º 8
0
    def __initialize_pop__(self):
        """ Private method that initalizes the population when
            the population is created. """

        # Get all relaxed candidates from the database
        ue = self.use_extinct
        all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
        all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)
        # all_cand.sort(key=lambda x: x.get_potential_energy())

        if len(all_cand) > 0:
            # Fill up the population with the self.pop_size most stable
            # unique candidates.
            ratings = []
            best_raw = get_raw_score(all_cand[0])
            i = 0
            while i < len(all_cand):
                c = all_cand[i]
                i += 1
                eq = False
                for a in self.pop:
                    if self.comparator.looks_like(a, c):
                        eq = True
                        break
                if not eq:
                    if len(self.pop) < self.pop_size - self.bad_candidates:
                        self.pop.append(c)
                    else:
                        exp_fact = exp(get_raw_score(c) / best_raw)
                        ratings.append([c, (exp_fact - 1) * random()])
            ratings.sort(key=itemgetter(1), reverse=True)

            for i in range(self.bad_candidates):
                self.pop.append(ratings[i][0])

        for a in self.pop:
            a.info['looks_like'] = count_looks_like(a, all_cand,
                                                    self.comparator)

        self.all_cand = all_cand
        self.__calc_participation__()
Exemplo n.º 9
0
    def __initialize_pop__(self):
        """ Private method that initalizes the population when
            the population is created. """

        # Get all relaxed candidates from the database
        ue = self.use_extinct
        all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
        all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)
        # all_cand.sort(key=lambda x: x.get_potential_energy())

        if len(all_cand) > 0:
            # Fill up the population with the self.pop_size most stable
            # unique candidates.
            ratings = []
            best_raw = get_raw_score(all_cand[0])
            i = 0
            while i < len(all_cand):
                c = all_cand[i]
                i += 1
                eq = False
                for a in self.pop:
                    if self.comparator.looks_like(a, c):
                        eq = True
                        break
                if not eq:
                    if len(self.pop) < self.pop_size - self.bad_candidates:
                        self.pop.append(c)
                    else:
                        exp_fact = exp(get_raw_score(c) / best_raw)
                        ratings.append([c, (exp_fact - 1) * random()])
            ratings.sort(key=itemgetter(1), reverse=True)

            for i in range(self.bad_candidates):
                self.pop.append(ratings[i][0])

        for a in self.pop:
            a.info['looks_like'] = count_looks_like(a, all_cand,
                                                    self.comparator)

        self.all_cand = all_cand
        self.__calc_participation__()
Exemplo n.º 10
0
def singlepoint(t, kptdensity=1.5):
    if get_raw_score(t) < -1e5:
        return t
    try:
        calc = DftbPlusCalc(t, kpts=kptdensity, use_spline=True, read_chg=True)
        t.set_calculator(calc)
        E = t.get_potential_energy()
        F = t.get_forces()
        S = t.get_stress()
        finalize(t, energy=E, forces=F, stress=S)
        penalize(t)
    except (RuntimeError, IOError):
        print('Warning: problems with singlepoint recalculation')
        finalize(t, energy=1e9, forces=None, stress=None)
    return t
Exemplo n.º 11
0
    def get_all_relaxed_candidates_after_generation(self, gen):
        """ Returns all candidates that have been relaxed up to
            and including the specified generation
        """
        q = 'relaxed=1,extinct=0,generation<={0}'
        entries = self.c.select(q.format(gen))

        trajs = []
        for v in entries:
            t = self.get_atoms(id=v.id)
            t.info['confid'] = v.gaid
            t.info['relax_id'] = v.id
            trajs.append(t)
        trajs.sort(key=lambda x: get_raw_score(x), reverse=True)
        return trajs
Exemplo n.º 12
0
    def looks_like(self, a1, a2):
        # Energy criterium
        try:
            dE = abs(a1.get_potential_energy() - a2.get_potential_energy())
        except:
            dE = abs(get_raw_score(a1) - get_raw_score(a2))
        if dE >= self.dE:
            return False

        # Structure criterium
        f1 = self.get_features(a1)
        f2 = self.get_features(a2)

        d1 = sum(f1.values(), [])
        d2 = sum(f2.values(), [])

        max_d = max(np.abs(np.array(d1) - np.array(d2)))
        s = self.get_similarity(f1, f2)

        #        print s, max_d
        if s > self.pair_cor_cum_diff or max_d > self.pair_cor_max:
            return False
        else:
            return True
Exemplo n.º 13
0
    def get_all_relaxed_candidates_after_generation(self, gen):
        """ Returns all candidates that have been relaxed up to
            and including the specified generation
        """
        q = 'relaxed=1,extinct=0,generation<={0}'
        entries = self.c.select(q.format(gen))

        trajs = []
        for v in entries:
            t = self.get_atoms(id=v.id)
            t.info['confid'] = v.gaid
            t.info['relax_id'] = v.id
            trajs.append(t)
        trajs.sort(key=lambda x: get_raw_score(x),
                   reverse=True)
        return trajs
Exemplo n.º 14
0
def singlepoint(t, kptdensity=3.5):
    if get_raw_score(t) < -1e5:
        return t
    try:
        calc = DftbPlusCalculator(t, kpts=kptdensity, use_spline=True,
                              maximum_angular_momenta={'Pd': 2, 'H': 0, 'O': 1})
        t.set_calculator(calc)
        E = t.get_potential_energy()
        F = t.get_forces()
        S = t.get_stress()
        finalize(t, energy=E, forces=F, stress=S)
        penalize(t)
    except (IOError, TypeError, RuntimeError, UnboundLocalError) as err:
        print(err)
        print('Warning: problems with singlepoint recalculation')
        finalize(t, energy=1e9, forces=None, stress=None)
    return t
Exemplo n.º 15
0
    def __initialize_pop__(self):
        # Get all relaxed candidates from the database
        ue = self.use_extinct
        all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
        all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)

        if len(all_cand) > 0:
            fitf = self.__get_fitness__(all_cand)
            all_sorted = list(zip(fitf, all_cand))
            all_sorted.sort(key=itemgetter(0), reverse=True)
            sort_cand = []
            for _, t2 in all_sorted:
                sort_cand.append(t2)
            all_sorted = sort_cand

            # Fill up the population with the self.pop_size most stable
            # unique candidates.
            i = 0
            while i < len(all_sorted) and len(self.pop) < self.pop_size:
                c = all_sorted[i]
                # Use variable_function to decide whether to run comparator
                # if the function has been defined by the user. This does not
                # need to be dependent on using the rank_data function.
                if self.vf is not None:
                    c_vf = self.vf(c)
                i += 1
                eq = False
                for a in self.pop:
                    if self.vf is not None:
                        a_vf = self.vf(a)
                        # Only run comparator if the variable_function
                        # (self.vf) returns the same. If it returns something
                        # different the candidates are inherently different.
                        # This is done to speed up.
                        if a_vf == c_vf:
                            if self.comparator.looks_like(a, c):
                                eq = True
                                break
                    else:
                        if self.comparator.looks_like(a, c):
                            eq = True
                            break
                if not eq:
                    self.pop.append(c)
        self.all_cand = all_cand
Exemplo n.º 16
0
    def __initialize_pop__(self):
        # Get all relaxed candidates from the database
        ue = self.use_extinct
        all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
        all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)

        if len(all_cand) > 0:
            fitf = self.__get_fitness__(all_cand)
            all_sorted = list(zip(fitf, all_cand))
            all_sorted.sort(key=itemgetter(0), reverse=True)
            sort_cand = []
            for _, t2 in all_sorted:
                sort_cand.append(t2)
            all_sorted = sort_cand

            # Fill up the population with the self.pop_size most stable
            # unique candidates.
            i = 0
            while i < len(all_sorted) and len(self.pop) < self.pop_size:
                c = all_sorted[i]
                # Use variable_function to decide whether to run comparator
                # if the function has been defined by the user. This does not
                # need to be dependent on using the rank_data function.
                if self.vf is not None:
                    c_vf = self.vf(c)
                i += 1
                eq = False
                for a in self.pop:
                    if self.vf is not None:
                        a_vf = self.vf(a)
                        # Only run comparator if the variable_function
                        # (self.vf) returns the same. If it returns something
                        # different the candidates are inherently different.
                        # This is done to speed up.
                        if a_vf == c_vf:
                            if self.comparator.looks_like(a, c):
                                eq = True
                                break
                    else:
                        if self.comparator.looks_like(a, c):
                            eq = True
                            break
                if not eq:
                    self.pop.append(c)
        self.all_cand = all_cand
Exemplo n.º 17
0
    def __get_fitness__(self, indecies, with_history=True):
        """Calculates the fitness using the formula from
            L.B. Vilhelmsen et al., JACS, 2012, 134 (30), pp 12807-12816

        Sign change on the fitness compared to the formulation in the
        abovementioned paper due to maximizing raw_score instead of
        minimizing energy. (Set raw_score=-energy to optimize the energy)
        """

        scores = [get_raw_score(x) for x in self.pop]
        min_s = min(scores)
        max_s = max(scores)
        T = min_s - max_s
        if isinstance(indecies, int):
            indecies = [indecies]

        f = [0.5 * (1. - tanh(2. * (scores[i] - max_s) / T - 1.))
             for i in indecies]
        if with_history:
            M = [float(self.pop[i].info['n_paired']) for i in indecies]
            L = [float(self.pop[i].info['looks_like']) for i in indecies]
            f = [f[i] * 1. / sqrt(1. + M[i]) * 1. / sqrt(1. + L[i])
                 for i in range(len(f))]
        return f
Exemplo n.º 18
0
 def converged(self):
     cur_pop = self.pop.get_current_population()
     if abs(get_raw_score(cur_pop[0]) - self.max_raw_score) <= self.eps:
         return True
     return False
Exemplo n.º 19
0
syms = a2.get_chemical_symbols()
assert 'Ba' in syms
assert len(set(syms)) == 3

op = MoveUpMutation(cations, 1, 1.)
a3, desc = op.get_new_individual([a2])
syms = a3.get_chemical_symbols()
assert 'Ba' not in syms
assert len(set(syms)) == 2

cations = ['Co', 'Ni', 'Cu']
a1 = Atoms('NiNiBrBr')
a1.info['confid'] = 1
op = MoveRightMutation(cations, 1, 1.)
a2, desc = op.get_new_individual([a1])
a2.info['confid'] = 2
syms = a2.get_chemical_symbols()

assert len(set(syms)) == 2
assert len([i for i in syms if i == 'Cu']) == 2

op = MoveLeftMutation(cations, 2, .5)
a3, desc = op.get_new_individual([a2])
syms = a3.get_chemical_symbols()

from ase.ga import set_raw_score, get_raw_score
assert len(set(syms)) == 3
set_raw_score(a3, 5.0)
assert get_raw_score(a3) == 5.0
Exemplo n.º 20
0
 def looks_like(self, a1, a2):
     d = abs(get_raw_score(a1) - get_raw_score(a2))
     if d >= self.dist:
         return False
     else:
         return True
Exemplo n.º 21
0
def run_ga(n_to_test, kptdensity=3.5):
    population_size = 20
    da = DataConnection('godb.db')
    atom_numbers_to_optimize = da.get_atom_numbers_to_optimize()
    n_to_optimize = len(atom_numbers_to_optimize)
    slab = da.get_slab()
    all_atom_types = get_all_atom_types(slab, atom_numbers_to_optimize)
    blmin = closest_distances_generator(all_atom_types, 0.05)  # 0.5

    # defining genetic operators:
    mutation_probability = 0.75
    pairing = CutAndSplicePairing(blmin,
                                  p1=1.,
                                  p2=0.,
                                  minfrac=0.15,
                                  use_tags=False)
    cellbounds = CellBounds(
        bounds={
            'phi': [0.2 * 180., 0.8 * 180.],
            'chi': [0.2 * 180., 0.8 * 180.],
            'psi': [0.2 * 180., 0.8 * 180.]
        })
    strainmut = StrainMutation(blmin,
                               stddev=0.7,
                               cellbounds=cellbounds,
                               use_tags=False)
    blmin_soft = closest_distances_generator(all_atom_types, 0.1)
    softmut = SoftMutation(blmin_soft, bounds=[2., 5.], use_tags=False)
    rattlemut = RattleMutation(blmin,
                               n_to_optimize,
                               rattle_prop=0.8,
                               rattle_strength=2.5,
                               use_tags=False)
    mutations = OperationSelector([4., 4., 2], [softmut, strainmut, rattlemut])

    if True:
        # recalculate raw scores
        structures = da.get_all_relaxed_candidates()
        for atoms in structures:
            atoms = singlepoint(atoms, kptdensity=kptdensity)
            da.c.delete([atoms.info['relax_id']])
            if 'data' not in atoms.info:
                atoms.info['data'] = {}
            da.add_relaxed_step(atoms)
        print('Finished recalculating raw scores')

    # relaxing the initial candidates:
    while da.get_number_of_unrelaxed_candidates() > 0:
        a = da.get_an_unrelaxed_candidate()
        a.wrap()
        a = relax_one(a, kptdensity=kptdensity)
        da.add_relaxed_step(a)

    # create the population
    population = Population(data_connection=da,
                            population_size=population_size,
                            comparator=comparator,
                            logfile='log.txt')

    current_pop = population.get_current_population()
    strainmut.update_scaling_volume(current_pop, w_adapt=0.5, n_adapt=4)
    pairing.update_scaling_volume(current_pop, w_adapt=0.5, n_adapt=4)

    # Test n_to_test new candidates
    ga_raw_scores = []
    step = 0
    for step in range(n_to_test):
        print('Starting configuration number %d' % step, flush=True)

        clock = time()
        a3 = None
        r = random()
        if r > mutation_probability:
            while a3 is None:
                a1, a2 = population.get_two_candidates()
                a3, desc = pairing.get_new_individual([a1, a2])
        else:
            while a3 is None:
                a1 = population.get_one_candidate()
                a3, desc = mutations.get_new_individual([a1])

        dt = time() - clock
        op = 'pairing' if r > mutation_probability else 'mutating'
        print('Time for %s candidate(s): %.3f' % (op, dt), flush=True)

        a3.wrap()
        da.add_unrelaxed_candidate(a3, description=desc)

        a3 = relax_one(a3, kptdensity=kptdensity)
        da.add_relaxed_step(a3)

        # Various updates:
        population.update()
        current_pop = population.get_current_population()

        if step % 10 == 0:
            strainmut.update_scaling_volume(current_pop,
                                            w_adapt=0.5,
                                            n_adapt=4)
            pairing.update_scaling_volume(current_pop, w_adapt=0.5, n_adapt=4)
            write('current_population.traj', current_pop)

        # Print out information for easy analysis/plotting afterwards:
        if r > mutation_probability:
            print('Step %d %s %.3f %.3f %.3f' % (step, desc,\
                   get_raw_score(a1), get_raw_score(a2), get_raw_score(a3)))
        else:
            print('Step %d %s %.3f %.3f' % (step, desc,\
                   get_raw_score(a1), get_raw_score(a3)))

        print('Step %d highest raw score in pop: %.3f' % \
              (step, get_raw_score(current_pop[0])))
        ga_raw_scores.append(get_raw_score(a3))
        print('Step %d highest raw score generated by GA: %.3f' % \
              (step, max(ga_raw_scores)))

    emin = population.pop[0].get_potential_energy()
    print('GA finished after step %d' % step)
    print('Lowest energy = %8.3f eV' % emin, flush=True)
    write('all_candidates.traj', da.get_all_relaxed_candidates())
    write('current_population.traj', population.get_current_population())
Exemplo n.º 22
0
def run_ga(n_to_test, kptdensity=None):
    ''' This method specifies how to run the GA once the
    initial random structures have been stored in godb.db.
    '''
    # Various initializations:
    population_size = 10
    da = DataConnection('godb.db')
    atom_numbers_to_optimize = da.get_atom_numbers_to_optimize()
    n_to_optimize = len(atom_numbers_to_optimize)
    slab = da.get_slab()
    all_atom_types = get_all_atom_types(slab, atom_numbers_to_optimize)
    blmin = closest_distances_generator(all_atom_types,
                                        ratio_of_covalent_radii=0.05)

    # Defining the mix of genetic operators:
    mutation_probability = 0.3333
    pairing = CutAndSplicePairing(slab, n_to_optimize, blmin)
    rattlemut = RattleMutation(blmin, n_to_optimize,
                               rattle_prop=0.8, rattle_strength=1.5)
    mirrormut = MirrorMutation(blmin, n_to_optimize)
    mutations = OperationSelector([1., 1.], [rattlemut, mirrormut])

    if True:
        # Recalculate raw scores of any relaxed candidates
        # present in the godb.db database (only applies to 
        # iter007).
        structures = da.get_all_relaxed_candidates()
        for atoms in structures:
            atoms = singlepoint(atoms)
            da.c.delete([atoms.info['relax_id']])
            if 'data' not in atoms.info:
                atoms.info['data'] = {}
            da.add_relaxed_step(atoms)
        print('Finished recalculating raw scores')

    # Relax the randomly generated initial candidates:
    while da.get_number_of_unrelaxed_candidates() > 0:
        a = da.get_an_unrelaxed_candidate()
        a.wrap()
        a = relax_one(a)
        da.add_relaxed_step(a)

    # Create the population
    population = Population(data_connection=da,
                            population_size=population_size,
                            comparator=comparator,
                            logfile='log.txt')
    current_pop = population.get_current_population()

    # Test n_to_test new candidates
    ga_raw_scores = []
    step = 0
    for step in range(n_to_test):
        print('Starting configuration number %d' % step, flush=True)

        clock = time()
        a3 = None
        r = random()
        if r > mutation_probability:
            while a3 is None:
                a1, a2 = population.get_two_candidates()
                a3, desc = pairing.get_new_individual([a1, a2])
        else:
            while a3 is None:
                a1 = population.get_one_candidate()
                a3, desc = mutations.get_new_individual([a1])

        dt = time() - clock
        op = 'pairing' if r > mutation_probability else 'mutating'
        print('Time for %s candidate(s): %.3f' % (op, dt), flush=True)

        a3.wrap()
        da.add_unrelaxed_candidate(a3, description=desc)

        a3 = relax_one(a3)
        da.add_relaxed_step(a3)

        # Various updates:
        population.update()
        current_pop = population.get_current_population()
        write('current_population.traj', current_pop)

        # Print out information for easy analysis/plotting afterwards:
        if r > mutation_probability:
            print('Step %d %s %.3f %.3f %.3f' % (step, desc,\
                   get_raw_score(a1), get_raw_score(a2), get_raw_score(a3)))
        else:
            print('Step %d %s %.3f %.3f' % (step, desc,\
                   get_raw_score(a1), get_raw_score(a3)))

        print('Step %d highest raw score in pop: %.3f' % \
              (step, get_raw_score(current_pop[0])))
        ga_raw_scores.append(get_raw_score(a3))
        print('Step %d highest raw score generated by GA: %.3f' % \
              (step, max(ga_raw_scores)))

    emin = population.pop[0].get_potential_energy()
    print('GA finished after step %d' % step)
    print('Lowest energy = %8.3f eV' % emin, flush=True)
    write('all_candidates.traj', da.get_all_relaxed_candidates())
    write('current_population.traj', population.get_current_population())
Exemplo n.º 23
0
def test_element_operators(seed):
    import numpy as np
    from ase import Atoms
    from ase.ga.element_crossovers import OnePointElementCrossover

    # set up the random number generator
    rng = np.random.RandomState(seed)

    a1 = Atoms('SrSrSrBaClClClClBrBrBrBr')
    a1.info['confid'] = 1
    a2 = Atoms('CaCaMgBaFFFFFFFF')
    a2.info['confid'] = 2

    cations = ['Sr', 'Ba', 'Ca', 'Mg']
    anions = ['Cl', 'F', 'Br']
    op = OnePointElementCrossover([cations, anions], [3, 2], [.25, .5],
                                  rng=rng)

    a3, desc = op.get_new_individual([a1, a2])

    syms = a3.get_chemical_symbols()
    assert len(set([i for i in syms if i in cations])) < 4
    assert len(set([i for i in syms if i in anions])) < 3

    from ase.ga.element_mutations import RandomElementMutation

    op = RandomElementMutation([cations, anions], [3, 2], [.25, .5], rng=rng)
    a4, desc = op.get_new_individual([a1])
    syms = a4.get_chemical_symbols()

    assert len(set([i for i in syms if i in cations])) < 4
    assert len(set([i for i in syms if i in anions])) < 3

    op = RandomElementMutation(anions, 2, .5, rng=rng)
    a4, desc = op.get_new_individual([a2])
    syms = a4.get_chemical_symbols()

    assert len(set([i for i in syms if i in anions])) == 2

    from ase.ga.element_mutations import MoveDownMutation
    from ase.ga.element_mutations import MoveUpMutation
    from ase.ga.element_mutations import MoveRightMutation
    from ase.ga.element_mutations import MoveLeftMutation

    a1 = Atoms('SrSrClClClCl')
    a1.info['confid'] = 1
    op = MoveDownMutation(cations, 2, .5, rng=rng)
    a2, desc = op.get_new_individual([a1])
    a2.info['confid'] = 2

    syms = a2.get_chemical_symbols()
    assert 'Ba' in syms
    assert len(set(syms)) == 3

    op = MoveUpMutation(cations, 1, 1., rng=rng)
    a3, desc = op.get_new_individual([a2])
    syms = a3.get_chemical_symbols()
    assert 'Ba' not in syms
    assert len(set(syms)) == 2

    cations = ['Co', 'Ni', 'Cu']
    a1 = Atoms('NiNiBrBr')
    a1.info['confid'] = 1
    op = MoveRightMutation(cations, 1, 1., rng=rng)
    a2, desc = op.get_new_individual([a1])
    a2.info['confid'] = 2
    syms = a2.get_chemical_symbols()

    assert len(set(syms)) == 2
    assert len([i for i in syms if i == 'Cu']) == 2

    op = MoveLeftMutation(cations, 2, .5, rng=rng)
    a3, desc = op.get_new_individual([a2])
    syms = a3.get_chemical_symbols()

    from ase.ga import set_raw_score, get_raw_score
    assert len(set(syms)) == 3
    set_raw_score(a3, 5.0)
    assert get_raw_score(a3) == 5.0
        a3, desc = operators.get_new_individual([a1, a2])

    # Relax it and add to database
    da.add_unrelaxed_candidate(a3, description=desc)
    relax(a3)
    da.add_relaxed_step(a3)

    # Update the population
    population.update()
    current_pop = population.get_current_population()
    write('current_population.traj', current_pop)

    # Update the strain mutation and pairing operators
    if step % 10 == 0:
        strainmut.update_scaling_volume(current_pop, w_adapt=0.5,
                                        n_adapt=4)
        pairing.update_scaling_volume(current_pop, w_adapt=0.5, n_adapt=4)

    # Print out information for easier follow-up/analysis/plotting:
    print('Step %d %s %.3f %.3f %.3f' % (step, desc,
                                         get_raw_score(a1), get_raw_score(a2), get_raw_score(a3)))

    print('Step %d highest raw score in pop: %.3f' %
          (step, get_raw_score(current_pop[0])))

print('GA finished after step %d' % step)
hiscore = get_raw_score(current_pop[0])
print('Highest raw score = %8.4f eV' % hiscore)
write('all_candidates.traj', da.get_all_relaxed_candidates())
write('current_population.traj', current_pop)
Exemplo n.º 25
0
syms = a2.get_chemical_symbols()
assert 'Ba' in syms
assert len(set(syms)) == 3

op = MoveUpMutation(cations, 1, 1.)
a3, desc = op.get_new_individual([a2])
syms = a3.get_chemical_symbols()
assert 'Ba' not in syms
assert len(set(syms)) == 2

cations = ['Co', 'Ni', 'Cu']
a1 = Atoms('NiNiBrBr')
a1.info['confid'] = 1
op = MoveRightMutation(cations, 1, 1.)
a2, desc = op.get_new_individual([a1])
a2.info['confid'] = 2
syms = a2.get_chemical_symbols()

assert len(set(syms)) == 2
assert len([i for i in syms if i == 'Cu']) == 2

op = MoveLeftMutation(cations, 2, .5)
a3, desc = op.get_new_individual([a2])
syms = a3.get_chemical_symbols()

from ase.ga import set_raw_score, get_raw_score
assert len(set(syms)) == 3
set_raw_score(a3, 5.0)
assert get_raw_score(a3) == 5.0
Exemplo n.º 26
0
def extract_best_unique(comparator, max_select=None, num_stddev=None,
                        score_limit=None, dbfile='best_unique.db'):
    ''' Writes a database containing the best unique structures
    from a set of global optimization runs in the current
    working directory. These runs must have written an
    'all_candidates.traj' file containing all the structures
    with their raw scores.

    comparator: a class instance with suitable _compare_structure_
                and looks_like methods for comparing two structures
    max_select: upper bound on the number of best unique structures
                to select. If None (default), no bound is enforced.
    num_stddev: number of standard deviations relative to the
                average score of all candidates, which is used to
                pre-select only the more stable structures.
                Setting it to zero means all better-than-average
                structures are considered for further selection.
                Three standard deviations around the mean is used as
                cutoff in determining the average, to exclude very
                low-score outliers.
    score_limit: as an alternative to num_stddev, this argument sets
                 the minimal raw score for structures to be included.
    dbfile: name of the database where the final selection will be saved.
    '''
    db = connect(dbfile)
    all_candidates = []
    all_cand_dict = {}

    for (dirpath, dirnames, filenames) in os.walk('.'):
        if 'all_candidates.traj' in filenames and 'run' in dirpath:
            print('Found run directory', dirpath)
            candidates = read(dirpath + '/all_candidates.traj@:')
            all_candidates.extend(candidates)
            all_cand_dict[dirpath] = candidates

    all_candidates.sort(key=lambda x: get_raw_score(x), reverse=True)
    raw_scores = np.array([get_raw_score(atoms) for atoms in all_candidates])
    std = np.std(raw_scores)
    mean = raw_scores[len(raw_scores) // 2]
    min_score = mean - 3 * std

    izero = np.argmax(raw_scores < min_score)
    if izero != 0:
        raw_scores = raw_scores[:izero]
        all_candidates = all_candidates[:izero]

    average = np.mean(raw_scores)
    std = np.std(raw_scores)
    max_score = np.max(raw_scores)
    min_score = np.min(raw_scores)

    if num_stddev is not None:
        cut_score = average - num_stddev * std
    elif score_limit is not None:
        cut_score = max_score - score_limit
    else:
        cut_score = min_score

    print('Average = %.3f, Std. dev = %.3f' % (average, std))
    print('N = %d before selecting unique structures' % len(all_candidates))
    print('Max score = %.3f, min score = %.3f, cut score = %.3f' % \
          (max_score, min_score, cut_score), flush=True)

    args = []
    for key, val in all_cand_dict.items():
        raw_scores = np.array([get_raw_score(atoms) for atoms in val])
        izero = np.argmax(raw_scores < cut_score)
        if izero != 0:
            val = val[:izero]
        args.append([comparator, val, False])

    po = mp.Pool(processes=None)
    harvest = po.map(get_unique, args, chunksize=1)
    po.close()
    po.join()

    all_candidates = [atoms for allcand in harvest for atoms in allcand]
    all_candidates.sort(key=lambda x: get_raw_score(x), reverse=True)
    raw_scores = [get_raw_score(atoms) for atoms in all_candidates]

    best_unique = []
    print('N_unique = %d before next selection round' % len(all_candidates),
          flush=True)
    best_unique = get_unique([comparator, all_candidates, True])
    best_unique.sort(key=lambda x: get_raw_score(x), reverse=True)

    N = len(best_unique)
    print('N_unique = %d before further refinement' % N, flush=True)

    if max_select is None or max_select >= N:
        selection = range(N)
    else:
        selection = range(max_select)

    print('Selected indices:', selection)
    for i in selection:
        atoms = best_unique[i]
        raw_score = get_raw_score(atoms)
        db.write(atoms, raw_score_from_ga=raw_score, gaid=i, relaxed=0)

    print('N_unique = %d after final refinement' % len(selection))
    return
Exemplo n.º 27
0
 def looks_like(self, a1, a2):
     d = abs(get_raw_score(a1) - get_raw_score(a2))
     if d >= self.dist:
         return False
     else:
         return True
Exemplo n.º 28
0
    relax(a3, cellbounds=cellbounds)
    da.add_relaxed_step(a3)

    # If the relaxation has changed the cell parameters
    # beyond the bounds we disregard it in the population
    cell = a3.get_cell()
    if not cellbounds.is_within_bounds(cell):
        da.kill_candidate(a3.info['confid'])

    # Update the population
    population.update()

    if step % 10 == 0:
        # Update the scaling volumes of the strain mutation
        # and the pairing operator based on the current
        # best structures contained in the population
        current_pop = population.get_current_population()
        strainmut.update_scaling_volume(current_pop, w_adapt=0.5, n_adapt=4)
        pairing.update_scaling_volume(current_pop, w_adapt=0.5, n_adapt=4)
        write('current_population.traj', current_pop)

print('GA finished after step %d' % step)
hiscore = get_raw_score(current_pop[0])
print('Highest raw score = %8.4f eV' % hiscore)

all_candidates = da.get_all_relaxed_candidates()
write('all_candidates.traj', all_candidates)

current_pop = population.get_current_population()
write('current_population.traj', current_pop)