def transcribe(file): prepareFile = file.split("-") if (prepareFile[2] in ['mp3', 'wav', 'm4a']): file_url = "https://cdn.sanity.io/files/{}/{}/{}.{}".format(PROJECT_ID, DATASET, prepareFile[1], prepareFile[2]) aai = assemblyai.Client(token=ASSEMBLY_TOKEN) transcript = aai.transcribe(audio_url=file_url) while transcript.status != 'completed': print(transcript.status) transcript = transcript.get() text = transcript.text print(text) mutations = { "mutations": [{ "patch": { "id": file, "set": { "transcription": { "text": text, "service": "assemblyai" } } } }] } print("Sending transript of {} to Sanity".format(file)) r = requests.post(mutations_api, data=json.dumps(mutations), headers=auth_header) if (r.status_code == 200 and SLACK_WEBHOOK_URL): payload = { "text": "File {} was transcribed successfully".format(file) } requests.post(SLACK_WEBHOOK_URL, data=json.dumps(payload)) else: payload = { "text": "An error happened when transcribing {}: {}".format(file, r.message) } requests.post(SLACK_WEBHOOK_URL, data=json.dumps(payload))
""" For stereo audio with two speakers on separate channels, you can leverage enhanced accuracy and formatting by setting speak_count to 2. """ import assemblyai aai = assemblyai.Client() model = aai.transcribe('example.wav', speaker_count=2)
from translate import Translator import assemblyai import time from gtts import gTTS import os #key for API aai = assemblyai.Client(token='bbc8f48274684b24944a9ed0ec6056b7') #Temp Text file transcript = aai.transcribe(filename='example.txt') #Audio File to be translated transcript = aai.transcribe(filename='Mum.mp3') #takes audio from mp3 file and converts to text while transcript.status != 'completed': transcript = transcript.get() #adds text to text variable text = transcript.text #prints the text print("English: " + text) print("\n") #To Translate text from english to other language def tran(toTran, lang): translator = Translator(From_lang="autodetect", to_lang=lang) translation = translator.translate(toTran) print(lang + ": " + translation)
import assemblyai aai = assemblyai.Client(token=' 11fc9ccf99d040b5a831216a17556e4e') transcript = aai.transcribe(filename='/home/adhoc/non-coder/aud.wav') while transcript.status != 'completed': transcript = transcript.get() text = transcript.text
import subprocess import assemblyai as aai import json import sys import time import requests import summarize token = 'cc0738780ad94cd29c92750529eb5f5a' ai = aai.Client(token=token) def saveAudio(username, video): vpath = "Database/Users/" + username + "/Videos/Video " + str(video) command = 'ffmpeg -i "Database/Users/' + username + '/Videos/Video ' + str( video ) + '/video.mp4" -vn -ab 160k -ac 1 -ar 44100 -vn "Database/Users/' + username + '/Videos/Video ' + str( video) + '/audio.mp3"' subprocess.call(command, shell=True) with open(vpath + "/videodetails.json", "r") as readfile: vjson = json.load(readfile) username = vjson['username'] videono = vjson['videono'] title = vjson['title'] description = vjson['description'] keywords = vjson['keywords'] savestatus = vjson['savestatus'] audiosavedstatus = vjson['audiosavedstatus'] assemblystatus = vjson['assemblystatus'] transcriptstatus = vjson['transcriptstatus']
import json import requests import assemblyai url = 'https://api.assemblyai.com/transcript' token = None headers = {'authorization': token} audio_file = 'f.mp3' audio_file = 'https://avilpage.com/media/audio/blob_ZzyEsGT' data = json.dumps({'audio_src_url': audio_file}) r = requests.post(url, data=data, headers=headers) aai = assemblyai.Client(token=token) audio_file = 'audio/blob_05Qf5MO' transcript = aai.transcribe(filename=audio_file) while transcript.status != 'completed': transcript = transcript.get() text = transcript.text print(text)
import sys import assemblyai import TextAnalysis as ta print("Type of cmd line arguments are ", type(sys.argv)) fileName = sys.argv[1] try: aai = assemblyai.Client(token='Your Assembly AI token ID') transcript = aai.transcribe(filename=fileName) while transcript.status != 'completed': transcript = transcript.get() text = transcript.text print(text) text = transcript.text print(text) ta.Analyze(text) except ConnectionError: print("Error occured, Please check your internet connection.")