Exemplo n.º 1
0
    def test_more_cluster_representatives(self):
        tree_1 = real_tree()
        tree_2 = real_tree()
        signature = ParentChildByNameTopologySignature()
        signature_caches = []
        for tree in [tree_1, tree_2]:
            signature_caches.append(
                tree.to_index(signature=signature,
                              supported={
                                  ProcessStartEvent: True,
                                  ProcessExitEvent: True,
                                  TrafficEvent: True
                              },
                              statistics_cls=SetStatistics))

        cr = PrototypeSignatureCache.from_signature_caches(signature_caches,
                                                           prototype=tree_1)
        for token in cr:
            self.assertEqual(cr.multiplicity(token, tree_1),
                             signature_caches[0].multiplicity(token))
            self.assertEqual(
                cr.get_statistics(signature=token,
                                  key="value",
                                  prototype=tree_1,
                                  event_type=ProcessExitEvent).count(),
                signature_caches[0].get_statistics(
                    signature=token, key="value",
                    event_type=ProcessExitEvent).count())
Exemplo n.º 2
0
    def test_negative_values(self):
        def distance_builder(**kwargs):
            distance = SimpleDistance(**kwargs)
            return distance

        tree_one = real_tree(path="data/c01-007-102/2/1078-2-process.csv",
                             absolute=True)
        tree_two = real_tree(path="data/c01-007-102/2/1165-2-process.csv",
                             absolute=True)
        signature = ParentChildByNameTopologySignature()
        algorithm = IncrementalDistanceAlgorithm(
            signature=signature,
            distance=distance_builder,
            cache_statistics=SetStatistics)
        algorithm.prototypes = [tree_one, tree_two]
        decorator = DistanceMatrixDecorator(normalized=True)
        decorator.wrap_algorithm(algorithm)

        algorithm.start_tree()
        for event in tree_one.event_iter(supported=algorithm.supported):
            try:
                algorithm.add_event(event)
            except EventNotSupportedException:
                pass
        algorithm.finish_tree()
        algorithm.start_tree()
        for event in tree_two.event_iter(supported=algorithm.supported):
            try:
                algorithm.add_event(event)
            except EventNotSupportedException:
                pass
        algorithm.finish_tree()
        print(decorator.data())
        self.assertTrue(False)
Exemplo n.º 3
0
    def test_real_trees(self):
        def distance_builder(**kwargs):
            distance = StartExitDistance()
            distance.supported[TrafficEvent] = True
            return distance
        tree_one = real_tree()
        tree_two = real_tree(path="data/c01-007-102/2/1129-2-process.csv")
        prototype_names = ["1", "2"]
        prototype_caches = []
        for index, tree in enumerate([tree_one, tree_two]):
            prototype_caches.append(PrototypeSignatureCache.from_signature_caches(
                [tree.to_index(signature=ParentChildByNameTopologySignature(),
                               supported={
                                   ProcessStartEvent: True,
                                   ProcessExitEvent: True,
                                   TrafficEvent: True
                               },
                               statistics_cls=SetStatistics)],
                prototype=prototype_names[index], threshold=0))

        decorator = AnomalyDecorator()
        algorithm = IncrementalDistanceAlgorithm(
            signature=ParentChildByNameTopologySignature(),
            distance=distance_builder,
            cache_statistics=SetStatistics
        )
        prototype_cache = prototype_caches[0]
        for cache in prototype_caches[1:]:
            prototype_cache += cache
        algorithm.cluster_representatives(
            signature_prototypes=[prototype_cache],
            prototypes=prototype_names
        )
        decorator.wrap_algorithm(algorithm)
        for tree in [tree_one, tree_two]:
            algorithm.start_tree()
            for event in tree.event_iter(supported=algorithm.supported):
                try:
                    algorithm.add_event(event)
                except EventNotSupportedException:
                    pass
            algorithm.finish_tree()
        # First tree vs. first is False for start
        self.assertFalse(decorator.data()[0][0][0][0])
        # ... and end
        self.assertFalse(decorator.data()[0][0][0][-1])
        # First tree vs. second is False for start
        self.assertFalse(decorator.data()[0][0][1][0])
        # and True for end
        self.assertTrue(decorator.data()[0][0][1][-1])
        # Second tree vs. first is False for start
        self.assertFalse(decorator.data()[1][0][0][0])
        # ... and True for end
        self.assertTrue(decorator.data()[1][0][0][-1])
        # Second tree vs. second is False for start
        self.assertFalse(decorator.data()[1][0][1][0])
        # ... and False for end
        self.assertFalse(decorator.data()[1][0][1][-1])
Exemplo n.º 4
0
    def test_ensemble_result(self):
        """
        I recognised that apparently sometimes (or ever?) values of ensemble
        methods don't match results from single calculations. Therefore this
        test should uniquely test for this.
        """
        tree = real_tree()
        tree_generator = TEDGenerator(
            operation_generator=RandomOperation(
                insert_probability=.5, delete_probability=.5),
            costs=[TreeEditDistanceCost()],
            seed=1234)
        disturbed_tree = tree_generator.generate(tree)

        signatures = [ParentChildByNameTopologySignature(),
                      ParentCountedChildrenByNameTopologySignature(count=2)]
        # First test results from ensemble
        ensemble_signature = EnsembleSignature(signatures=signatures)
        decorator = DistanceMatrixDecorator(normalized=False)
        algorithm = IncrementalDistanceAlgorithm(
            signature=ensemble_signature,
            distance=StartDistance
        )
        decorator.wrap_algorithm(algorithm)
        algorithm.prototypes = [tree]

        algorithm.start_tree()
        for event in disturbed_tree.event_iter(supported=algorithm.supported):
            try:
                algorithm.add_event(event)
            except EventNotSupportedException:
                pass
        algorithm.finish_tree()
        ensemble_data = decorator.data()

        # Second, validate this result with single measurements
        single_data = {}
        for index, signature in enumerate(signatures):
            decorator = DistanceMatrixDecorator(normalized=False)
            algorithm = IncrementalDistanceAlgorithm(
                signature=signature,
                distance=StartDistance
            )
            decorator.wrap_algorithm(algorithm)
            algorithm.prototypes = [real_tree()]
            algorithm.start_tree()
            for event in disturbed_tree.event_iter(supported=algorithm.supported):
                try:
                    algorithm.add_event(event)
                except EventNotSupportedException:
                    pass
            algorithm.finish_tree()
            single_data[index] = decorator.data()
        for index, _ in enumerate(signatures):
            self.assertEqual(ensemble_data[0][index][0], single_data[index][0][0][0])
Exemplo n.º 5
0
 def test_external(self):
     def distance(**kwargs):
         distance = StartExitDistance(weight=0, **kwargs)
         distance.supported[TrafficEvent] = True
         return distance
     algorithm = IncrementalDistanceAlgorithm(
         signature=ParentChildByNameTopologySignature(),
         distance=distance,
         cache_statistics=SplittedStatistics)
     decorator = DistanceMatrixDecorator(normalized=False)
     decorator.wrap_algorithm(algorithm)
     the_tree = real_tree(
         path="data/c01-007-102/2/1146-2-process.csv",
         absolute=True
     )
     algorithm.prototypes = [the_tree]
     algorithm.start_tree()
     for event in the_tree.event_iter(supported=algorithm.supported):
         try:
             algorithm.add_event(event)
         except EventNotSupportedException:
             pass
     algorithm.finish_tree()
     print(decorator.data())
     self.assertTrue(False)
Exemplo n.º 6
0
    def test_count_signature_for_correct_zero_distance(self):
        signature = ParentCountedChildrenByNameTopologySignature(count=3)
        algorithm = IncrementalDistanceAlgorithm(signature=signature)
        decorator = DistanceMatrixDecorator(normalized=False)
        decorator.wrap_algorithm(algorithm)
        algorithm.prototypes = [real_tree()]

        algorithm.start_tree()
        for event in real_tree().event_iter(include_marker=True, supported=algorithm.supported):
            try:
                algorithm.add_event(event)
            except EventNotSupportedException:
                pass
        algorithm.finish_tree()
        print(algorithm._signature_prototypes._prototype_dict[0]._prototype_dict.keys())
        self.assertEqual([[[0]]], decorator.data())
Exemplo n.º 7
0
    def test_node_count_for_correct_zero_distance(self):
        signature = EnsembleSignature(
            signatures=[ParentChildByNameTopologySignature(),
                        ParentCountedChildrenByNameTopologySignature(count=3)])
        algorithm = IncrementalDistanceAlgorithm(
            signature=signature, distance=SimpleDistance)
        data_decorator = DataDecorator()
        data_decorator.wrap_algorithm(algorithm)
        algorithm.prototypes = [real_tree()]

        algorithm.start_tree()
        for event in real_tree().event_iter(include_marker=True, supported=algorithm.supported):
            try:
                algorithm.add_event(event)
            except EventNotSupportedException:
                pass
        algorithm.finish_tree()
        self.assertEqual([tree_value for values in data_decorator.data().get(
            "prototypes", {}).get("converted", []) for tree_value in values],
            [tree_value for values in data_decorator.data().get(
             "monitoring", {}).get("converted", []) for tree_value in values])
Exemplo n.º 8
0
    def test_attributes_nodes_only(self):
        def distance(**kwargs):
            distance = StartExitDistance(weight=1, **kwargs)
            distance.supported[TrafficEvent] = True
            return distance
        algorithm = IncrementalDistanceAlgorithm(
            signature=ParentChildByNameTopologySignature(),
            distance=distance,
            cache_statistics=SetStatistics
        )
        decorator = DistanceMatrixDecorator(normalized=False)
        decorator.wrap_algorithm(algorithm)
        algorithm.prototypes = [real_tree("data/c01-007-102/2/1129-2-process.csv")]

        monitoring_tree = real_tree("data/c01-007-102/2/1129-2-process.csv")
        algorithm.start_tree()
        for event in monitoring_tree.event_iter(supported=algorithm.supported):
            try:
                algorithm.add_event(event)
            except EventNotSupportedException:
                pass
        algorithm.finish_tree()
        self.assertEqual([[[0]]], decorator.data())
Exemplo n.º 9
0
    def test_initialisation_of_cluster_representatitives(self):
        def distance_builder(**kwargs):
            distance = StartExitDistance(weight=.5, **kwargs)
            distance.supported[TrafficEvent] = True
            return distance

        tree_one = real_tree()
        tree_two = real_tree(path="data/c01-007-102/2/1129-2-process.csv")
        tree_three = real_tree(path="data/c01-007-102/2/1136-3-process.csv")
        distance = StartExitDistance(weight=.5)
        distance.supported[TrafficEvent] = True
        signature = ParentChildByNameTopologySignature()
        tree_profiles = [
            tree_one.to_index(signature=signature,
                              supported=distance.supported,
                              statistics_cls=SetStatistics),
            tree_two.to_index(signature=signature,
                              supported=distance.supported,
                              statistics_cls=SetStatistics),
            tree_three.to_index(signature=signature,
                                supported=distance.supported,
                                statistics_cls=SetStatistics)
        ]
        algorithm = IncrementalDistanceAlgorithm(
            signature=ParentChildByNameTopologySignature(),
            distance=distance_builder,
            cache_statistics=SetStatistics)
        cluster_distance = ClusterDistance(distance=distance)
        prototype_names = ["test"]
        prototype_signatures = []
        for prototype in prototype_names:
            prototype_signatures.append(
                cluster_distance.mean(tree_profiles, prototype=prototype))
        algorithm.cluster_representatives(
            signature_prototypes=prototype_signatures,
            prototypes=prototype_names)
        algorithm.start_tree()